organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Butallylonal 1,4-dioxane hemisolvate

Thomas Gelbrich,* Denise Rossi and Ulrich J. Griesser

Institute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Received 15 September 2010; accepted 27 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.064; wR factor = 0.145; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound [systematic name: 5-(1-bromoprop-2-en-1-yl)-5-sec-butylpyrimidine-2,4,6-trione 1,4-dioxane hemisolvate], C₁₁H₁₅BrN₂O₃·0.5C₄H₈O₂, contains one half-molecule of 1,4-dioxane and one molecule of butallylonal, with an almost planar barbiturate ring [largest deviation from the mean plane = 0.049(5) Å]. The centrosymmetric dioxane molecule adopts a nearly ideal chair conformation. The barbiturate molecules are linked together by an N-H···O hydrogen bond, giving a single-stranded chain. Additionally, each dioxane molecule acts as a bridge between two antiparallel strands of hydrogen-bonded barbimolecules via two hydrogen bonds, turate N - $H \cdots O(dioxane) O \cdots H - N$. Thus, a ladder structure is obtained, with the connected barbiturate molecules forming the 'stiles' and the bridging dioxane molecules the 'rungs'.

Related literature

For the preparation of butallylonal, see: J. D. Riedel Akt.-Ges. (1924); Boedecker (1929). For related structures, see: Al-Saggar et al. (2004); Gelbrich et al. (2007, 2010); Craven et al. (1969); Gatehouse & Craven (1971); Lewis et al. (2004); Zencirci et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

b = 6.7679 (8) Å

c = 21.864 (3) Å

 $\beta = 97.294 (15)^{\circ}$ V = 1540.3 (4) Å³

Experimental

Crystal data
$C_{11}H_{15}BrN_2O_3 \cdot 0.5C_4H_8O_2$
$M_r = 347.21$
Monoclinic, $P2_1/n$
a = 10.494 (2) Å

Z = 4Mo $K\alpha$ radiation $\mu = 2.68 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) $T_{\min} = 0.990, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of
$wR(F^2) = 0.145$	independent and constrained
S = 0.95	refinement
2714 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
189 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
2 restraints	

T = 293 K

 $R_{\rm int} = 0.100$

 $0.25 \times 0.08 \times 0.07~\text{mm}$

9189 measured reflections

2714 independent reflections

1171 reflections with $I > 2\sigma(I)$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O4 ⁱ	0.88 (1)	1.98 (2)	2.837 (5)	166 (6)
$N3-H3\cdots O1S$	0.89 (4)	1.87 (4)	2.757 (6)	177 (5)

Symmetry code: (i) x, y + 1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

TG acknowledges financial support from the Lise Meitner Program of the Austrian Science Fund (FWF, project LM 1135-N17).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2340).

References

- Al-Saqqar, S., Falvello, L. R. & Soler, T. (2004). J. Chem. Crystallogr. 34, 61-65
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Boedecker, F. (1929). US Patent 1739662
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Craven, B. M., Vizzini, E. A. & Rodrigues, M. M. (1969). Acta Cryst. B25, 1978-1993.
- Gatehouse, B. M. & Craven, B. M. (1971). Acta Cryst. B27, 1337-1344.
- Gelbrich, T., Rossi, D. & Griesser, U. J. (2010). Acta Cryst. E66, 01219.
- Gelbrich, T., Zencirci, N. & Griesser, U. J. (2007). Acta Cryst. C63, 0751-0753. J. D. Riedel Akt.-Ges. (1924). GB Patent 244122.
- Lewis, T. C., Tocher, D. A. & Price, S. L. (2004). Cryst. Growth Des. 4, 979-987. Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zencirci, N., Gelbrich, T., Kahlenberg, V. & Griesser, U. J. (2009). Cryst. Growth Des. 9, 3444-3456.

supporting information

Acta Cryst. (2010). E66, o2688 [doi:10.1107/S1600536810038651]

Butallylonal 1,4-dioxane hemisolvate

Thomas Gelbrich, Denise Rossi and Ulrich J. Griesser

S1. Comment

5,5-Dihydroxybarbituric acid (alternative names: butallylonal, butylalylonal, pernocton, pernoston, sonbutal; CAS number 1142–70-7) has been used as a sedative drug since the 1920s, mainly as an anaesthetic in veterinary medicine. The asymmetric unit of the title compound contains one butallylonal molecule exhibiting an almost planar barbiturate ring [where atom C6 shows the largest deviation from the mean plane, 0.049 (5) Å] and half a molecule of 1,4-dioxane. The two torsion angles of the C8–C7–C5–C10–C14 chain are *trans*, C7–C5–C10–C12 is *gauche* and C5–C10–C14 *trans* (see Fig. 1). The centrosymmetric dioxane molecule adopts a near-to-ideal chair conformation.

