Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis(μ_4 -acetato- κ^4 O:O:O':O')bis(μ_3 -acetato- κ^3 O:O:O)(μ_2 -acetato- κ^2 O:O')- $(\mu_2$ -acetic acid- $\kappa^2 O:O'$)di- μ -aquacopper(II)trisodium]

Xiang-Yu Jiang and Xi-Gui Yue*

Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, People's Republic of China

Correspondence e-mail: yuexigui@jlu.edu.cn

Received 19 August 2010; accepted 6 September 2010

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.068; data-to-parameter ratio = 17.6.

In the title compound, [CuNa₃(CH₃CO₂)₅(CH₃COOH)- $(H_2O)_2]_n$, the Cu^{II} atom lies on an inversion center and is coordinated by four O atoms from four acetate ligands, leading to a square-planar geometry. One Na^I atom, lying on an inversion center, is coordinated by four O atoms from four acetate ligands and two bridging water molecules in a distorted octahedral geometry. The other Na^I atom is coordinated by five O atoms from five acetate ligands and a bridging water molecule. A hydroxy H atom lies on a twofold rotation axis and is shared by two acetate ligands. The crystal packing exhibits a polymeric layer parallel to (100), which is further stablized by intralayer $O-H \cdots O$ hydrogen bonds. The layers are linked by interlayer O-H···O hydrogen bonds.

Related literature

For related structures, see: Chiari et al. (1988); Vives et al. (2003).

Experimental

Crystal data

[CuNa₃(C₂H₃O₂)₅(C₂H₄O₂)(H₂O)₂] $M_r = 523.81$ Monoclinic, C2/c a = 14.571 (6) Å b = 6.768 (3) Å c = 22.653 (10) Å $\beta = 103.426 (19)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.752, \ \tilde{T}_{\max} = 0.777$

Refinement

D-

07

07

$R[F^2 > 2\sigma(F^2)] = 0.023$	142 parameters
$wR(F^2) = 0.068$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
2493 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

V = 2173.0 (16) Å³

Mo Ka radiation

 $0.27 \times 0.25 \times 0.23 \text{ mm}$

10214 measured reflections

2493 independent reflections

2192 reflections with $I > 2\sigma(I)$

 $\mu = 1.13 \text{ mm}^{-1}$

T = 290 K

 $R_{\rm int} = 0.023$

Z = 4

Table 1 Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H7A\cdotsO1$	0.79	2.05	2.835 (2)	172
-H7B···O1 ⁱ	0.80	2.03	2.8104 (19)	168

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2345).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chiari, B., Piovesana, O., Tarantelli, T. & Zanazzi, P. F. (1988). Inorg. Chem. 27, 3246-3248
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699-704.

supporting information

Acta Cryst. (2010). E66, m1244 [doi:10.1107/S1600536810035683]

Poly[bis(μ_4 -acetato- $\kappa^4 O:O:O':O'$)bis(μ_3 -acetato- $\kappa^3 O:O:O$)(μ_2 -acetato- $\kappa^2 O:O'$) (μ_2 -acetic acid- $\kappa^2 O:O'$)di- μ -aquacopper(II)trisodium]

Xiang-Yu Jiang and Xi-Gui Yue

S1. Comment

There has been increasing interest in the study of copper-containing complexes due to their various coordination styles and potential applications. We report here the crystal structure of the title compound, a new copper complex with acetate. In the title compound, as shown in Fig. 1, the Cu^{II} atom lies on an inversion center and is four-coordinated by four O atoms from four acetate ligands, forming a square-planar coordination geometry. In a comparison with the tiltle compound, the complexes previously reported (Chiari *et al.*, 1988; Vives *et al.*, 2003) show different coordination

behaviors of the central Cu^{II} ion. The two Na^I ions are each coordinated by six O atoms, forming a distorted octahedral coordination geometry. Na1 atom lies on an inversion center, while Na2 atom is on a general position. In the crystal structure, the metal ions, acetate ligands and water molecules are connected each other, forming a two-dimensional network (Fig. 2). The crystal packing is further stabilized by intermolecular O—H···O hydrogen bonds (Table 1).

