

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[2-(3,5-Difluorobenzyloxy)phenyl]ethanone

Ya-Tuan Ma, Xin-Wei Shi, Qi Shuai and Jin-Ming Gao*

College of Science, Northwest A&F University, Yangling 712100, People's Republic of China

Correspondence e-mail: jinminggaocn@yahoo.com.cn

Received 22 July 2010; accepted 4 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.153; data-to-parameter ratio = 12.9.

In the title compound, $C_{15}H_{12}F_2O_2$, the dihedral angle between the aromatic rings is $70.43 (4)^{\circ}$. The crystal packing exhibits no significantly short intermolecular contacts.

Related literature

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For a related structure, see: Ma et al. (2010).

Experimental

Crystal data $C_{15}H_{12}F_2O_2$

 $M_r = 262.25$

3373 measured reflections 2239 independent reflections 1402 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.014$

Triclinic, $P\overline{1}$	$V = 644.22 (11) \text{ Å}^3$
a = 7.2808 (7) Å	Z = 2
b = 7.9734 (8) Å	Mo $K\alpha$ radiation
c = 11.6466 (12) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 91.587 \ (1)^{\circ}$	$T = 298 { m K}$
$\beta = 106.559 \ (2)^{\circ}$	$0.42 \times 0.38 \times 0.20 \text{ mm}$
$\gamma = 95.343 \ (1)^{\circ}$	

Data collection

Bruker SMART CD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.956, \ T_{\rm max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	173 parameters
$wR(F^2) = 0.153$ S = 1.03	H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$
2239 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We would like to acknowledge funding support from the National Natural Science Foundation of China (grant No. 30971882) and the Program of Natural Science Basic Research in Shaanxi (No. 2009JM3010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2054).

References

Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dermer, O. C. (1934). Chem. Rev. 14, 385-430.

Ma, Y.-T., Wang, J.-J., Liu, X.-W., Yang, S.-X. & Gao, J.-M. (2010). Acta Cryst. E66, o52.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2293 [https://doi.org/10.1107/S160053681003120X]

1-[2-(3,5-Difluorobenzyloxy)phenyl]ethanone

Ya-Tuan Ma, Xin-Wei Shi, Qi Shuai and Jin-Ming Gao

S1. Comment

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the reaction of an alkali-metal salt of a hydroxy compound and an alkyl halide (Dermer, 1934). In the present paper, we present the structure of the title compound, $C_{15}H_{12}F_2O_2$ (I), which was synthesized by the reaction of 1-(2-hydroxyphenyl)ethanone, potassium carbonate and 3,5-difluorobenzyl bromide. We have previously reported the structure of a compound of this type (Ma *et al.*, 2010). In (I) (Fig. 1), the ethanone group is close to coplanar with the benzene ring [torsion angle C4–C3–C2–O1, 178.8 (2)°] while the dihedral angle between the aromatic rings is 70.43 (4)°. The crystal packing exhibits no significantly short intermolecular contacts.

S2. Experimental

1-(2-Hydroxyphenyl)ethanone (4 mmol), potassium carbonate (8 mmol), 3,5-difluorobenzyl bromide (4 mmol), and 40 ml acetone were mixed in a 100 ml flask. After 3 h stirring at 331 K, the crude product was obtained. Crystals of (I) were obtained by recrystallization from *n*-hexane/ethyl acetate.

S3. Refinement

The positions of all H atoms were determined geometrically and refined using a riding model with C—H = 0.93–0.97 Å and U_{iso} (methyl H) = 1.5 U_{eq} (C) and 1.5 U_{eq} for other H atoms.

Figure 1

The molecular structure of (I) with atom labels, and displacement ellipsoids drawn at the 30% probability level.