The barbiturate molecules are linked together by one N—H···O bond to give a single-stranded chain. Additionally, each dioxane molecule acts as a bridge between two antiparallel strands of H-bonded barbiturate molecules. This interaction involves two hydrogen bonds, N—H···O(dioxane)O···H—N. Overall, a ladder structure is generated, which propagates parallel to the *b* axis (see Fig. 2). The stiles of the ladder are formed by the connected barbiturate molecules and its rungs by the bridging dioxane molecules. This H-bonded structure is reminiscent of the ladder motif observed in single component structures of several barbiturates, see Craven *et al.* (1969); Gatehouse & Craven (1971); Lewis *et al.* (2004); Gelbrich *et al.* (2007); Zencirci *et al.* (2009). The main difference to the title structure is that in these cases, a second C=O group participates in hydrogen bonding so that two antiparallel strands of H-bonded barbiturate molecules are linked together directly *via* centrosymmetric $R_2^2(8)$ rings (Bernstein *et al.*, 1995).

S2. Experimental

A solution of butallylonal ("Pernocton"; J. D. Riedel - E. de Haën AG, Berlin) in 1,4-dioxane was filled into an NMR tube and left for evaporation. Colourless crystals of the title compound were obtained after several weeks.

S3. Refinement

All H atoms were identified in a difference map. H atoms bonded to C atoms were positioned geometrically and refined with $U_{iso}(H) = 1.2 U_{eq}(C)$. Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (2) Å], and their U_{iso} parameters were refined freely.

Figure 1

The molecular structures of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary size. Symmetry code: (i) -x, -y, -z.

Figure 2

A portion of the one-dimensional hydrogen bonded ladder structure which consists of two antiparallel strands of singly $N-H\cdots O$ bonded barbiturate molecules, which are bridged by dioxane molecules, $N-H\cdots O(dioxane)O\cdots H-N$. The structure is viewed parallel to the *c*-axis. O and H atoms involved in hydrogen bonding ar drawn as balls.

5-(1-bromoprop-2-en-1-yl)-5-sec-butylpyrimidine-2,4,6-trione 1,4-dioxane hemisolvate

Crystal data	
$C_{11}H_{15}BrN_2O_3 \cdot 0.5C_4H_8O_2$	F(000) = 712
$M_r = 347.21$	$D_{\rm x} = 1.49$ / Mg m ⁻³
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ A
Hall symbol: -P 2yn	Cell parameters from 837 reflections
a = 10.494 (2) A	$\theta = 2.5 - 28.5^{\circ}$
b = 6.7679 (8) A	$\mu = 2.68 \text{ mm}^{-1}$
c = 21.864 (3) A	T = 293 K
$\beta = 97.294 (15)^{\circ}$	Prism, colourless
$V = 1540.3 (4) Å^3$	$0.25 \times 0.08 \times 0.07 \text{ mm}$
Z = 4	
Data collection	
Oxford Diffraction Xcalibur Ruby Gemini ultra	$T_{\min} = 0.990, \ T_{\max} = 1.000$
diffractometer	9189 measured reflections
Radiation source: Enhance Ultra (Cu) X-ray	2714 independent reflections
Source	1171 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.100$
Detector resolution: 10.3575 pixels mm ⁻¹	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -10 \rightarrow 12$
Absorption correction: multi-scan	$k = -8 \longrightarrow 8$
(CrysAlis PRO; Oxford Diffraction, 2007)	$l = -25 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.145$	neighbouring sites
<i>S</i> = 0.95	H atoms treated by a mixture of independent
2714 reflections	and constrained refinement
189 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.56 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.64263 (9)	0.24500 (13)	0.04609 (4)	0.0951 (4)	
N1	0.4336 (5)	0.4954 (6)	0.1405 (2)	0.0504 (15)	
H1	0.435 (6)	0.6246 (17)	0.138 (2)	0.061*	
N3	0.3225 (5)	0.2096 (6)	0.1096 (2)	0.0468 (14)	
Н3	0.253 (3)	0.163 (7)	0.087 (2)	0.056*	
O2	0.2482 (5)	0.5076 (6)	0.0762 (2)	0.0786 (16)	
O6	0.6264 (5)	0.4897 (5)	0.1981 (2)	0.0752 (16)	
O4	0.3920 (4)	-0.0903 (5)	0.13692 (18)	0.0579 (13)	
C2	0.3306 (7)	0.4133 (8)	0.1065 (3)	0.0519 (18)	
C4	0.4088 (6)	0.0884 (8)	0.1410 (3)	0.0450 (16)	
C5	0.5229 (6)	0.1748 (6)	0.1812 (3)	0.0386 (15)	
C6	0.5334 (7)	0.4010 (8)	0.1731 (3)	0.0505 (18)	
C7	0.6478 (6)	0.0760 (8)	0.1667 (3)	0.0501 (17)	
H7A	0.7191	0.1616	0.1817	0.060*	
H7B	0.6588	-0.0463	0.1899	0.060*	
C8	0.6567 (6)	0.0305 (9)	0.1013 (3)	0.0606 (19)	
C9	0.6782 (7)	-0.1521 (11)	0.0779 (3)	0.084 (2)	
H9A	0.6886	-0.2609	0.1040	0.101*	
H9B	0.6823	-0.1675	0.0360	0.101*	
C10	0.5050(7)	0.1407 (8)	0.2512 (3)	0.0605 (19)	
H10	0.5815	0.1959	0.2756	0.073*	
C12	0.4966 (9)	-0.0656 (10)	0.2707 (4)	0.097 (3)	

