Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2S)-3-Carbamoyl-2-(4-methoxybenzenesulfonamido)propanoic acid

Hafiz Mubashar-ur-Rehman,^a Islam Ullah Khan,^a* Muhammad Nadeem Arshad^a and K. Travis Holman^b

^aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ^bDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA Correspondence e-mail: iukhan.gcu@gmail.com

Received 26 August 2010; accepted 7 September 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.024; *wR* factor = 0.063; data-to-parameter ratio = 17.7.

In the title compound, $C_{11}H_{14}N_2O_6S$, an amino acid-derived sulfonamide, the acetamido group and the carboxylic group are oriented at dihedral angles of 45.84 (5)° and 47.97 (5)° respectively, with respect to the aromatic ring. In the crystal, the molecules are connected by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds and weak $C-H\cdots O$ interactions, forming a three-dimensional network.

Related literature

For related structures, see: Arshad *et al.* (2009*a,b*), Khan *et al.* (2009). Amino acid-derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase, see: Dankwardt *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{11}H_{14}N_2O_6S}\\ M_r = 302.30\\ {\rm Monoclinic,}\ P2_1\\ a = 7.1462\ (1)\ {\rm \AA}\\ b = 8.9874\ (2)\ {\rm \AA}\\ c = 11.1418\ (2)\ {\rm \AA}\\ \beta = 108.090\ (1)^\circ \end{array}$

Data collection

Siemens SMART diffractometer equipped with a Bruker APEXII detector $V = 680.22 (2) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 100 K $0.42 \times 0.26 \times 0.23 \text{ mm}$

Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.897, T_{max} = 0.942$ 15356 measured reflections 3434 independent reflections 3335 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H atoms treated by a mixture of
$wR(F^2) = 0.063$	independent and constrained
S = 1.04	refinement
3434 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
194 parameters	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	Absolute structure: Flack (1983),
	1581 Friedel pairs
	Flack parameter: -0.01 (4)

Table 1		
Hydrogen-bond geometry	(Å,	°).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N2-H1N2\cdots O3^{i}$	0.812 (19)	2.147 (19)	2.9430 (15)	166.9 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N2 - H2N2 \cdot \cdot \cdot O2^{"}$	0.89 (2)	2.02 (2)	2.8808 (16)	162.9 (17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C11 - H11B \cdots O3^{m}$	0.98	2.48	3.3701 (17)	150
$O4-H4O\cdots O5^{iv}$ 0.81 (2) 1.79 (2) 2.5875 (14) 169 (2) $C9-H9A\cdots O2^{ii}$ 0.99 2.54 3.4055 (16) 145	$N1 - H1N \cdots O5^{n}$	0.927 (18)	1.907 (18)	2.8196 (14)	167.8 (16)
$C9 - H9A \cdots O2^{ii}$ 0.99 2.54 3.4055 (16) 145	$O4-H4O\cdots O5^{iv}$	0.81 (2)	1.79 (2)	2.5875 (14)	169 (2)
	$C9-H9A\cdots O2^{ii}$	0.99	2.54	3.4055 (16)	145

 $R_{\rm int} = 0.028$

Symmetry codes: (i) -x - 1, $y - \frac{1}{2}$, -z; (ii) -x - 1, $y + \frac{1}{2}$, -z; (iii) -x + 1, $y - \frac{1}{2}$, -z + 1; (iv) -x, $y + \frac{1}{2}$, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997), *PLATON* (Spek, 2009) and *X-SEED* (Barbour, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the Higher Education Commission of Pakistan for providing a fellowship to MNA under its International Research Support Initiative Programme (IRSIP).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5624).

