

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(2,2'-Bipyridine-\kappa^2 N,N')$ tetrabromidoplatinum(IV)

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 23 August 2010; accepted 29 August 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.015 Å; R factor = 0.027; wR factor = 0.053; data-to-parameter ratio = 14.7.

In the title complex, $[PtBr_4(C_{10}H_8N_2)]$, the Pt^{IV} ion has a slightly distorted octahedral coordination defined by two N atoms of the chelating 2.2'-bipyridine ligand and four bromide ions. As a result of the different trans effects of the N and Br atoms, the Pt-Br bonds *trans* to the N atom are slightly shorter than those to mutually trans Br atoms. In the crystal structure, the molecules are arranged in a V-shaped packing pattern along the b axis and stacked in columns along the aaxis. In the columns, several intermolecular π - π interactions between the pyridine rings are present. The shortest ring centroid-centroid distance is 3.921 (6) Å, with a dihedral angle of $1.6(5)^{\circ}$ between the ring planes. The complexes are connected by $C-H \cdots Br$ hydrogen bonds, forming chains along the b axis.

Related literature

For the crystal structure of $[PtCl_4(bipy)]$ (bipy = 2,2'-bipyridine), see: Hambley (1986).

Experimental

Crystal data $[PtBr_4(C_{10}H_8N_2)]$ $M_r = 670.91$ Monoclinic, Pn a = 8.3146 (7) Å

b = 6.9010 (5) Å c = 12.5873 (10) Å $\beta = 102.940(2)^{\circ}$ V = 703.91 (10) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 21.30 \text{ mm}^{-1}$

Data collection

Bruker SMART 1000 CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.462, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.053$	$\Delta \rho_{\rm max} = 1.69 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.98	$\Delta \rho_{\rm min} = -1.66 \text{ e } \text{\AA}^{-3}$
2257 reflections	Absolute structure: Flack (1983),
154 parameters	714 Friedel pairs
2 restraints	Flack parameter: -0.004 (14)

Table 1

Selected bond lengths (Å).

2.046 (7)	Pt1-Br2	2.4442 (10)
2.048 (7)	Pt1-Br4	2.4595 (11)
2.4412 (10)	Pt1-Br3	2.4756 (11)
	2.046 (7) 2.048 (7) 2.4412 (10)	2.046 (7) Pt1-Br2 2.048 (7) Pt1-Br4 2.4412 (10) Pt1-Br3

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C1-H1···Br2	0.95	2.73	3.366 (9)	125
$C3-H3 \cdot \cdot \cdot Br1^i$	0.95	2.89	3.734 (10)	149
C10−H10···Br1	0.95	2.70	3.335 (9)	125

Symmetry code: (i) x + 1, y + 1, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2332).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881. Hambley, T. W. (1986). Acta Cryst. C42, 49-51. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

metal-organic compounds

 $0.25 \times 0.12 \times 0.08 \text{ mm}$

4282 measured reflections 2257 independent reflections

2128 reflections with $I > 2\sigma(I)$

T = 200 K

 $R_{\rm int} = 0.033$

supporting information

Acta Cryst. (2010). E66, m1213 [doi:10.1107/S1600536810034793]

(2,2'-Bipyridine- $\kappa^2 N, N'$)tetrabromidoplatinum(IV)

Kwang Ha

S1. Comment

The title complex, [PtBr₄(bipy)], is isomorphous with the chloro analogue [PtCl₄(bipy)] (Hambley, 1986). The central Pt(IV) ion has a slightly distorted octahedral coordination defined by two N atoms of the chelating 2,2'-bipyridine ligand and four bromide ions (Fig. 1). The main contribution to the distortion of octahedron is the tight N1—Pt1—N2 chelate angle (80.6 (3)°), which results in non-linear *trans* axes (<Br1—Pt1—N1 = 176.0 (2)°, <Br2—Pt1—N2 = 176.0 (2)° and <Br3—Pt1—Br4 = 177.93 (4)°). As a result of the different *trans* effects of the N and Br atoms, the Pt—Br bonds *trans* to the N atom (2.4412 (10) Å and 2.4442 (10) Å) are slightly shorter than bond lengths to mutually *trans* Br atoms (2.4595 (11) Å and 2.4756 (11) Å) (Table 1). In the crystal structure, the complex molecules are arranged in a V-shaped packing pattern along the *b* axis and stacked in columns along the *a* axis (Fig. 2). In the columns, several intermolecular π - π interactions between the pyridine rings are present, with a shortest ring centroid-centroid distance of 3.921 (6) Å, and the dihedral angle between the ring planes is 1.6 (5)°. Moreover, there are intra- and intermolecular hydrogen bonds between the C and Br atoms with d(C···Br) = 3.335 (9) Å–3.734 (10) Å (Table 2). The complexes are connected by the C —H···Br hydrogen bonds, forming one-dimensional chains along the *b* axis.