S2. Experimental

The title compound was prepared as follows: copper acetate dihydrate (2.18 g, 0.01 mol) was added to a solution of glacial acetic acid (3 ml) in 15 ml water. Then 10 ml NaOH (3 mol/*L*) was added into the mixture. The mixture was heated and stirred for half an hour and then filtered. The filtrate was allowed to stand at room temperature for several days, giving blue block-shaped crystals.

S3. Refinement

C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.96 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$. H atoms of water and carboxyl group are located in a difference Fourier map and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, y, -z+1/2.]

Figure 2

A view of the two-dimensional structure in the title compound.

$Poly[bis(\mu_4-acetato-\kappa^4O:O:O')bis(\mu_3-acetato-\kappa^3O:O:O)(\mu_2-acetato-\kappa^2O:O')(\mu_2-acetato-\kappa^2O:O')di-\mu_3-acetato-\kappa^4O:O:O')bis(\mu_3-acetato-\kappa^3O:O:O)(\mu_2-acetato-\kappa^2O:O')(\mu_3-acetato-\kappa^2O:O')di-\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^2O:O')(\mu_3-acetato-\kappa^2O:O')(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O:O)(\mu_3-acetato-\kappa^3O:O)(\mu_3-\alpha(\mu_3-\kappa^3O:O)(\mu_3-\alpha(\mu_3-\kappa^3O:O)(\mu_3-\kappa^3O:$

aquacopper(II)trisodium]

Crystal data	
$[CuNa_3(C_2H_3O_2)_5(C_2H_4O_2)(H_2O_2)_2]$	F(000) = 1076
$M_r = 523.81$	$D_{\rm x} = 1.601 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 8924 reflections
a = 14.571 (6) Å	$\theta = 3.0-27.5^{\circ}$
b = 6.768 (3) Å	$\mu = 1.13 \text{ mm}^{-1}$
c = 22.653 (10) Å	T = 290 K
$\beta = 103.426 (19)^{\circ}$	Block, blue
V = 2173.0 (16) Å ³	$0.27 \times 0.25 \times 0.23 \text{ mm}$
Z=4	
Data collection	
Rigaku R-AXIS RAPID	10214 measured reflections
diffractometer	2493 independent reflections
Radiation source: rotaton anode	2192 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
ωscans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(ABSCOR; Higashi, 1995)	$k = -8 \longrightarrow 8$
$T_{\min} = 0.752, T_{\max} = 0.777$	<i>l</i> = −29→29
ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{\min} = 0.752, T_{\max} = 0.777$	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ $h = -18 \rightarrow 18$ $k = -8 \rightarrow 8$ $l = -29 \rightarrow 29$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.068$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
2493 reflections	$w = 1/[\sigma^2(F_o^2) + (0.039P)^2 + 1.7139P]$
142 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.011$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.32 \ e \ {\rm \AA}^{-3}$

Special details

Experimental. (See detailed section in the paper)