References

- Arshad, M. N., Khan, I. U., Akkurt, M. & Shafiq, M. (2009b). Acta Cryst. E65, o1953–o1954.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009a). Acta Cryst. E65, 0940.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Wart, H. E. V. & Walker, K. A. M. (2002). *Bioorg. Med. Chem. Lett.* 12, 1233–1235.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Khan, I. U., Sharif, S., Arshad, M. N., Ejaz, & Idrees, M. (2009). Acta Cryst. E65, o2436.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o2596 [doi:10.1107/S160053681003607X]

(2S)-3-Carbamoyl-2-(4-methoxybenzenesulfonamido)propanoic acid

Hafiz Mubashar-ur-Rehman, Islam Ullah Khan, Muhammad Nadeem Arshad and K. Travis Holman

S1. Comment

Amino acid derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase (Dankwardt *et al.*, 2002). This structure is in countinuation to already reported crystal structures of sulfonamides derived from amino acids (Arshad *et al.*, 2009*a*), (Arshad *et al.*, 2009*b*) (Khan *et al.*, 2009) by our group.

The dihedral angle between the acetamido group attached at the C7 and the carboxylic group C7/C8/O3/O4 is 38.64 $(0.05)^{\circ}$ while these two groups are oriented at dihedral angle of 45.84 $(0.05)^{\circ}$ and 47.97 $(0.05)^{\circ}$ respectively with respect to the aromatic ring. The symmetry related intermolecular N—H···O, O—H···O and weak C—H···O type interactions stabilized the structure by the formation of three dimentional network (Fig. 2, Table, 1).

S2. Experimental

To the solution of L-asparagine (0.5 g, 3.78 mmol) in distilled water (10 ml), 4-methoxybenzenesulfonyl chloride(0.78 g, 3.78 mmol) was suspended. The reaction mixture was allowed to stirr at room temperature for 2 hrs. The pH of the solution was maintained at 8-9 by 1*M* sodium carbonate solution through out the reaction. After completion of the reaction which was observed by the consumption of suspended 4-methoxybenzenesulfonyl chloride, 1 *N* HCl solution was used to adjusted the pH about 2–3, which results in the formation of a white precipitate, which was filtered off, dried and recrystallized in methanol by slow evaporation to yield colorless needles of (I).

S3. Refinement

The C-H H-atoms were positioned geometricaly with C—H = 0.95 Å, C—H = 0.99Å and C—H = 1.00 Å for aromatic, methylene and chiral carbon atoms respectively, and were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. Similarly the C-H H-atoms were positioned geometricaly with C—H = 0.98 Å for methyl group and were refined using a riding model with $U_{iso}(H) = 1.5 U_{eq}(C)$. The N-H and O—H H atoms were located in difference map with N–H= 0.81 (2)—0.93 (2)Å and O—H= 0.81 (2) with $U_{iso}(H) = 1.2$ for N atoms and $U_{iso}(H) = 1.5$ for O atoms. The three reflections (001), (002) and (003) were omitted during the final refinement as these were obscured by the beam stop.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Unit cell packing for (I) with hydrogen bonding shown as dashed lines and the hydrogen atoms not involved in hydrogen bonding have been omitted.

(2S)-3-Carbamoyl-2-(4-methoxybenzenesulfonamido)propanoic acid

Crystal data	
$C_{11}H_{14}N_2O_6S$	<i>b</i> = 8.9874 (2) Å
$M_r = 302.30$	<i>c</i> = 11.1418 (2) Å
Monoclinic, <i>P</i> 2 ₁	$\beta = 108.090 \ (1)^{\circ}$
Hall symbol: P 2yb	$V = 680.22 (2) \text{ Å}^3$
a = 7.1462 (1) Å	Z = 2

F(000) = 316 $D_x = 1.476 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8744 reflections $\theta = 3.0-28.6^{\circ}$

Data collection

Siemens SMART diffractometer equipped with a Bruker APEXII detector Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.897, T_{\max} = 0.942$