H12A	0.5544	-0.1461	0.2499	0.117*	
H12B	0.4099	-0.1140	0.2593	0.117*	
C13	0.5331 (10)	-0.0833 (13)	0.3418 (3)	0.129 (4)	
H13D	0.6067	-0.0020	0.3546	0.193*	
H13E	0.5530	-0.2184	0.3525	0.193*	
H13F	0.4622	-0.0404	0.3622	0.193*	
C14	0.3888 (8)	0.2595 (10)	0.2694 (3)	0.103 (3)	
H14A	0.4032	0.3982	0.2640	0.154*	
H14B	0.3793	0.2338	0.3117	0.154*	
H14C	0.3120	0.2201	0.2436	0.154*	
O1S	0.1014 (4)	0.0764 (5)	0.04030 (19)	0.0650 (14)	
C1S	0.0085 (7)	0.2010 (7)	0.0056 (3)	0.072 (2)	
H1S1	0.0491	0.3243	-0.0036	0.086*	
H1S2	-0.0595	0.2313	0.0303	0.086*	
C2S	0.0465 (7)	-0.1081 (8)	0.0515 (3)	0.066 (2)	
H2S1	-0.0200	-0.0899	0.0781	0.080*	
H2S2	0.1119	-0.1938	0.0727	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1010 (8)	0.1162 (6)	0.0699 (6)	0.0078 (6)	0.0173 (5)	0.0284 (5)
N1	0.050 (4)	0.025 (2)	0.070 (3)	-0.006 (3)	-0.019 (3)	0.003 (3)
N3	0.048 (4)	0.025 (2)	0.062 (3)	-0.006 (2)	-0.014 (3)	0.002 (2)
O2	0.068 (4)	0.046 (2)	0.112 (4)	0.003 (2)	-0.028 (3)	0.021 (2)
O6	0.072 (4)	0.051 (2)	0.092 (4)	-0.017 (2)	-0.032 (3)	-0.008(2)
O4	0.063 (3)	0.027 (2)	0.078 (3)	-0.0022 (19)	-0.011 (2)	0.0016 (19)
C2	0.056 (5)	0.037 (3)	0.061 (4)	0.004 (3)	0.000 (4)	0.009 (3)
C4	0.057 (5)	0.036 (3)	0.042 (4)	-0.002 (3)	0.006 (3)	0.006 (3)
C5	0.043 (4)	0.027 (3)	0.044 (4)	0.001 (3)	-0.003 (3)	0.005 (2)
C6	0.059 (5)	0.042 (3)	0.046 (4)	0.009 (4)	-0.011 (4)	0.002 (3)
C7	0.044 (5)	0.047 (3)	0.059 (4)	0.000 (3)	0.003 (3)	-0.001 (3)
C8	0.049 (5)	0.066 (4)	0.068 (5)	-0.003 (4)	0.009 (4)	-0.002 (4)
C9	0.091 (7)	0.098 (5)	0.068 (5)	0.003 (5)	0.031 (5)	0.005 (4)
C10	0.082 (6)	0.050 (3)	0.052 (4)	0.020 (4)	0.017 (4)	0.006 (3)
C12	0.107 (8)	0.084 (5)	0.103 (7)	-0.001 (5)	0.023 (6)	0.008 (5)
C13	0.144 (9)	0.186 (8)	0.060 (6)	0.060 (8)	0.029 (6)	0.072 (6)
C14	0.132 (8)	0.114 (6)	0.067 (5)	0.072 (6)	0.032 (5)	0.019 (5)
O1S	0.058 (3)	0.046 (2)	0.080 (3)	-0.003 (2)	-0.031 (3)	0.001 (2)
C1S	0.071 (5)	0.041 (3)	0.097 (6)	0.006 (3)	-0.016 (4)	-0.002 (4)
C2S	0.073 (6)	0.056 (4)	0.063 (5)	0.004 (4)	-0.014 (4)	0.012 (3)

Geometric parameters (Å, °)