1-[2-(3,5-Difluorobenzyloxy)phenyl]ethanone

Crystal data

C₁₅H₁₂F₂O₂ $M_r = 262.25$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.2808 (7) Å b = 7.9734 (8) Å c = 11.6466 (12) Å a = 91.587 (1)° $\beta = 106.559$ (2)° $\gamma = 95.343$ (1)° V = 644.22 (11) Å³

Data collection

Bruker SMART CD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.956, \ T_{\max} = 0.979$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
S = 1.03	H-atom parameters constrained
2239 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 0.1465P]$
173 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 272

 $\theta = 2.9 - 24.8^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Plate, colorless

 $0.42 \times 0.38 \times 0.20$ mm

3373 measured reflections 2239 independent reflections 1402 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

T = 298 K

 $R_{\rm int} = 0.014$

 $h = -8 \rightarrow 8$ $k = -9 \rightarrow 5$ $l = -13 \rightarrow 13$

 $D_{\rm x} = 1.352 {\rm Mg} {\rm m}^{-3}$

Melting point = 347–348 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1136 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.1438 (3)	0.8789 (4)	0.0404 (2)	0.1646 (11)	
0.6758 (4)	0.6785 (4)	-0.0348 (2)	0.1880 (13)	
0.7550 (3)	0.2045 (2)	0.54230 (18)	0.0964 (7)	
	x 0.1438 (3) 0.6758 (4) 0.7550 (3)	x y 0.1438 (3) 0.8789 (4) 0.6758 (4) 0.6785 (4) 0.7550 (3) 0.2045 (2)	x y z 0.1438 (3) 0.8789 (4) 0.0404 (2) 0.6758 (4) 0.6785 (4) -0.0348 (2) 0.7550 (3) 0.2045 (2) 0.54230 (18)	xyz U_{iso}^*/U_{eq} 0.1438 (3)0.8789 (4)0.0404 (2)0.1646 (11)0.6758 (4)0.6785 (4)-0.0348 (2)0.1880 (13)0.7550 (3)0.2045 (2)0.54230 (18)0.0964 (7)