Primary atom site location: structure-invariant

Secondary atom site location: difference Fourier

Refinement

Refinement on F^2

 $wR(F^2) = 0.063$

3434 reflections 194 parameters

direct methods

S = 1.04

1 restraint

map

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.024$

 $\mu = 0.27 \text{ mm}^{-1}$ T = 100 K Needle, colorless 0.42 × 0.26 × 0.23 mm

15356 measured reflections 3434 independent reflections 3335 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.6^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 12$ $l = -14 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.1181P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³ Absolute structure: Flack (1983), **1581 Friedel pairs** Absolute structure parameter: -0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	-0.29092 (4)	-0.00600 (3)	0.24767 (3)	0.01463 (7)	
01	-0.42282 (14)	0.05232 (12)	0.31015 (9)	0.0222 (2)	
N1	-0.30244 (16)	0.10725 (12)	0.13389 (10)	0.0151 (2)	
C1	-0.04937 (16)	-0.00385 (17)	0.35229 (10)	0.0149 (2)	
H1N	-0.375 (3)	0.193 (2)	0.1302 (16)	0.018*	
H1N2	-0.739 (3)	-0.027 (2)	-0.1489 (16)	0.018*	
O2	-0.32080 (14)	-0.15497 (11)	0.19714 (9)	0.0228 (2)	
N2	-0.65042 (16)	0.03205 (13)	-0.13841 (11)	0.0173 (2)	
C2	0.08556 (19)	-0.11149 (14)	0.34294 (12)	0.0168 (2)	

H2	0.0478	-0.1847	0.2784	0.020*
H2N2	-0.669 (2)	0.130 (2)	-0.1430 (17)	0.020*
O3	-0.03178 (13)	0.32670 (11)	0.13252 (9)	0.0204 (2)
C3	0.27541 (19)	-0.11253 (15)	0.42761 (13)	0.0181 (2)
Н3	0.3675	-0.1859	0.4212	0.022*
O4	0.12194 (15)	0.17646 (12)	0.03322 (11)	0.0241 (2)
C4	0.32887 (17)	-0.00447 (18)	0.52207 (11)	0.0173 (2)
H4O	0.208 (3)	0.238 (2)	0.0560 (19)	0.026*
05	-0.42990 (13)	-0.15430 (10)	-0.10103 (9)	0.01674 (18)
C5	0.1919 (2)	0.10294 (16)	0.53159 (12)	0.0196 (3)
Н5	0.2285	0.1754	0.5968	0.024*
O6	0.51004 (13)	0.00661 (13)	0.60857 (8)	0.0223 (2)
C6	0.0043 (2)	0.10393 (16)	0.44689 (12)	0.0189 (2)
H6	-0.0877	0.1776	0.4529	0.023*
C7	-0.17978 (17)	0.09007 (14)	0.05256 (11)	0.0132 (2)
H7	-0.1132	-0.0091	0.0698	0.016*
C8	-0.02147 (17)	0.21146 (14)	0.07875 (12)	0.0139 (2)
С9	-0.30540 (17)	0.09626 (14)	-0.08778 (11)	0.0138 (2)
H9A	-0.3628	0.1968	-0.1088	0.017*
H9B	-0.2219	0.0752	-0.1420	0.017*
C10	-0.46823 (16)	-0.01830 (16)	-0.11135 (10)	0.0134 (2)
C11	0.6510(2)	-0.10641 (19)	0.60538 (14)	0.0249 (3)
H11A	0.5988	-0.2044	0.6167	0.037*
H11B	0.7742	-0.0886	0.6734	0.037*
H11C	0.6762	-0.1032	0.5238	0.037*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01351 (12)	0.01393 (13)	0.01602 (13)	-0.00161 (11)	0.00396 (9)	0.00279 (11)
01	0.0180 (4)	0.0296 (5)	0.0215 (4)	0.0010 (4)	0.0097 (4)	0.0059 (4)
N1	0.0158 (5)	0.0138 (5)	0.0171 (5)	0.0037 (4)	0.0074 (4)	0.0040 (4)
C1	0.0147 (5)	0.0149 (5)	0.0141 (5)	0.0006 (5)	0.0030 (4)	0.0027 (5)
02	0.0230 (5)	0.0141 (5)	0.0264 (5)	-0.0041 (4)	0.0005 (4)	0.0023 (4)
N2	0.0125 (5)	0.0143 (6)	0.0252 (6)	-0.0011 (4)	0.0061 (4)	0.0012 (4)
C2	0.0199 (6)	0.0143 (6)	0.0167 (6)	-0.0004 (5)	0.0062 (5)	-0.0001 (5)
O3	0.0141 (4)	0.0163 (5)	0.0297 (5)	-0.0005 (3)	0.0053 (4)	-0.0082(4)
C3	0.0180 (6)	0.0181 (6)	0.0188 (6)	0.0021 (5)	0.0066 (5)	0.0012 (5)
O4	0.0170 (5)	0.0220 (5)	0.0373 (6)	-0.0072 (4)	0.0144 (4)	-0.0125 (4)
C4	0.0161 (5)	0.0203 (6)	0.0149 (5)	0.0006 (5)	0.0040 (4)	0.0033 (6)
O5	0.0131 (4)	0.0122 (4)	0.0244 (4)	-0.0006 (3)	0.0051 (3)	-0.0009(4)
C5	0.0214 (6)	0.0199 (6)	0.0158 (6)	0.0006 (5)	0.0033 (5)	-0.0032 (5)
06	0.0168 (4)	0.0290 (5)	0.0180 (4)	0.0028 (4)	0.0009 (3)	-0.0013 (4)
C6	0.0211 (6)	0.0171 (6)	0.0179 (6)	0.0029 (5)	0.0054 (5)	-0.0013 (5)
C7	0.0118 (5)	0.0121 (5)	0.0159 (5)	0.0001 (4)	0.0047 (4)	-0.0003 (4)
C8	0.0108 (5)	0.0143 (6)	0.0148 (5)	0.0006 (4)	0.0012 (4)	-0.0002 (4)
C9	0.0121 (5)	0.0131 (5)	0.0157 (5)	-0.0017 (4)	0.0037 (4)	-0.0002 (5)
C10	0.0135 (5)	0.0139 (6)	0.0128 (5)	-0.0029 (4)	0.0042 (4)	-0.0009 (4)

