

metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[silver(I)-bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P:P'$]- μ -thiocyanato- $\kappa^2 S:S$ -silver(I)- μ -thiocyanato- $\kappa^2 S:N$]

Li-Li Song,^a Li-Na Cui,^a Qiong-Hua Jin^a* and Cun-Lin Zhang^b

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: jinqh204@163.com

Received 24 August 2010; accepted 5 September 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.015 Å; R factor = 0.059; wR factor = 0.168; data-to-parameter ratio = 14.9.

The title compound, $[Ag(NCS)(C_{25}H_{22}P_2)]_n$, contains two Ag⁺ ions, two thiocyanate ions and two bis(diphenylphosphino)methane (dppm) ligands in the asymmetric unit. One of the thiocyanate ions bridges the two Ag⁺ ions in a μ_2 -mode from its S atom and the two dppm ligands bridge the silver ions in a μ_1,μ_1 mode. The remaining SCN⁻ ion bridges the binuclear units *via* its N and S atoms, generating a one-dimensional polymer propagating in [101]: the resulting AgP₂SN and AgP₂S₂ coordination geometries could be described as distorted tetrahedral.

Related literature

For general background to silver(I) complexes, see: Awaleh *et al.* (2007); Liu *et al.* (2008). For silver(I) complexes containing phosphine ligands and coordinated anions, see: Jin, Song *et al.* (2010); Jin, Hu *et al.* (2010). For related structures, see: Jin *et al.* (2008); Cingolani *et al.* (2005).

Experimental

Crystal data

 $\begin{bmatrix} Ag(NCS)(C_{25}H_{22}P_{2}) \\ M_r = 550.32 \\ Monoclinic, P2_1/n \\ a = 13.0712 (14) Å \\ b = 23.080 (2) Å \\ c = 15.6340 (16) Å \\ \beta = 93.470 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.650, T_{\max} = 0.721$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.168$ S = 1.028306 reflections 559 parameters 23675 measured reflections 8306 independent reflections 4539 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.056$

V = 4708.0 (8) Å³

Mo $K\alpha$ radiation

 $0.43 \times 0.34 \times 0.32 \text{ mm}$

 $\mu = 1.10 \text{ mm}^-$

T = 298 K

Z = 8

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 1.34 \mbox{ e } \mbox{A}^{-3} \\ \Delta \rho_{min} = -1.31 \mbox{ e } \mbox{A}^{-3} \end{array}$

Table 1 Selected bond lengths (Å).

Ag1-P1	2.450 (2)	Ag2-N2 ⁱ	2.429 (9)
Ag1-P3	2.451 (2)	Ag2-P2	2.497 (2)
Ag1-S1	2.670 (3)	Ag2-P4	2.498 (2)
Ag1-S2	2.768 (3)	Ag2-S1	2.668 (2)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Keystone Basic Research Program (973 Program) under grant No. 2007CB310408, No. 2006CB302901 and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality. It was also supported by the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5620).

References

- Awaleh, M. O., Badia, A. & Brisse, F. (2007). Inorg. Chem. 46, 3185–3191.Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cingolani, A., Di Nicola, C., Effendy, Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). *Inorg. Chim. Acta*, **358**, 748–762.
- Jin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 78–81.
- Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441–445.
- Jin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010). Inorg. Chem. Commun. 13, 62–65.
- Liu, C. S., Chen, P. Q., Chang, Z., Wang, J. J., Yan, L. F., Sun, H. W., Bu, X. H., Lin, Z. M. & Batten, S. R. (2008). *Inorg. Chem. Commun.* **11**, 159–163. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

supporting information

Acta Cryst. (2010). E66, m1237-m1238 [doi:10.1107/S1600536810035622]

catena-Poly[silver(I)-bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P:P'$]- μ -thiocyanato- $\kappa^2 S:S$ -silver(I)- μ -thiocyanato- $\kappa^2 S:N$]

Li-Li Song, Li-Na Cui, Qiong-Hua Jin and Cun-Lin Zhang

S1. Comment

Many research efforts have been devoted to the silver(I) complexes due to their fascinating structures and potential applications in the field of photo-sensitizer, semi-conducting or catalytic devices (Awaleh *et al.*, 2007, Liu *et al.*, 2008). Recently, we have found some silver(I) complexes containing phosphine ligands and coordinated anions (Jin, Song *et al.*, 2010, Jin, Hu *et al.*, 2010). Continuing these efforts, we obtain a new one-dimensional polymer [Ag₂(dppm)₂(SCN)₂] by using AgSCN, dppm and 1,10-Phenanthroline(phen).

The crystal structural analysis shows that SCN⁻ bridges the $[Ag_2(dppm)_2(SCN)]$ binuclear units to give rise to a onedimensional polymer. In the binclear unit, two dppm ligands lock two silver atoms to form a circular dimer, where S atom of SCN⁻ behaving as bridging ligand links two silver atoms. Two silver atoms are four-coordinated. Ag1 is coordinated by two P-atoms from two dppm ligands, two S atoms from two thiocyanide anions while Ag2 is coordinated by two P-atoms from two dppm ligands, one S-atom and one N-atom from two thiocyanide anions. In the title compound, the P—Ag1—S angles are in the range 104.55 (9)–108.67 (8)°, and the P—Ag1—P angle is 127.18 (8)°, S—Ag1—S is 99.11 (8)°; while N—Ag2—P are in the range 101.4 (2)–113.2 (2)°, P—Ag2—P is 126.43 (8)°, N—Ag2—S are in the range 101.5 (3)– 106.66 (8)°. This confirms the distored tetrahedral environment around two silver (I) atoms. The distance of the two silver atoms (3.484 Å) is 0.048 Å longer than the sum of the covalent radii(3.44 Å), which indicates that there exists weak Ag···Ag interaction. The bond lengths of S1—Ag1 and S1—Ag2 are 2.670 and 2.668 Å, respectively. The angles of N1—C1—S1 and N2—C2—S2 are 179.55 and 165.33°, respectively. The angle of Ag1—S1—Ag2 are 10.92° shorter than that reported for $[Ag_2(dpam)_2(SCN)_2](92.39°)$ (Cingolani *et al.*, 2005).