C1 H1A	0.26112 (13)	1 3050 (3)			
H1A	0.25(7	1.5050 (5)	0.41200 (9)	0.0451 (5)	
	0.2567	1.2814	0.3696	0.068*	
H1B	0.2834	1.4370	0.4221	0.068*	
H1C	0.2000	1.2893	0.4206	0.068*	
C2	0.32852 (10)	1.1606 (2)	0.44894 (7)	0.0252 (3)	
C3	0.49416 (15)	1.1930 (3)	0.67768 (7)	0.0400 (4)	
H3A	0.4943	1.3232	0.6945	0.060*	
H3B	0.5462	1.1188	0.7010	0.060*	
H3C	0.4361	1.1277	0.6788	0.060*	
C4	0.50335 (11)	1.2077 (2)	0.61301 (6)	0.0237 (3)	
C5	0.25974 (15)	0.7130 (4)	0.69424 (11)	0.0614 (6)	
H5A	0.2259	0.5966	0.7010	0.092*	
H5B	0.2658	0.7151	0.6529	0.092*	
H5C	0.2259	0.8282	0.7020	0.092*	
C6	0.35605 (13)	0.7116 (3)	0.73620 (8)	0.0352 (4)	
Cu1	0.5000	1.0000	0.5000	0.01852 (8)	
Na1	0.5000	0.5000	0.5000	0.02776 (19)	
Na2	0.50180 (5)	0.70788 (10)	0.62598 (3)	0.03245 (16)	
O1	0.30176 (9)	0.99791 (19)	0.46272 (7)	0.0430 (3)	
O2	0.41529 (7)	1.21412 (16)	0.46414 (5)	0.0244 (2)	
03	0.49001 (8)	1.04618 (17)	0.58292 (5)	0.0282 (2)	
O4	0.52322 (10)	1.36734 (18)	0.59343 (5)	0.0374 (3)	
05	0.42574 (9)	0.6909 (2)	0.71094 (6)	0.0455 (3)	
Н5	0.5000	0.6936	0.7500	0.068*	
06	0.36605 (10)	0.7272 (3)	0.79096 (6)	0.0517 (4)	
07	0.37443 (8)	0.67127 (19)	0.53741 (6)	0.0382 (3)	
H7B	0.3291	0.6111	0.5410	0.057*	
H7A	0.3518	0.7657	0.5191	0.057*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0326 (9)	0.0591 (13)	0.0409 (10)	0.0154 (9)	0.0033 (7)	0.0106 (9)
C2	0.0234 (7)	0.0315 (8)	0.0213 (7)	0.0002 (6)	0.0061 (5)	0.0000 (6)
C3	0.0630 (12)	0.0376 (10)	0.0218 (8)	-0.0002 (9)	0.0148 (8)	0.0001 (7)
C4	0.0287 (7)	0.0242 (7)	0.0184 (6)	0.0026 (6)	0.0058 (5)	0.0003 (6)
C5	0.0415 (11)	0.0837 (18)	0.0532 (13)	0.0000 (11)	-0.0011 (10)	-0.0001 (12)
C6	0.0386 (9)	0.0332 (9)	0.0328 (8)	-0.0008 (7)	0.0063 (7)	0.0024 (7)