						0
C11	0.0170 (6)	0.0362 (8)	0.0200 (6)	0.0060 (5)	0.0034 (5)	0.0027 (6)
Geom	etric parameters (2	Å, °)				
<u>S1</u> —C	01	1.4336	(10)	O4—H4O	(0.81 (2)
S1—C)2	1.4424	(11)	C4—O6	1	.3565 (14)
S1—N	J1	1.6078	(11)	C4—C5	1	.402 (2)
S1—C	C1	1.7576	(11)	O5—C10	1	.2500 (17)
N1-0	27	1.4514	(15)	С5—С6	1	.3790 (18)
N1—I	HIN	0.927 (18)	С5—Н5	(0.9500
C1-C	22	1.3924	(18)	O6—C11	1	.4389 (18)
C1-C	C6	1.3948	(18)	С6—Н6	(0.9500
N20	C10	1.3217	(16)	С7—С8	1	.5330 (17)
N2—H	H1N2	0.812 (19)	С7—С9	1	.5435 (16)
N2—H	H2N2	0.89 (2)	С7—Н7	1	.0000
C2—C	23	1.3914	(18)	C9—C10	1	.5144 (17)
C2—H	-12	0.9500		С9—Н9А	().9900
03—0	28	1.2101	(16)	С9—Н9В	(0.9900
С3—С	C4	1.3954	(19)	C11—H11A	(0.9800
С3—Н	-13	0.9500		C11—H11B	(0.9800
04—0	C8	1.3151	(16)	C11—H11C	(0.9800
01—5	51—02	119.27	(6)	C4—O6—C11]	16.86 (11)
01-5	S1—N1	105.72	(6)	C5—C6—C1	1	19.57 (12)
02—5	S1—N1	108.34	(6)	С5—С6—Н6	1	20.2
01-5	S1—C1	109.41	(6)	С1—С6—Н6	1	20.2
02—5	S1—C1	105.36	(6)	N1—C7—C8	1	11.01 (10)
N1-5	S1—C1	108.38	(6)	N1—C7—C9	1	10.77 (10)
C7—N	N1—S1	122.14	(9)	С8—С7—С9	1	09.26 (10)
C7—N	N1—H1N	120.1 (11)	N1—C7—H7	1	08.6
S1—N	J1—H1N	117.0 (11)	С8—С7—Н7	1	08.6
C2—C	C1—C6	120.31	(11)	С9—С7—Н7	1	08.6
C2—C	C1—S1	120.20	(10)	03—C8—O4	1	24.77 (12)
С6—С	C1—S1	119.46	(10)	O3—C8—C7	1	23.27 (11)
C10—	-N2—H1N2	118.7 (12)	O4—C8—C7	1	11.95 (10)
C10—	-N2—H2N2	118.0 (11)	С10—С9—С7	1	08.97 (10)
H1N2	—N2—H2N2	123.3 (16)	С10—С9—Н9А	1	.09.9
С3—С	C2—C1	120.40	(12)	С7—С9—Н9А	1	.09.9
С3—С	С2—Н2	119.8		С10—С9—Н9В	1	.09.9
C1-C	С2—Н2	119.8		С7—С9—Н9В	1	.09.9
C2—C	C3—C4	119.19	(12)	H9A—C9—H9B	1	08.3
C2—C	С3—Н3	120.4		O5-C10-N2	1	21.87 (12)
C4—C	С3—Н3	120.4		O5—C10—C9	1	20.94 (10)
C8—C	D4—H4O	109.0 (14)	N2—C10—C9	1	17.14 (12)
06—0	C4—C3	124.36	(12)	O6-C11-H11A	1	09.5
06—0	C4—C5	115.50	(12)	O6-C11-H11B	1	09.5
С3—С	C4—C5	120.14	(11)	H11A—C11—H11B	1	.09.5
С6—С	С5—С4	120.38	(12)	O6-C11-H11C	1	.09.5