The similar compound $[Ag_4(SCN)_4(dppm)_2]$ (Jin *et al.*,2008) is prepared by the similar reaction by using quinoline in place of phen. Though both quinoline and phen don't take part in coordination, this two ligands effect the final structures of the products. This confirms again that different nitrogen heterocyclic ligands lead to different structures due to the subtle interation of the nitrogen heterocyclic ligands with silver ions. (Jin, Hu *et al.*, 2010).

S2. Experimental

A mixture of AgSCN (0.0332 g, 0.2 mmol), 1,10-Phenanthroline (0.0792, 0.4 mmol) and bis(diphenylphosphino)methane (0.1532 g, 0.4 mmol) in the molar ratio 1:2:2 in CH₃OH/CH₂Cl₂ was stirred for 5 h at ambient temperature. After filtration, the filtrate was allowed to stand still. Slow evaportation of the solvent yielded colourless blocks of (I). Analysis found(percentage): C 56.70, H 4.00, N 2.54; calculated: C 56.21, H 3.72, N 2.24.

S3. Refinement

All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Figure 1

Perspective view of a basic unit of the title complex. Hydrogen atoms are omitted for clarity.

Figure 2

Perspective view of a one-dimensional polymer of the title complex.

catena-Poly[silver(I)-bis[μ -bis(diphenylphosphino)methane- $\kappa^2 P: P'$]- μ -thiocyanato- $\kappa^2 S:S$ -silver(I)- μ -thiocyanato- $\kappa^2 S:N$]

Crystal data	
$[Ag(NCS)(C_{25}H_{22}P_2)]$ $M_r = 550.32$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.0712 (14) Å b = 23.080 (2) Å c = 15.6340 (16) Å $\beta = 93.470 (1)^{\circ}$ $V = 4708.0 (8) Å^3$ Z = 8 F(000) = 2224	$D_x = 1.553 \text{ Mg m}^{-3}$ $D_m = 1.553 \text{ Mg m}^{-3}$ D_m measured by not measured Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4221 reflections $\theta = 2.3-23.1^{\circ}$ $\mu = 1.10 \text{ mm}^{-1}$ T = 298 K Block, colourless $0.43 \times 0.34 \times 0.32 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube	phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)
Graphite monochromator	$T_{\rm min} = 0.650, \ T_{\rm max} = 0.721$

23675 measured reflections	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
8306 independent reflections	$h = -15 \rightarrow 15$
4539 reflections with $I > 2\sigma(I)$	$k = -27 \rightarrow 22$
$R_{\rm int} = 0.056$	$l = -15 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$W^2(E^2) = 0.168$	poighbouring sites
$WR(F^{-}) = 0.168$ S = 1.02 8306 reflections 559 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0414P)^2 + 37.553P]$ where $P = (F_o^2 + 2F_o^2)/3$
1 restraint	$(\Delta/\sigma)_{\text{max}} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{\text{max}} = 1.34 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta\rho_{\text{min}} = -1.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.67704 (5)	0.24042 (3)	0.55934 (5)	0.0460 (2)	
Ag2	0.49477 (5)	0.24103 (3)	0.71296 (4)	0.0422 (2)	
N1	0.7422 (7)	0.1363 (5)	0.7966 (7)	0.090 (3)	
N2	0.9491 (8)	0.2412 (4)	0.3589 (6)	0.084 (3)	
P1	0.60071 (16)	0.33099 (9)	0.50436 (14)	0.0342 (5)	
P2	0.43500 (16)	0.33225 (9)	0.64005 (14)	0.0343 (5)	
Р3	0.61866 (16)	0.14163 (9)	0.52595 (14)	0.0336 (5)	
P4	0.45647 (17)	0.14001 (9)	0.66334 (15)	0.0379 (5)	
S1	0.69887 (17)	0.24681 (11)	0.73000 (16)	0.0488 (6)	
S2	0.8817 (2)	0.24072 (14)	0.5231 (2)	0.0715 (8)	
C1	0.7242 (7)	0.1814 (5)	0.7699 (7)	0.054 (3)	
C2	0.9092 (8)	0.2425 (4)	0.4226 (7)	0.052 (2)	
C3	0.4656 (6)	0.3405 (4)	0.5286 (5)	0.040 (2)	
H3A	0.4440	0.3789	0.5097	0.048*	
H3B	0.4248	0.3128	0.4946	0.048*	
C4	0.5943 (7)	0.3337 (4)	0.3880 (6)	0.044 (2)	
C5	0.6844 (8)	0.3277 (4)	0.3492 (7)	0.059 (3)	
H5	0.7459	0.3256	0.3822	0.071*	
C6	0.6847 (8)	0.3246 (5)	0.2606 (7)	0.069 (3)	
H6	0.7465	0.3211	0.2346	0.083*	
C7	0.5942 (8)	0.3266 (5)	0.2106 (7)	0.066 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7	0.5947	0.3244	0.1513	0.079*
C8	0.5053 (8)	0.3316 (4)	0.2487 (6)	0.058 (3)
H8	0.4438	0.3320	0.2156	0.069*
C9	0.5049 (7)	0.3363 (4)	0.3366 (6)	0.049 (2)
H9	0.4428	0.3413	0.3618	0.059*
C10	0.6664 (7)	0.3976 (4)	0.5373 (6)	0.041 (2)
C11	0.7642 (7)	0.3934 (4)	0.5762 (6)	0.056 (3)
H11	0.7946	0.3572	0.5837	0.067*
C12	0.8174 (8)	0.4423 (4)	0.6041 (7)	0.063 (3)
H12	0.8831	0.4388	0.6300	0.076*
C13	0.7733 (8)	0.4958 (4)	0.5936 (7)	0.061 (3)
H13	0.8082	0.5287	0.6137	0.073*
C14	0.6787 (8)	0.5008 (4)	0.5539(7)	0.061 (3)
H14	0.6494	0.5373	0.5460	0.073*
C15	0.6250 (7)	0.4521 (4)	0.5250 (6)	0.051 (2)
H15	0.5606	0.4562	0.4971	0.061*
C16	0.2954 (7)	0.3366 (4)	0.6316 (6)	0.045 (2)
C17	0.2480 (7)	0.3291 (4)	0.7076 (7)	0.058 (3)
H17	0.2870	0.3247	0.7590	0.070*
C18	0.1413 (8)	0.3280 (5)	0.7065 (8)	0.073 (3)
H18	0.1086	0.3223	0.7571	0.088*
C19	0.0856 (9)	0.3353 (5)	0.6317 (9)	0.072 (3)
H19	0.0144	0.3352	0.6317	0.086*
C20	0.1301 (8)	0.3428 (5)	0.5569 (8)	0.072 (3)
H20	0.0902	0.3467	0.5060	0.086*
C21	0.2356 (7)	0.3445 (4)	0.5569 (7)	0.060 (3)
H21	0.2668	0.3510	0.5059	0.072*
C22	0.4750 (7)	0.4014 (4)	0.6861 (6)	0.041 (2)
C23	0.5642 (7)	0.4043 (4)	0.7378 (6)	0.051 (2)
H23	0.5998	0.3706	0.7529	0.062*
C24	0.6009 (8)	0.4577 (4)	0.7673 (7)	0.064 (3)
H24	0.6614	0.4595	0.8017	0.077*
C25	0.5495 (9)	0.5072 (5)	0.7463 (7)	0.063 (3)
H25	0.5758	0.5428	0.7649	0.076*
C26	0.4596 (8)	0.5049 (4)	0.6982 (6)	0.056 (3)
H26	0.4232	0.5387	0.6856	0.067*
C27	0.4220 (7)	0.4523 (4)	0.6680(6)	0.048 (2)
H27	0.3604	0.4510	0.6351	0.058*
C28	0.5626 (7)	0.1018 (4)	0.6134 (6)	0.047(2)
H28A	0.6162	0.0938	0.6574	0.056*
H28B	0.5372	0.0648	0.5914	0.056*
C29	0.7291 (7)	0.0990 (4)	0.4987 (6)	0.044(2)
C30	0.8073 (7)	0.0897 (4)	0.5609 (7)	0.057 (3)
H30	0.7958	0.0973	0.6180	0.068*
C31	0.9021 (8)	0.0694 (5)	0.5398 (8)	0.069 (3)
H31	0.9547	0.0648	0.5821	0.083*
C32	0.9181 (9)	0.0561 (5)	0.4572 (8)	0.069 (3)
H32	0.9812	0.0415	0.4429	0.082*