Cul	0.02176 (13)	0.01720 (13)	0.01633 (12)	-0.00190 (9)	0.00390 (9)	0.00037 (9)
Na1	0.0418 (5)	0.0207 (4)	0.0213 (4)	-0.0071 (4)	0.0084 (4)	-0.0001 (3)
Na2	0.0433 (4)	0.0303 (3)	0.0235 (3)	-0.0038 (3)	0.0071 (3)	-0.0006 (3)
01	0.0336 (6)	0.0445 (8)	0.0488 (8)	-0.0151 (5)	0.0055 (6)	0.0105 (6)
O2	0.0228 (5)	0.0218 (5)	0.0271 (5)	-0.0013 (4)	0.0026 (4)	0.0006 (4)
O3	0.0426 (6)	0.0230 (5)	0.0205 (5)	-0.0008 (5)	0.0102 (4)	-0.0001 (4)
O4	0.0617 (8)	0.0254 (6)	0.0243 (5)	-0.0066 (6)	0.0084 (5)	0.0017 (5)
05	0.0401 (7)	0.0691 (10)	0.0281 (6)	-0.0009 (7)	0.0095 (5)	-0.0013 (6)
06	0.0430 (7)	0.0822 (12)	0.0316 (7)	0.0048 (7)	0.0122 (6)	0.0004 (7)
O7	0.0270 (6)	0.0361 (7)	0.0502 (7)	-0.0062(5)	0.0060 (5)	0.0030 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.496 (2)	Cu1—O3	1.9426 (13)
C1—H1A	0.9600	Cu1—O2	1.9540 (12)
C1—H1B	0.9600	Cu1—Na1 ⁱ	3.3842 (14)
C1—H1C	0.9600	Cu1—Na2 ⁱⁱ	3.4669 (13)
C2—O1	1.232 (2)	Na1—O4 ⁱⁱⁱ	2.2512 (14)
C2—O2	1.2831 (18)	Na1—O2 ⁱⁱⁱ	2.3371 (13)
C3—C4	1.505 (2)	Na1—O7	2.4759 (15)
С3—НЗА	0.9600	Na1—Na2 ^{iv}	3.1765 (13)
С3—Н3В	0.9600	Na2—O6 ^v	2.3627 (18)
С3—НЗС	0.9600	Na2—O7	2.4088 (16)
C4—O4	1.228 (2)	Na2—O5	2.4362 (17)
C4—O3	1.2792 (19)	Na2—O4 ⁱⁱⁱ	2.4618 (17)
C5—C6	1.501 (3)	Na2—O3	2.4792 (16)
C5—H5A	0.9600	Na2—O2 ⁱⁱ	2.6554 (15)
С5—Н5В	0.9600	O5—H5	1.2286
C5—H5C	0.9600	O7—H7B	0.7965
C6—O6	1.220 (2)	O7—H7A	0.7910
C6—O5	1.284 (2)		
C2—C1—H1A	109.5	O2 ⁱⁱ —Na1—O7	82.30 (5)
C2—C1—H1B	109.5	O2 ⁱⁱⁱ —Na1—O7	97.70 (5)
H1A—C1—H1B	109.5	O7 ^{iv} —Na1—O7	180.0
C2—C1—H1C	109.5	O4 ⁱⁱ —Na1—Na2 ^{iv}	50.50 (4)
H1A—C1—H1C	109.5	O4 ⁱⁱⁱ —Na1—Na2 ^{iv}	129.50 (4)
H1B—C1—H1C	109.5	O2 ⁱⁱ —Na1—Na2 ^{iv}	124.93 (3)
O1—C2—O2	122.32 (14)	O2 ⁱⁱⁱ —Na1—Na2 ^{iv}	55.07 (3)