S2. Experimental

To a solution of K_2PtBr_6 (0.1003 g, 0.133 mmol) in H_2O (10 ml) was added 2,2'-bipyridine (0.0210 g, 0.134 mmol), and the mixture was refluxed for 3 h. The formed precipitate was separated by filtration, washed with water, and dried at 50 °C, to give an orange-yellow powder (0.0705 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an *N*,*N*-dimethylformamide solution at 50 °C.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and U_{iso} (H) = $1.2U_{eq}$ (C)]. The highest peak (1.69 e Å⁻³) and the deepest hole (-1.66 e Å⁻³) in the difference Fourier map are located 0.96 and 0.96 Å from the Pt1 atom, respectively.

Figure 1

The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms; H atoms are shown as small circles of arbitrary radius.

Figure 2

View of the unit-cell contents of the title complex. Intermolecular hydrogen-bond interactions are drawn with dashed lines.

(2,2'-Bipyridine- $\kappa^2 N, N'$) tetrabromidoplatinum(IV)

Crystal data

[PtBr₄(C₁₀H₈N₂)] $M_r = 670.91$ Monoclinic, *Pn* Hall symbol: P -2yac a = 8.3146 (7) Å b = 6.9010 (5) Å c = 12.5873 (10) Å $\beta = 102.940$ (2)° V = 703.91 (10) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD	4282 measured reflections
diffractometer	2257 independent reflections
Radiation source: fine-focus sealed tube	2128 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
φ and ω scans	$\theta_{\rm max} = 27.0^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 10$
(SADABS; Bruker, 2000)	$k = -8 \longrightarrow 8$
$T_{\min} = 0.462, \ T_{\max} = 1.000$	$l = -16 \rightarrow 15$

F(000) = 600

 $\theta = 2.7 - 27.0^{\circ}$

T = 200 K

 $\mu = 21.30 \text{ mm}^{-1}$

Block, orange

 $0.25 \times 0.12 \times 0.08 \text{ mm}$

 $D_{\rm x} = 3.165 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3381 reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0057P)^2]$
S = 0.98	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2257 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
154 parameters	$\Delta \rho_{\rm max} = 1.69 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -1.66 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 714 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.004 (14)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.05995 (4)	0.30254 (5)	0.15692 (3)	0.01371 (9)	
Br1	-0.17951 (12)	0.09180 (15)	0.14380 (8)	0.0242 (2)	
Br2	-0.05252 (13)	0.51205 (15)	0.27909 (8)	0.0237 (2)	