C33	0.8420 (9)	0.0641 (5)	0.3955 (7)	0.069 (3)
H33	0.8531	0.0546	0.3390	0.083*
C34	0.7467 (8)	0.0864 (4)	0.4158 (7)	0.059 (3)
H34	0.6956	0.0925	0.3728	0.071*
C35	0.5264 (7)	0.1321 (4)	0.4371 (6)	0.048 (2)
C36	0.4939 (8)	0.0789 (5)	0.4059 (7)	0.068 (3)
H36	0.5227	0.0453	0.4296	0.081*
C37	0.4185 (9)	0.0750 (5)	0.3393 (8)	0.087 (4)
H37	0.3971	0.0387	0.3192	0.104*
C38	0.3753 (8)	0.1241 (5)	0.3028 (7)	0.072 (3)
H38	0.3228	0.1213	0.2601	0.087*
C39	0.4105 (8)	0.1773 (5)	0.3301 (7)	0.064 (3)
H39	0.3841	0.2108	0.3042	0.077*
C40	0.4854 (7)	0.1809 (4)	0.3963 (6)	0.055 (3)
H40	0.5089	0.2173	0.4141	0.066*
C41	0.3476 (7)	0.1354 (4)	0.5868 (6)	0.050 (2)
C42	0.3018 (8)	0.1858 (4)	0.5572 (6)	0.057 (3)
H42	0.3296	0.2208	0.5765	0.069*
C43	0.2166 (8)	0.1872 (5)	0.5002 (7)	0.068 (3)
H43	0.1883	0.2225	0.4828	0.082*
C44	0.1741 (8)	0.1366 (5)	0.4695 (8)	0.075 (3)
H44	0.1136	0.1369	0.4349	0.090*
C45	0.2227 (10)	0.0855 (6)	0.4910 (9)	0.093 (4)
H45	0.1965	0.0505	0.4698	0.111*
C46	0.3107 (9)	0.0863 (5)	0.5444 (8)	0.080 (4)
H46	0.3474	0.0520	0.5522	0.096*
C47	0.4310 (8)	0.0900 (4)	0.7463 (7)	0.058 (3)
C48	0.4558 (10)	0.1033 (5)	0.8299 (8)	0.086 (4)
H48	0.4851	0.1394	0.8419	0.103*
C49	0.4401 (11)	0.0665 (6)	0.8987 (9)	0.101 (5)
H49	0.4587	0.0786	0.9542	0.121*
C50	0.3977 (10)	0.0128 (5)	0.8854 (8)	0.086 (4)
H50	0.3875	-0.0122	0.9307	0.103*
C51	0.3709 (12)	-0.0023 (6)	0.8029 (10)	0.108 (5)
H51	0.3412	-0.0383	0.7908	0.130*
C52	0.3882 (11)	0.0358 (5)	0.7370 (9)	0.095 (4)
H52	0.3690	0.0237	0.6816	0.114*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Agl	0.0510 (4)	0.0350 (4)	0.0509 (5)	0.0026 (3)	-0.0054 (3)	0.0020 (3)
Ag2	0.0420 (4)	0.0364 (4)	0.0477 (4)	-0.0003 (3)	-0.0025 (3)	0.0017 (3)
N1	0.071 (7)	0.083 (8)	0.114 (9)	0.002 (6)	-0.006 (6)	0.033 (7)
N2	0.109 (8)	0.087 (7)	0.062 (7)	-0.013 (6)	0.052 (6)	-0.016 (5)
P1	0.0366 (12)	0.0327 (12)	0.0335 (13)	0.0025 (10)	0.0034 (10)	0.0027 (9)
P2	0.0357 (12)	0.0317 (12)	0.0360 (13)	0.0029 (10)	0.0056 (10)	0.0000 (9)
P3	0.0361 (12)	0.0326 (12)	0.0320 (13)	-0.0006 (10)	0.0018 (10)	0.0012 (9)