01—C2—C1	121.35 (15)	O7 ^{iv} —Na1—Na2 ^{iv}	48.52 (3)
O2—C2—C1	116.31 (15)	O7—Na1—Na2 ^{iv}	131.48 (4)
C4—C3—H3A	109.5	O4 ⁱⁱ —Na1—Cu1 ⁱⁱⁱ	113.51 (3)
C4—C3—H3B	109.5	O4 ⁱⁱⁱ —Na1—Cu1 ⁱⁱⁱ	66.49 (3)
НЗА—СЗ—НЗВ	109.5	O2 ⁱⁱ —Na1—Cu1 ⁱⁱⁱ	145.89 (3)
C4—C3—H3C	109.5	O2 ⁱⁱⁱ —Na1—Cu1 ⁱⁱⁱ	34.11 (3)
НЗА—СЗ—НЗС	109.5	O7 ^{iv} —Na1—Cu1 ⁱⁱⁱ	62.08 (3)
НЗВ—СЗ—НЗС	109.5	O7—Na1—Cu1 ⁱⁱⁱ	117.92 (3)
O4—C4—O3	125.37 (14)	Na2 ^{iv} —Na1—Cu1 ⁱⁱⁱ	63.708 (19)
O4—C4—C3	119.44 (15)	O6 ^v —Na2—O7	175.43 (6)
O3—C4—C3	115.18 (14)	O6 ^v —Na2—O5	79.03 (6)
С6—С5—Н5А	109.5	O7—Na2—O5	104.44 (6)
С6—С5—Н5В	109.5	O6 ^v —Na2—O4 ⁱⁱⁱ	98.84 (6)
H5A—C5—H5B	109.5	O7—Na2—O4 ⁱⁱⁱ	77.35 (5)
С6—С5—Н5С	109.5	O5—Na2—O4 ⁱⁱⁱ	107.75 (5)
H5A—C5—H5C	109.5	O6 ^v —Na2—O3	103.39 (6)
H5B—C5—H5C	109.5	O7—Na2—O3	78.33 (5)
O6—C6—O5	122.86 (17)	O5—Na2—O3	110.60 (5)
O6—C6—C5	121.13 (18)	O4 ⁱⁱⁱ —Na2—O3	138.49 (5)
O5—C6—C5	116.00 (17)	O6 ^v —Na2—O2 ⁱⁱ	99.73 (6)
O3 ⁱⁱ —Cu1—O3	180.0	O7—Na2—O2 ⁱⁱ	77.30 (5)
O3 ⁱⁱ —Cu1—O2 ⁱⁱ	95.78 (5)	O5—Na2—O2 ⁱⁱ	171.22 (5)
O3—Cu1—O2 ⁱⁱ	84.22 (5)	O4 ⁱⁱⁱ —Na2—O2 ⁱⁱ	81.02 (5)
O3 ⁱⁱ —Cu1—O2	84.22 (5)	O3—Na2—O2 ⁱⁱ	61.06 (4)
O3—Cu1—O2	95.78 (5)	C2—O2—Cu1	112.95 (10)
O2 ⁱⁱ —Cu1—O2	180.00 (6)	C2—O2—Na1 ⁱ	137.32 (10)
O3 ⁱⁱ —Cu1—Na1 ⁱ	99.26 (3)	Cu1—O2—Na1 ⁱ	103.76 (5)
O3—Cu1—Na1 ⁱ	80.74 (3)	C2—O2—Na2 ⁱⁱ	116.47 (9)
O2 ⁱⁱ —Cu1—Na1 ⁱ	137.87 (3)	Cu1—O2—Na2 ⁱⁱ	96.36 (5)
O2—Cu1—Na1 ⁱ	42.13 (3)	Na1 ⁱ —O2—Na2 ⁱⁱ	78.74 (4)
O3 ⁱⁱ —Cu1—Na2 ⁱⁱ	44.26 (4)	C4—O3—Cu1	128.07 (10)
O3—Cu1—Na2 ⁱⁱ	135.74 (4)	C4—O3—Na2	126.27 (10)
O2 ⁱⁱ —Cu1—Na2 ⁱⁱ	130.43 (4)	Cu1—O3—Na2	102.59 (5)
O2—Cu1—Na2 ⁱⁱ	49.57 (4)	C4—O4—Na1 ⁱ	133.95 (10)
Na1 ⁱ —Cu1—Na2 ⁱⁱ	55.23 (2)	C4—O4—Na2 ⁱ	131.20 (11)
O4 ⁱⁱ —Na1—O4 ⁱⁱⁱ	180.0	Na1 ⁱ —O4—Na2 ⁱ	84.62 (5)
O4 ⁱⁱ —Na1—O2 ⁱⁱ	87.05 (5)	C6—O5—Na2	154.01 (12)
O4 ⁱⁱⁱ —Na1—O2 ⁱⁱ	92.95 (5)	С6—О5—Н5	109.4
O4 ⁱⁱ —Na1—O2 ⁱⁱⁱ	92.95 (5)	Na2—O5—H5	94.7
O4 ⁱⁱⁱ —Na1—O2 ⁱⁱⁱ	87.05 (5)	C6—O6—Na2 ^v	133.48 (13)
O2 ⁱⁱ —Na1—O2 ⁱⁱⁱ	180.0	Na2—O7—Na1	81.12 (5)
O4 ⁱⁱ —Na1—O7 ^{iv}	80.02 (5)	Na2—O7—H7B	117.7
O4 ⁱⁱⁱ —Na1—O7 ^{iv}	99.98 (5)	Na1—O7—H7B	119.5
O2 ⁱⁱ —Na1—O7 ^{iv}	97.70 (5)	Na2—O7—H7A	120.0
O2 ⁱⁱⁱ —Na1—O7 ^{iv}	82.30 (5)	Na1—O7—H7A	116.7

supporting information

O4 ⁱⁱ —Na1—O7	99.98 (5)	H7B—O7—H7A	102.2
O4 ⁱⁱⁱ —Na1—O7	80.02 (5)		

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, *y*, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
07—H7A…O1	0.79	2.05	2.835 (2)	172
O7— $H7B$ ···O1 ^{vi}	0.80	2.03	2.8104 (19)	168

Symmetry code: (vi) -x+1/2, -y+3/2, -z+1.