Br3	0.21931 (13)	0.12002 (14)	0.31519 (8)	0.0232 (2)	
Br4	-0.08910 (13)	0.48563 (15)	-0.00258 (8)	0.0239 (2)	
N1	0.2650 (9)	0.4685 (11)	0.1594 (6)	0.0155 (18)	
N2	0.1677 (10)	0.1400 (11)	0.0559 (6)	0.0159 (18)	
C1	0.3042 (12)	0.6354 (13)	0.2127 (8)	0.018 (2)	
H1	0.2326	0.6863	0.2550	0.021*	
C2	0.4468 (14)	0.7363 (14)	0.2081 (9)	0.028 (3)	
H2	0.4746	0.8531	0.2479	0.034*	
C3	0.5471 (16)	0.6627 (13)	0.1441 (11)	0.024 (2)	
H3	0.6445	0.7304	0.1389	0.029*	
C4	0.5072 (13)	0.4909 (15)	0.0873 (9)	0.024 (2)	
H4	0.5768	0.4401	0.0436	0.029*	
C5	0.3659 (11)	0.3954 (14)	0.0951 (8)	0.018 (2)	
C6	0.3148 (12)	0.2147 (15)	0.0401 (8)	0.019 (2)	
C7	0.4026 (14)	0.1139 (14)	-0.0252 (8)	0.024 (2)	
H7	0.5045	0.1630	-0.0360	0.029*	
C8	0.3388 (13)	-0.0589 (14)	-0.0740 (8)	0.023 (2)	
H8	0.3975	-0.1291	-0.1182	0.027*	
C9	0.1902 (13)	-0.1282 (15)	-0.0583 (8)	0.027 (2)	
H9	0.1453	-0.2448	-0.0928	0.032*	
C10	0.1068 (12)	-0.0280 (13)	0.0075 (8)	0.021 (2)	
H10	0.0055	-0.0774	0.0190	0.025*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01098 (16)	0.01521 (16)	0.01523 (16)	-0.00154 (17)	0.00355 (13)	-0.00061 (16)
Br1	0.0181 (6)	0.0250 (5)	0.0309 (6)	-0.0078 (5)	0.0086 (5)	-0.0009 (5)
Br2	0.0231 (6)	0.0243 (5)	0.0258 (5)	0.0033 (5)	0.0100 (5)	-0.0038 (5)
Br3	0.0224 (6)	0.0243 (5)	0.0216 (5)	0.0040 (5)	0.0022 (5)	0.0029 (4)
Br4	0.0193 (5)	0.0292 (5)	0.0224 (5)	-0.0006 (5)	0.0028 (5)	0.0071 (5)
N1	0.007 (4)	0.015 (4)	0.022 (4)	-0.002 (3)	-0.004 (4)	0.001 (3)
N2	0.016 (5)	0.017 (4)	0.018 (4)	-0.003 (3)	0.011 (4)	-0.004 (3)
C1	0.015 (5)	0.018 (5)	0.021 (5)	0.000 (4)	0.006 (5)	-0.002 (4)
C2	0.024 (6)	0.018 (5)	0.039 (7)	-0.009 (5)	-0.001 (6)	0.001 (5)
C3	0.010 (5)	0.021 (5)	0.037 (7)	-0.005 (5)	-0.005 (5)	0.002 (6)
C4	0.017 (6)	0.019 (5)	0.041 (7)	-0.002 (4)	0.014 (5)	0.002 (5)
C5	0.010 (5)	0.020 (5)	0.022 (5)	0.000 (4)	0.001 (4)	-0.006 (4)
C6	0.014 (5)	0.025 (6)	0.019 (5)	0.005 (4)	0.004 (5)	0.006 (4)
C7	0.022 (6)	0.027 (6)	0.025 (6)	0.002 (5)	0.010 (5)	0.002 (4)
C8	0.027 (6)	0.025 (5)	0.017 (5)	0.010 (5)	0.007 (5)	-0.003 (4)
C9	0.030 (6)	0.028 (6)	0.025 (6)	-0.004 (5)	0.012 (5)	-0.009 (5)
C10	0.018 (6)	0.018 (5)	0.025 (5)	-0.009 (4)	0.001 (5)	-0.010 (4)

Geometric parameters (Å, °)