P4	0.0375 (12)	0.0330 (11)	0.0441 (14)	-0.0037 (10)	0.0097 (11)	-0.0011 (10)
S 1	0.0394 (12)	0.0609 (16)	0.0453 (14)	-0.0077 (11)	-0.0038 (10)	-0.0030 (12)
S2	0.0556 (16)	0.094 (2)	0.0655 (19)	-0.0031 (16)	0.0120 (14)	-0.0011 (16)
C1	0.039 (5)	0.060 (7)	0.062 (7)	0.001 (5)	-0.002 (5)	0.010 (5)
C2	0.060 (6)	0.042 (6)	0.057 (7)	-0.003 (5)	0.012 (5)	-0.002 (5)
C3	0.044 (5)	0.038 (5)	0.038 (5)	-0.001 (4)	0.003 (4)	-0.002 (4)
C4	0.046 (5)	0.048 (6)	0.039 (5)	0.000 (4)	0.008 (4)	0.002 (4)
C5	0.054 (6)	0.077 (8)	0.047 (7)	-0.005 (5)	0.010 (5)	0.003 (5)
C6	0.058 (7)	0.101 (9)	0.051 (7)	-0.007 (6)	0.018 (6)	-0.004 (6)
C7	0.068 (7)	0.085 (8)	0.044 (7)	-0.004 (6)	0.009 (6)	0.001 (6)
C8	0.055 (6)	0.074 (7)	0.044 (6)	0.001 (5)	0.001 (5)	-0.002 (5)
C9	0.047 (6)	0.060 (6)	0.041 (6)	0.004 (5)	0.007 (5)	0.001 (5)
C10	0.050 (6)	0.036 (5)	0.038 (5)	-0.005 (4)	0.006 (4)	0.002 (4)
C11	0.058 (6)	0.049 (6)	0.059 (7)	-0.003 (5)	-0.008 (5)	0.000 (5)
C12	0.061 (7)	0.056 (7)	0.070 (8)	-0.014 (6)	-0.011 (6)	-0.002 (6)
C13	0.071 (8)	0.048 (7)	0.062 (7)	-0.014 (6)	0.001 (6)	-0.010 (5)
C14	0.074 (8)	0.042 (6)	0.067 (8)	-0.006 (5)	0.006 (6)	0.003 (5)
C15	0.055 (6)	0.043 (6)	0.055 (7)	-0.001 (5)	0.002 (5)	0.006 (5)
C16	0.038 (5)	0.041 (5)	0.058 (7)	0.002 (4)	0.005 (5)	0.001 (4)
C17	0.045 (6)	0.064 (7)	0.066 (7)	0.001 (5)	0.008 (5)	-0.005 (5)
C18	0.053 (7)	0.084 (9)	0.085 (10)	-0.001 (6)	0.021 (7)	-0.007 (7)
C19	0.045 (6)	0.078 (8)	0.092 (10)	0.005 (6)	0.007 (7)	-0.011 (7)
C20	0.048 (7)	0.080 (8)	0.085 (9)	0.010 (6)	-0.009 (6)	-0.005 (7)
C21	0.049 (6)	0.063 (7)	0.068 (8)	0.004 (5)	-0.001 (5)	-0.002 (6)
C22	0.045 (5)	0.038 (5)	0.042 (6)	0.001 (4)	0.006 (4)	0.001 (4)
C23	0.060 (6)	0.044 (6)	0.049 (6)	-0.002(5)	-0.004 (5)	-0.001 (5)
C24	0.069 (7)	0.056 (7)	0.065 (8)	-0.007 (6)	-0.010 (6)	-0.009 (6)
C25	0.081 (8)	0.051 (7)	0.057 (7)	-0.014 (6)	0.008 (6)	-0.006(5)
C26	0.077 (8)	0.038 (6)	0.053 (7)	0.003 (5)	0.008 (6)	-0.001 (5)
C27	0.057 (6)	0.042 (6)	0.046 (6)	0.002 (5)	0.003 (5)	-0.001 (4)
C28	0.050 (6)	0.043 (5)	0.048 (6)	-0.003 (4)	0.003 (5)	0.003 (4)
C29	0.045 (5)	0.047 (6)	0.041 (6)	0.004 (4)	0.006 (5)	-0.002(4)
C30	0.051 (6)	0.064 (7)	0.055 (7)	0.011 (5)	0.005 (5)	-0.007 (5)
C31	0.055 (7)	0.080 (8)	0.073 (9)	0.011 (6)	0.002 (6)	-0.010 (6)
C32	0.059 (7)	0.075 (8)	0.073 (9)	0.012 (6)	0.014 (6)	0.001 (6)
C33	0.077 (8)	0.074 (8)	0.059 (8)	0.016 (6)	0.020 (6)	-0.007 (6)
C34	0.060 (7)	0.065 (7)	0.052 (7)	0.015 (5)	0.005 (5)	0.004 (5)
C35	0.046 (5)	0.046 (6)	0.049 (6)	0.000 (4)	-0.008 (5)	0.003 (4)
C36	0.072 (7)	0.059 (7)	0.069 (8)	-0.005 (6)	-0.025 (6)	0.009 (6)
C37	0.089 (9)	0.076 (9)	0.089 (10)	-0.013 (7)	-0.035 (8)	0.004 (7)
C38	0.061 (7)	0.081 (9)	0.071 (8)	-0.002 (6)	-0.022 (6)	0.011 (7)
C39	0.060 (7)	0.072 (8)	0.059 (7)	0.016 (6)	-0.013 (6)	0.010 (6)
C40	0.052 (6)	0.057 (7)	0.054 (7)	0.007 (5)	-0.006 (5)	0.006 (5)
C41	0.046 (6)	0.048 (6)	0.055 (6)	-0.006 (5)	-0.003(5)	-0.001(5)
C42	0.061 (7)	0.049 (6)	0.060 (7)	-0.004 (5)	-0.010 (5)	-0.002 (5)
C43	0.065 (7)	0.068 (8)	0.070 (8)	0.002 (6)	-0.014 (6)	0.000 (6)
C44	0.058 (7)	0.076 (9)	0.087 (9)	0.000 (6)	-0.021 (6)	-0.004 (7)
C45	0.083 (9)	0.080 (9)	0.110 (11)	-0.014 (7)	-0.033 (8)	-0.005 (8)