supporting information

C6—C5—H5	119.8	H11A—C11—H11C	109.5
C4—C5—H5	119.8	H11B—C11—H11C	109.5
O1—S1—N1—C7	176.40 (10)	C3—C4—O6—C11	-3.51 (19)
O2—S1—N1—C7	-54.66 (11)	C5—C4—O6—C11	176.95 (12)
C1—S1—N1—C7	59.18 (11)	C4—C5—C6—C1	0.8 (2)
O1—S1—C1—C2	148.92 (10)	C2-C1-C6-C5	-0.26 (19)
O2—S1—C1—C2	19.54 (12)	S1-C1-C6-C5	177.93 (11)
N1—S1—C1—C2	-96.25 (11)	S1-N1-C7-C8	-108.87 (11)
O1—S1—C1—C6	-29.28 (12)	S1—N1—C7—C9	129.56 (10)
O2—S1—C1—C6	-158.65 (10)	N1—C7—C8—O3	-18.96 (16)
N1—S1—C1—C6	85.55 (11)	C9—C7—C8—O3	103.49 (14)
$\begin{array}{c} C6 - C1 - C2 - C3 \\ S1 - C1 - C2 - C3 \\ C1 - C2 - C3 - C4 \\ C2 - C3 - C4 \\ O6 \end{array}$	-0.15(19) -178.33(10) 0.06(19) -179.08(12)	N1	$\begin{array}{c} 162.62 (11) \\ -74.93 (13) \\ -54.36 (13) \\ -176.96 (10) \end{array}$
C2-C3-C4-C5 C6-C4-C5-C6 C3-C4-C5-C6	0.4 (2) 178.71 (12) -0.8 (2)	C7—C9—C10—O5 C7—C9—C10—N2	-65.42 (14) 112.13 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H…A
N2—H1N2···O3 ⁱ	0.812 (19)	2.147 (19)	2.9430 (15)	166.9 (16)
N2—H2 $N2$ ···O2 ⁱⁱ	0.89 (2)	2.02 (2)	2.8808 (16)	162.9 (17)
C11—H11 <i>B</i> ···O3 ⁱⁱⁱ	0.98	2.48	3.3701 (17)	150
N1—H1 <i>N</i> ···O5 ⁱⁱ	0.927 (18)	1.907 (18)	2.8196 (14)	167.8 (16)
O4— $H4O$ ···O5 ^{iv}	0.81 (2)	1.79 (2)	2.5875 (14)	169 (2)
C9—H9A···O2 ⁱⁱ	0.99	2.54	3.4055 (16)	145

Symmetry codes: (i) -x-1, y-1/2, -z; (ii) -x-1, y+1/2, -z; (iii) -x+1, y-1/2, -z+1; (iv) -x, y+1/2, -z.