Br1—C8	1.881 (6)	C10-C12	1.466 (8)
N1—C6	1.351 (7)	C10—C14	1.553 (9)
N1—C2	1.351 (7)	C10—H10	0.9800
N1—H1	0.876 (10)	C12—C13	1.558 (9)

N3—C4	1.344 (6)	C12—H12A	0.9700
N3—C2	1.384 (7)	C12—H12B	0.9700
N3—H3	0.89 (4)	C13—H13D	0.9600
O2—C2	1.203 (6)	C13—H13E	0.9600
O6—C6	1.215 (6)	C13—H13F	0.9600
O4—C4	1.224 (5)	C14—H14A	0.9600
C4—C5	1.510 (7)	C14—H14B	0.9600
C5—C7	1.540 (8)	C14—H14C	0.9600
C5—C6	1.547 (7)	01S—C2S	1.410(7)
C5—C10	1.583 (8)	015-015	1.431 (7)
C7—C8	1.479 (8)	$C1S - C2S^i$	1.452 (8)
C7—H7A	0.9700	C1S—H1S1	0.9700
C7—H7B	0 9700	C1S—H1S2	0.9700
C8-C9	1 366 (8)	C_{28} — C_{18}^{i}	1 452 (8)
C9—H9A	0.9300	C2S—H2S1	0.9700
C9—H9B	0.9300	C2S H2S1	0.9700
C)—II)D	0.9500	025-11252	0.9700
C6—N1—C2	127.5 (5)	C14—C10—C5	111.4 (5)
C6-N1-H1	119 (4)	C12-C10-H10	106 3
C2—N1—H1	113 (4)	C14 - C10 - H10	106.3
C4 - N3 - C2	126 3 (5)	C_{5} C_{10} H_{10}	106.3
C4—N3—H3	121 (3)	C10-C12-C13	110.3 (6)
C2N3H3	112(3)	C10-C12-H12A	109.6
02 - 02 - N1	112(5) 1236(5)	C_{12} C_{12} H_{12A}	109.6
02-02-N1 02-02-N3	120.8 (6)	C10-C12-H12R	109.6
N1 C2 N3	120.0(0) 115.6(5)	$C_{12} = C_{12} = H_{12}B$	109.0
Ω_{4} Ω_{4} Ω_{3}	118.0 (5)	H12A C12 H12B	109.0
04 C4 C5	110.9(5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1
$V_4 = C_4 = C_5$	121.4(3) 110.6(4)	C12 - C13 - H13E	109.5
$N_3 = C_4 = C_3$	119.0(4)	H_{12} C_{12} H_{12} H_{12}	109.5
C4 - C5 - C6	110.2(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{4} = C_{5} = C_{6}$	112.5(5) 100 4 (5)	H_{12} H_{12} H_{12} H_{12}	109.5
$C_{}C_{-$	109.4(3)		109.5
C4 - C3 - C10	108.8(3)	$\Pi I SE = C I S = \Pi I SF$	109.5
C/-C5-C10	110.2(5)	C10—C14—H14A	109.5
C_{0}	105.9 (4)	U14A C14 H14B	109.5
06 - C6 - N1	121.9 (5)	H14A - C14 - H14B	109.5
06-06-05	120.2 (5)	C10-C14-H14C	109.5
NI	117.8 (5)	H14A—C14—H14C	109.5
$C_8 = C_7 = U_7 A$	116.7 (5)	H14B $-C14$ $-H14C$	109.5
C8 - C / - H / A	108.1	C2S—OIS—CIS	110.4 (4)
С5—С/—Н/А	108.1	OIS—CIS—C2S ⁴	111.7 (5)
С8—С/—Н/В	108.1	UIS—UIS—HISI	109.3
	108.1	C2S'-CIS-HISI	109.3
H/A - C/ - H/B	107.5	UIS—UIS—HIS2	109.3
C9—C8—C7	125.7 (6)	C2S'-C1S-H1S2	109.3
C9—C8—Brl	117.5 (6)	HISI—CIS—HIS2	107.9
C/—C8—Brl	116.8 (4)	$O1S - C2S - C1S^1$	111.1 (5)
С8—С9—Н9А	120.0	O1S—C2S—H2S1	109.4

supporting information

С8—С9—Н9В	120.0	C1S ⁱ —C2S—H2S1	109.4
Н9А—С9—Н9В	120.0	O1S—C2S—H2S2	109.4
C12-C10-C14	110.0 (7)	C1S ⁱ —C2S—H2S2	109.4
C12—C10—C5	116.0 (5)	H2S1—C2S—H2S2	108.0

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O4 ⁱⁱ	0.88 (1)	1.98 (2)	2.837 (5)	166 (6)
N3—H3…O1S	0.89 (4)	1.87 (4)	2.757 (6)	177 (5)

Symmetry code: (ii) x, y+1, z.