supporting information

C46	0.081 (9)	0.065 (8)	0.090 (10)	-0.004 (6)	-0.022 (7)	0.000(7)
C47	0.075 (7)	0.045 (6)	0.055 (7)	-0.015 (5)	0.016 (6)	-0.001 (5)
C48	0.114 (11)	0.071 (8)	0.070 (9)	-0.033 (7)	-0.012 (8)	0.020 (7)
C49	0.143 (13)	0.088 (10)	0.071 (9)	-0.031 (9)	-0.012 (9)	0.023 (7)
C50	0.115 (11)	0.073 (9)	0.070 (9)	-0.022 (8)	0.009 (8)	0.024 (7)
C51	0.158 (15)	0.080 (10)	0.089 (11)	-0.050 (9)	0.024 (10)	0.015 (8)
C52	0.134 (12)	0.076 (9)	0.076 (9)	-0.034 (8)	0.013 (9)	0.006 (7)

Geometric parameters (Å, °)

Ag1—P1	2.450 (2)	C21—H21	0.9300
Ag1—P3	2.451 (2)	C22—C23	1.379 (12)
Ag1—S1	2.670 (3)	C22—C27	1.384 (12)
Ag1—S2	2.768 (3)	C23—C24	1.392 (13)
Ag2—N2 ⁱ	2.429 (9)	С23—Н23	0.9300
Ag2—P2	2.497 (2)	C24—C25	1.355 (14)
Ag2—P4	2.498 (2)	C24—H24	0.9300
Ag2—S1	2.668 (2)	C25—C26	1.357 (14)
N1—C1	1.142 (12)	С25—Н25	0.9300
N2—C2	1.153 (12)	C26—C27	1.382 (12)
N2—Ag2 ⁱⁱ	2.429 (9)	C26—H26	0.9300
P1—C4	1.817 (9)	С27—Н27	0.9300
P1-C10	1.819 (9)	C28—H28A	0.9700
P1—C3	1.842 (8)	C28—H28B	0.9700
P2—C22	1.815 (9)	C29—C34	1.361 (13)
P2—C3	1.821 (9)	C29—C30	1.384 (12)
P2—C16	1.825 (9)	C30—C31	1.385 (13)
P3—C35	1.797 (9)	С30—Н30	0.9300
P3—C29	1.819 (9)	C31—C32	1.355 (14)
P3—C28	1.838 (9)	C31—H31	0.9300
P4—C47	1.783 (10)	C32—C33	1.356 (14)
P4—C41	1.806 (9)	С32—Н32	0.9300
P4—C28	1.855 (9)	C33—C34	1.402 (13)
S1—C1	1.659 (11)	С33—Н33	0.9300
S2—C2	1.633 (11)	C34—H34	0.9300
С3—НЗА	0.9700	C35—C36	1.379 (13)
С3—Н3В	0.9700	C35—C40	1.386 (12)
C4—C5	1.364 (13)	C36—C37	1.393 (14)
C4—C9	1.380 (12)	С36—Н36	0.9300
C5—C6	1.387 (13)	C37—C38	1.375 (15)
С5—Н5	0.9300	С37—Н37	0.9300
C6—C7	1.378 (14)	C38—C39	1.370 (14)
С6—Н6	0.9300	C38—H38	0.9300
С7—С8	1.342 (13)	C39—C40	1.384 (13)
С7—Н7	0.9300	С39—Н39	0.9300
C8—C9	1.378 (13)	C40—H40	0.9300
С8—Н8	0.9300	C41—C42	1.375 (13)
С9—Н9	0.9300	C41—C46	1.385 (14)