Pt1—N2	2.046 (7)	C3—C4	1.386 (14)
Pt1—N1	2.048 (7)	С3—Н3	0.9500

Pt1—Br1	2.4412 (10)	C4—C5	1.370 (13)
Pt1—Br2	2.4442 (10)	C4—H4	0.9500
Pt1—Br4	2.4595 (11)	C5—C6	1.443 (14)
Pt1—Br3	2.4756 (11)	C6—C7	1.401 (13)
N1—C1	1.336 (11)	C7—C8	1.391 (14)
N1—C5	1.385 (11)	С7—Н7	0.9500
N2-C10	1 354 (11)	C8 - C9	1,380(14)
N2C6	1.397(11) 1.382(12)	C8—H8	0.9500
12-00	1.302(12) 1.287(14)	$C_0 = C_{10}$	1.370(12)
$C_1 = C_2$	0.0500	C_{2}	1.379(13)
	0.9300	C10 U10	0.9300
$C_2 = C_3$	1.380 (17)	C10—H10	0.9500
С2—Н2	0.9500		
N2—Pt1—N1	80.6 (3)	С1—С2—Н2	120.9
N_2 —Pt1—Br1	95 5 (2)	$C_{2}-C_{3}-C_{4}$	120.7(11)
$N1$ _Pt1_Br1	176.0.(2)	C2_C3_H3	110 7
N2 $Pt1 Pr2$	176.0(2)	$C_2 = C_3 = H_3$	110.7
$N_2 - r t_1 - D_{12}$ $N_1 - D_{11} - D_{12}$	170.0(2)	C_{4}	119.7
NI - PII - DI2	95.4 (2)	C_{5}	119.0 (10)
Br1—Pt1—Br2	88.50 (4)	C3—C4—H4	120.5
N2—Pt1—Br4	89.1 (2)	C3—C4—H4	120.5
N1—Pt1—Br4	89.5 (2)	C4—C5—N1	120.6 (9)
Br1—Pt1—Br4	89.80 (4)	C4—C5—C6	123.1 (9)
Br2—Pt1—Br4	90.91 (4)	N1—C5—C6	116.3 (8)
N2—Pt1—Br3	89.5 (2)	N2—C6—C7	119.6 (9)
N1—Pt1—Br3	88.8 (2)	N2—C6—C5	115.4 (8)
Br1—Pt1—Br3	91.88 (4)	C7—C6—C5	125.0 (9)
Br2—Pt1—Br3	90.34 (4)	C8—C7—C6	119.2 (10)
Br4—Pt1—Br3	177.93 (4)	С8—С7—Н7	120.4
C1—N1—C5	119.7 (8)	С6—С7—Н7	120.4
C1—N1—Pt1	126.7 (6)	C9—C8—C7	119.9 (9)
C5—N1—Pt1	113 5 (6)	C9—C8—H8	120.0
$C10 - N^2 - C6$	120 5 (8)	C7—C8—H8	120.0
C10 N2 Pt1	125.3 (6)	C_{10} C_{9} C_{8}	110.0 (9)
C6 N2 Pt1	125.5(0) 114.2(6)	C_{10} C_{0} H_{0}	120.0
$C_0 = N_2 = I I I$	114.2(0) 121.7(0)	C_{10}	120.0
NI = CI = UI	121.7 (9)	C_{0}	120.0
NI—CI—HI	119.1	N2-C10-C9	120.8 (9)
	119.1	N2—C10—H10	119.6
C3—C2—C1	118.3 (10)	С9—С10—Н10	119.6
C3—C2—H2	120.9		
N2—Pt1—N1—C1	178.8 (8)	C3—C4—C5—N1	-0.4(16)
Br2-Pt1-N1-C1	-1.2(8)	C3—C4—C5—C6	-179.3(10)
Br4— $Pt1$ — $N1$ — $C1$	89.6 (8)	C1 - N1 - C5 - C4	11(14)
$Br3_Pt1_N1 C1$	-91 5 (8)	Pt1N1C5_C4	170 3 (8)
$N2 D_{t1} N1 C5$	08(6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-170.0(0)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	170.2 (()	$C_1 - N_1 - C_2 - C_0$	1 / 7. 7 (7)
$\mathbf{b}\mathbf{r}2 - \mathbf{P}\mathbf{r}1 - \mathbf{N}1 - \mathbf{C}5$	-1/9.5(0)	$\mathbf{r}_{11} - \mathbf{N}_{1} - \mathbf{U}_{2} - \mathbf{U}_{0}$	-1.7(11)
Br4-Pt1-N1-C5	-88.4 (6)	C10 N2 $C6$ $C/$	-0.9 (14)
Br3-Pt1-N1-C5	90.5 (6)	Pt1—N2—C6—C7	178.4 (7)

N1—Pt1—N2—C10 Br1—Pt1—N2—C10	179.6 (9) -1.1 (9)	C10—N2—C6—C5 Pt1—N2—C6—C5	179.4 (9) -1.3 (11)
Br4-Pt1-N2-C10	-90.8 (8)	C4—C5—C6—N2	-179.1 (9)
Br3-Pt1-N2-C10	90.7 (8)	N1-C5-C6-N2	2.0 (13)
N1—Pt1—N2—C6	0.3 (6)	C4—C5—C6—C7	1.3 (16)
Br1—Pt1—N2—C6	179.6 (6)	N1-C5-C6-C7	-177.6 (9)
Br4Pt1N2C6	89.9 (6)	N2—C6—C7—C8	0.7 (14)
Br3—Pt1—N2—C6	-88.6 (6)	C5—C6—C7—C8	-179.7 (10)
C5—N1—C1—C2	-1.8 (14)	C6—C7—C8—C9	0.4 (15)
Pt1—N1—C1—C2	-179.7 (7)	C7—C8—C9—C10	-1.3 (16)
N1-C1-C2-C3	1.6 (16)	C6—N2—C10—C9	0.1 (15)
C1—C2—C3—C4	-0.9 (17)	Pt1—N2—C10—C9	-179.2 (8)
C2—C3—C4—C5	0.3 (17)	C8—C9—C10—N2	1.0 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
C1—H1···Br2	0.95	2.73	3.366 (9)	125
C3—H3···Br1 ⁱ	0.95	2.89	3.734 (10)	149
C10—H10…Br1	0.95	2.70	3.335 (9)	125

Symmetry code: (i) x+1, y+1, z.