C10-C15	1 378 (12)	$C_{42} - C_{43}$	1 383 (13)
C10-C11	1 386 (12)	C_{42} —H42	0.9300
C_{11} C_{12}	1.382(13)	C43 - C44	1.367(14)
C11 H11	0.0300	C43 H43	0.0300
C_{12} C_{13}	1 360 (13)	C44 C45	1.373(15)
C12—C13	0.0200	$C_{44} = C_{43}$	1.373(13)
C12—H12	0.9300	$C44$ — $\Pi44$ C45— $C46$	0.9300
C13—C14	1.555 (15)	C45 = U45	1.579 (15)
С13—Н13	0.9300	С45—Н45	0.9300
C14—C15	1.388 (13)	C46—H46	0.9300
C14—H14	0.9300	C47—C48	1.363 (15)
С15—Н15	0.9300	C47—C52	1.374 (14)
C16—C21	1.377 (13)	C48—C49	1.396 (15)
C16—C17	1.383 (13)	C48—H48	0.9300
C17—C18	1.394 (13)	C49—C50	1.368 (16)
С17—Н17	0.9300	C49—H49	0.9300
C18—C19	1.351 (15)	C50—C51	1.362 (17)
C18—H18	0.9300	С50—Н50	0.9300
C19—C20	1.348 (15)	C51—C52	1.383 (16)
С19—Н19	0.9300	C51—H51	0.9300
C20—C21	1.380 (14)	С52—Н52	0.9300
C20—H20	0.9300		
P1—Ag1—P3	127.18 (8)	C16—C21—C20	120.8 (11)
P1—Ag1—S1	108.67 (8)	C16—C21—H21	119.6
P3—Ag1—S1	106.10 (8)	C20—C21—H21	119.6
P1 - Ag1 - S2	107.71 (9)	C23—C22—C27	118.3 (8)
P3 = Ag1 = S2	104 55 (9)	C23—C22—P2	1192(7)
S1 - Ag1 - S2	99 11 (8)	$C_{27} - C_{22} - P_{2}$	1224(7)
$N2^{i}$ Ag2 P2	1014(2)	C^{22} C^{23} C^{24}	122.1(7) 119.9(9)
$N2^{i}$ Δg^{2} $P4$	1132(2)	$C_{22} = C_{23} = C_{23}$	120.0
$P_2 \wedge \sigma_2 P_4$	126 / 3 (8)	$C_{22} = C_{23} = H_{23}$	120.0
12 - Ag2 - 14 $N2^{i} Ag2 - S1$	120.43(3)	$C_{24} = C_{23} = M_{23}$	120.0 120.7(10)
$\frac{1}{12} - \frac{1}{12} - \frac{1}{12} = \frac{1}{12}$	101.5(3) 106.66(8)	$C_{25} = C_{24} = C_{25}$	120.7 (10)
$r_2 - Ag_2 - S_1$	100.00(8)	$C_{23} = C_{24} = H_{24}$	119.7
P4 - Ag2 - S1	104.95(8)	$C_{23} = C_{24} = H_{24}$	119.7
C_2 —N2—Ag2"	103.2(10)	$C_{24} = C_{25} = C_{26}$	120.1 (10)
C4 - PI - CI0	104.3 (4)	C24—C25—H25	120.0
C4 - PI - C3	102.5 (4)	C26—C25—H25	120.0
C10—P1—C3	106.5 (4)	C25—C26—C27	120.1 (10)
C4—P1—Ag1	111.9 (3)	С25—С26—Н26	119.9
C10—P1—Ag1	116.5 (3)	C27—C26—H26	119.9
C3—P1—Ag1	113.9 (3)	C26—C27—C22	120.8 (9)
C22—P2—C3	102.3 (4)	С26—С27—Н27	119.6
C22—P2—C16	104.1 (4)	С22—С27—Н27	119.6
C3—P2—C16	101.6 (4)	P3—C28—P4	114.6 (5)
C22—P2—Ag2	119.0 (3)	P3—C28—H28A	108.6
C3—P2—Ag2	116.4 (3)	P4—C28—H28A	108.6
C16—P2—Ag2	111.3 (3)	P3—C28—H28B	108.6
C35—P3—C29	105.0 (4)	P4—C28—H28B	108.6

C35—P3—C28	103.6 (4)	H28A—C28—H28B	107.6
C29—P3—C28	105.2 (4)	C34—C29—C30	118.4 (9)
C35—P3—Ag1	117.6 (3)	C34—C29—P3	121.4 (7)
C29—P3—Ag1	108.1 (3)	C30—C29—P3	118.8 (7)
C28—P3—Ag1	116.1 (3)	C29—C30—C31	121.2 (10)
C47—P4—C41	105.6 (5)	С29—С30—Н30	119.4
C47—P4—C28	100.1 (4)	С31—С30—Н30	119.4
C41—P4—C28	105.8 (4)	C32—C31—C30	119.7 (11)
C47—P4—Ag2	114.9 (3)	С32—С31—Н31	120.1
C41—P4—Ag2	113.3 (3)	C30—C31—H31	120.1
C28—P4—Ag2	115.7 (3)	C31—C32—C33	119.8 (11)
C1—S1—Ag2	99.6 (3)	С31—С32—Н32	120.1
C1—S1—Ag1	109.4 (4)	С33—С32—Н32	120.1
Ag2—S1—Ag1	81.47 (7)	C32—C33—C34	120.8 (11)
C2—S2—Ag1	117.9 (4)	С32—С33—Н33	119.6
N1-C1-S1	179.3 (12)	С34—С33—Н33	119.6
N2—C2—S2	165.5 (11)	C29—C34—C33	119.9 (10)
P2—C3—P1	116.9 (4)	С29—С34—Н34	120.1
Р2—С3—НЗА	108.1	C33—C34—H34	120.1
Р1—С3—НЗА	108.1	C36—C35—C40	117.3 (9)
Р2—С3—Н3В	108.1	C36—C35—P3	124.0 (7)
Р1—С3—Н3В	108.1	C40—C35—P3	118.7 (7)
НЗА—СЗ—НЗВ	107.3	C35—C36—C37	120.8 (10)
C5—C4—C9	118.0 (9)	С35—С36—Н36	119.6
C5—C4—P1	117.0 (7)	С37—С36—Н36	119.6
C9—C4—P1	124.8 (7)	C38—C37—C36	120.7 (11)
C4—C5—C6	120.2 (10)	С38—С37—Н37	119.6
С4—С5—Н5	119.9	С36—С37—Н37	119.6
С6—С5—Н5	119.9	C39—C38—C37	119.2 (10)
C7—C6—C5	120.7 (10)	С39—С38—Н38	120.4
С7—С6—Н6	119.6	С37—С38—Н38	120.4
С5—С6—Н6	119.6	C38—C39—C40	119.8 (10)
C8—C7—C6	119.2 (10)	С38—С39—Н39	120.1
С8—С7—Н7	120.4	С40—С39—Н39	120.1
С6—С7—Н7	120.4	C39—C40—C35	122.1 (10)
C7—C8—C9	120.4 (10)	С39—С40—Н40	118.9
С7—С8—Н8	119.8	С35—С40—Н40	118.9
С9—С8—Н8	119.8	C42—C41—C46	113.5 (9)
C8—C9—C4	121.5 (9)	C42—C41—P4	118.9 (7)
С8—С9—Н9	119.3	C46—C41—P4	127.0 (8)
С4—С9—Н9	119.3	C41—C42—C43	123.6 (10)
C15—C10—C11	117.9 (8)	C41—C42—H42	118.2
C15—C10—P1	123.8 (7)	C43—C42—H42	118.2
C11-C10-P1	118.2 (7)	C44—C43—C42	120.0 (10)
C12-C11-C10	121.0 (9)	C44—C43—H43	120.0
C12-C11-H11	119.5	C42—C43—H43	120.0
C10-C11-H11	119.5	C43—C44—C45	118.4 (10)
C13—C12—C11	119.9 (10)	C43—C44—H44	120.8

C13—C12—H12	120.0	C45—C44—H44	120.8
C11—C12—H12	120.0	C44—C45—C46	119.6 (11)
C14—C13—C12	119.9 (9)	C44—C45—H45	120.2
C14—C13—H13	120.0	C46—C45—H45	120.2
C12—C13—H13	120.0	C45—C46—C41	123.6 (11)
C13—C14—C15	120.6 (10)	C45—C46—H46	118.2
C13—C14—H14	119.7	C41—C46—H46	118.2
C15—C14—H14	119.7	C48—C47—C52	112.3 (10)
C10—C15—C14	120.6 (9)	C48—C47—P4	120.4 (8)
C10—C15—H15	119.7	C52—C47—P4	127.3 (9)
C14—C15—H15	119.7	C47—C48—C49	124.3 (12)
C21—C16—C17	119.0 (9)	C47—C48—H48	117.9
C21—C16—P2	125.6 (8)	C49—C48—H48	117.9
C17—C16—P2	115.4 (7)	C50—C49—C48	120.8 (13)
C16—C17—C18	119.4 (10)	С50—С49—Н49	119.6
С16—С17—Н17	120.3	C48—C49—H49	119.6
С18—С17—Н17	120.3	C51—C50—C49	117.1 (12)
C19—C18—C17	119.7 (11)	С51—С50—Н50	121.5
C19—C18—H18	120.2	С49—С50—Н50	121.5
С17—С18—Н18	120.2	C50—C51—C52	119.8 (13)
C20—C19—C18	121.9 (11)	С50—С51—Н51	120.1
С20—С19—Н19	119.0	С52—С51—Н51	120.1
С18—С19—Н19	119.0	C47—C52—C51	125.8 (13)
C19—C20—C21	119.2 (11)	С47—С52—Н52	117.1
С19—С20—Н20	120.4	С51—С52—Н52	117.1
C21—C20—H20	120.4		
P3—Ag1—P1—C4	-57.1 (3)	C3—P2—C16—C21	-0.2 (9)
S1—Ag1—P1—C4	174.4 (3)	Ag2—P2—C16—C21	-124.8 (8)
S2—Ag1—P1—C4	67.9 (3)	C22—P2—C16—C17	-76.7 (8)
P3—Ag1—P1—C10	-176.9 (3)	C3—P2—C16—C17	177.2 (7)
S1—Ag1—P1—C10	54.5 (3)	Ag2—P2—C16—C17	52.7 (8)
S2—Ag1—P1—C10	-52.0 (3)	C21—C16—C17—C18	1.7 (15)
P3—Ag1—P1—C3	58.6 (3)	P2-C16-C17-C18	-175.9 (8)
S1—Ag1—P1—C3	-70.0 (3)	C16—C17—C18—C19	-1.1 (16)
S2—Ag1—P1—C3	-176.5 (3)	C17-C18-C19-C20	1.1 (18)
N2 ⁱ —Ag2—P2—C22	51.2 (4)	C18—C19—C20—C21	-1.7 (18)
P4—Ag2—P2—C22	-178.4 (3)	C17—C16—C21—C20	-2.3 (15)
S1—Ag2—P2—C22	-54.6 (3)	P2-C16-C21-C20	175.0 (8)
N2 ⁱ —Ag2—P2—C3	174.4 (4)	C19—C20—C21—C16	2.3 (16)
P4—Ag2—P2—C3	-55.1 (3)	C3—P2—C22—C23	-105.2 (8)
S1—Ag2—P2—C3	68.6 (3)	C16—P2—C22—C23	149.2 (8)
N2 ⁱ —Ag2—P2—C16	-69.8 (4)	Ag2—P2—C22—C23	24.7 (9)
P4—Ag2—P2—C16	60.7 (4)	C3—P2—C22—C27	71.4 (8)
S1—Ag2—P2—C16	-175.6 (3)	C16—P2—C22—C27	-34.1 (9)
P1—Ag1—P3—C35	13.1 (4)	Ag2—P2—C22—C27	-158.7 (7)
S1—Ag1—P3—C35	142.7 (4)	C27—C22—C23—C24	-2.6 (14)
S2—Ag1—P3—C35	-113.1 (4)	P2—C22—C23—C24	174.2 (8)

P1—Ag1—P3—C29	131.7 (3)	C22—C23—C24—C25	0.5 (16)
S1—Ag1—P3—C29	-98.8 (3)	C23—C24—C25—C26	2.0 (17)
S2—Ag1—P3—C29	5.4 (3)	C24—C25—C26—C27	-2.2 (16)
P1—Ag1—P3—C28	-110.5 (3)	C25—C26—C27—C22	0.0 (15)
S1—Ag1—P3—C28	19.1 (3)	C23—C22—C27—C26	2.4 (14)
S2—Ag1—P3—C28	123.3 (3)	P2-C22-C27-C26	-174.3 (7)
$N2^{i}$ Ag2 P4 C47	-14.5 (5)	C35—P3—C28—P4	-77.0 (6)
P2—Ag2—P4—C47	-140.2 (4)	C29—P3—C28—P4	173.0 (5)
S1—Ag2—P4—C47	95.3 (4)	Ag1—P3—C28—P4	53.5 (5)
$N2^{i}$ Ag2 P4 C41	107.1 (5)	C47—P4—C28—P3	-176.6 (5)
P2—Ag2—P4—C41	-18.7 (4)	C41—P4—C28—P3	73.9 (6)
S1—Ag2—P4—C41	-143.2 (4)	Ag2—P4—C28—P3	-52.5 (6)
$N2^{i}$ Ag2 $P4$ $C28$	-130.4 (4)	C35—P3—C29—C34	24.1 (9)
P2—Ag2—P4—C28	103.8 (3)	C28—P3—C29—C34	133.1 (8)
S1—Ag2—P4—C28	-20.7(3)	Ag1—P3—C29—C34	-102.2(8)
$N2^{i}$ —Ag2—S1—C1	79.4 (5)	C35—P3—C29—C30	-169.4 (8)
P2—Ag2—S1—C1	-174.8 (4)	C28—P3—C29—C30	-60.5 (9)
P4—Ag2—S1—C1	-38.6 (4)	Ag1—P3—C29—C30	64.2 (8)
$N2^{i}$ —Ag2—S1—Ag1	-172.2(2)	C34—C29—C30—C31	1.6 (15)
P2—Ag2—S1—Ag1	-66.44 (8)	P3-C29-C30-C31	-165.3 (8)
P4—Ag2—S1—Ag1	69.74 (8)	C29—C30—C31—C32	-2.6(17)
P1—Ag1—S1—C1	166.8 (4)	C30—C31—C32—C33	1.6 (18)
P3—Ag1—S1—C1	27.2 (4)	C31—C32—C33—C34	0.5 (18)
S2—Ag1—S1—C1	-80.9 (4)	C30—C29—C34—C33	0.5 (15)
P1—Ag1—S1—Ag2	69.48 (8)	P3—C29—C34—C33	167.0 (8)
P3—Ag1—S1—Ag2	-70.11 (8)	C32—C33—C34—C29	-1.5 (17)
S2—Ag1—S1—Ag2	-178.23 (8)	C29—P3—C35—C36	53.5 (10)
P1—Ag1—S2—C2	-62.2 (4)	C28—P3—C35—C36	-56.6 (10)
P3—Ag1—S2—C2	75.4 (4)	Ag1—P3—C35—C36	173.7 (8)
S1—Ag1—S2—C2	-175.2 (4)	C29—P3—C35—C40	-126.1 (8)
Ag2—S1—C1—N1	119 (96)	C28—P3—C35—C40	123.9 (8)
Ag1—S1—C1—N1	35 (96)	Ag1—P3—C35—C40	-5.8 (9)
$Ag2^{ii}$ N2-C2-S2	-149 (2)	C40—C35—C36—C37	-3.5 (17)
Ag1—S2—C2—N2	-169 (4)	P3-C35-C36-C37	176.9 (9)
C22—P2—C3—P1	78.9 (5)	C35—C36—C37—C38	0 (2)
C16—P2—C3—P1	-173.7 (5)	C36—C37—C38—C39	3 (2)
Ag2—P2—C3—P1	-52.6 (5)	C37—C38—C39—C40	-2.9 (18)
C4—P1—C3—P2	173.2 (5)	C38—C39—C40—C35	-0.3 (17)
C10—P1—C3—P2	-77.6 (6)	C36—C35—C40—C39	3.5 (16)
Ag1—P1—C3—P2	52.2 (5)	P3-C35-C40-C39	-176.9(8)
C10—P1—C4—C5	69.3 (8)	C47—P4—C41—C42	132.2 (9)
C3—P1—C4—C5	-179.9 (8)	C28—P4—C41—C42	-122.3(8)
Ag1—P1—C4—C5	-57.5 (8)	Ag2—P4—C41—C42	5.5 (10)
C10—P1—C4—C9	-116.6 (8)	C47—P4—C41—C46	-57.0 (11)
C3—P1—C4—C9	-5.7 (9)	C28—P4—C41—C46	48.6 (11)
Ag1—P1—C4—C9	116.6 (8)	Ag2—P4—C41—C46	176.4 (9)
C9—C4—C5—C6	0.2 (15)	C46—C41—C42—C43	9.5 (16)
P1—C4—C5—C6	174.8 (8)	P4—C41—C42—C43	-178.4 (9)

C4—C5—C6—C7	-1.1 (17)	C41—C42—C43—C44	-0.7 (18)
C5—C6—C7—C8	0.1 (18)	C42—C43—C44—C45	-5.3 (19)
C6—C7—C8—C9	1.7 (17)	C43—C44—C45—C46	2 (2)
C7—C8—C9—C4	-2.5 (16)	C44—C45—C46—C41	8 (2)
C5-C4-C9-C8	1.5 (14)	C42—C41—C46—C45	-13.3 (18)
P1C4C9C8	-172.6 (8)	P4—C41—C46—C45	175.4 (10)
C4—P1—C10—C15	67.9 (9)	C41—P4—C47—C48	-140.9 (10)
C3—P1—C10—C15	-40.0 (9)	C28—P4—C47—C48	109.4 (11)
Ag1—P1—C10—C15	-168.2 (7)	Ag2—P4—C47—C48	-15.2 (12)
C4—P1—C10—C11	-111.3 (8)	C41—P4—C47—C52	40.1 (13)
C3—P1—C10—C11	140.8 (7)	C28—P4—C47—C52	-69.6 (12)
Ag1—P1—C10—C11	12.6 (9)	Ag2—P4—C47—C52	165.7 (10)
C15—C10—C11—C12	1.9 (15)	C52—C47—C48—C49	0 (2)
P1-C10-C11-C12	-178.8 (8)	P4—C47—C48—C49	-179.0 (11)
C10-C11-C12-C13	0.1 (16)	C47—C48—C49—C50	0 (2)
C11—C12—C13—C14	-1.7 (17)	C48—C49—C50—C51	-1 (2)
C12—C13—C14—C15	1.1 (17)	C49—C50—C51—C52	1 (2)
C11—C10—C15—C14	-2.5 (14)	C48—C47—C52—C51	0 (2)
P1-C10-C15-C14	178.3 (8)	P4—C47—C52—C51	178.9 (12)
C13—C14—C15—C10	1.0 (16)	C50—C51—C52—C47	0 (3)
C22—P2—C16—C21	105.8 (9)		

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) x+1/2, -y+1/2, z-1/2.