O2	0.7176 (2)	0.67975 (18)	0.41603 (13)	0.0629 (5)
C1	0.6631 (4)	0.3400 (3)	0.3629 (2)	0.0627 (7)
H1A	0.6321	0.2260	0.3292	0.094*
H1B	0.7598	0.3965	0.3321	0.094*
H1C	0.5495	0.3981	0.3416	0.094*
C2	0.7371 (3)	0.3388 (3)	0.4951 (2)	0.0564 (6)
C3	0.7914 (3)	0.4967 (3)	0.57422 (19)	0.0471 (5)
C4	0.7837 (3)	0.6620 (3)	0.53600 (19)	0.0481 (5)
C5	0.8396 (3)	0.7987 (3)	0.6196 (2)	0.0583 (6)
Н5	0.8355	0.9080	0.5938	0.070*
C6	0.9010 (4)	0.7728 (3)	0.7398 (2)	0.0659 (7)
H6	0.9379	0.8650	0.7950	0.079*
C7	0.9086 (4)	0.6135 (3)	0.7795 (2)	0.0674 (7)
H7	0.9501	0.5966	0.8612	0.081*
C8	0.8540 (3)	0.4786 (3)	0.6971 (2)	0.0590 (6)
H8	0.8592	0.3703	0.7247	0.071*
C9	0.7050 (4)	0.8454 (3)	0.3733 (2)	0.0700 (7)
H9A	0.8327	0.9048	0.3882	0.084*
H9B	0.6320	0.9090	0.4138	0.084*
C10	0.6061 (4)	0.8257 (3)	0.2421 (2)	0.0587 (6)
C11	0.4210 (4)	0.8648 (3)	0.1996 (2)	0.0682 (7)
H11	0.3585	0.9069	0.2518	0.082*
C12	0.3289 (4)	0.8415 (4)	0.0801 (3)	0.0856 (9)
C13	0.4081 (5)	0.7794 (4)	-0.0002 (3)	0.0902 (9)
H13	0.3405	0.7632	-0.0811	0.108*
C14	0.5903 (6)	0.7418 (5)	0.0421 (3)	0.0977 (10)
C15	0.6927 (5)	0.7637 (4)	0.1624 (3)	0.0914 (9)
H15	0.8189	0.7365	0.1887	0.110*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0955 (15)	0.243 (3)	0.1260 (18)	0.0644 (17)	-0.0240 (13)	-0.0392 (17)
F2	0.187 (3)	0.284 (4)	0.1253 (19)	0.063 (2)	0.0883 (18)	-0.035 (2)
O1	0.163 (2)	0.0435 (11)	0.0898 (14)	0.0206 (11)	0.0447 (13)	0.0108 (10)
O2	0.0905 (12)	0.0383 (9)	0.0520 (10)	0.0087 (8)	0.0073 (8)	0.0027 (7)
C1	0.0713 (16)	0.0452 (13)	0.0708 (16)	0.0032 (11)	0.0215 (13)	-0.0080 (11)
C2	0.0622 (15)	0.0418 (13)	0.0717 (16)	0.0098 (10)	0.0285 (12)	0.0048 (11)
C3	0.0466 (12)	0.0453 (12)	0.0519 (13)	0.0099 (9)	0.0164 (10)	0.0051 (10)
C4	0.0481 (12)	0.0447 (12)	0.0507 (13)	0.0090 (9)	0.0117 (10)	0.0024 (10)
C5	0.0618 (15)	0.0463 (13)	0.0625 (15)	0.0097 (11)	0.0103 (12)	-0.0028 (11)
C6	0.0668 (16)	0.0672 (17)	0.0589 (16)	0.0124 (12)	0.0101 (12)	-0.0132 (12)
C7	0.0713 (17)	0.0807 (19)	0.0501 (14)	0.0160 (14)	0.0148 (12)	0.0049 (13)
C8	0.0598 (14)	0.0578 (15)	0.0646 (16)	0.0149 (11)	0.0227 (12)	0.0135 (12)
C9	0.0921 (19)	0.0431 (13)	0.0622 (15)	0.0051 (12)	0.0025 (13)	0.0081 (11)
C10	0.0715 (16)	0.0443 (13)	0.0597 (15)	0.0077 (11)	0.0166 (12)	0.0110 (11)
C11	0.0706 (18)	0.0718 (17)	0.0618 (16)	0.0081 (13)	0.0189 (13)	-0.0016 (12)
C12	0.0740 (19)	0.099 (2)	0.075 (2)	0.0192 (16)	0.0052 (16)	-0.0020 (16)

supporting information

C13	0.102 (2)	0.106 (2)	0.0591 (18)	0.0128 (19)	0.0171 (17)	0.0042 (16)
C14	0.117 (3)	0.117 (3)	0.076 (2)	0.022 (2)	0.052 (2)	-0.0050 (18)
C15	0.082 (2)	0.105 (2)	0.091 (2)	0.0324 (17)	0.0235 (17)	0.0040 (18)

Geometric p	parameters	(Å,	9
-------------	------------	-----	---

F1—C12	1.359 (3)	С6—Н6	0.9300
F2	1.340 (4)	C7—C8	1.372 (3)
O1—C2	1.218 (3)	С7—Н7	0.9300
O2—C4	1.358 (2)	C8—H8	0.9300
O2—C9	1.426 (3)	C9—C10	1.489 (3)
C1—C2	1.480 (3)	С9—Н9А	0.9700
C1—H1A	0.9600	С9—Н9В	0.9700
C1—H1B	0.9600	C10-C11	1.365 (3)
C1—H1C	0.9600	C10—C15	1.368 (4)
С2—С3	1.491 (3)	C11—C12	1.361 (4)
С3—С8	1.389 (3)	C11—H11	0.9300
C3—C4	1.404 (3)	C12—C13	1.336 (4)
C4—C5	1.390 (3)	C13—C14	1.342 (5)
С5—С6	1.371 (3)	C13—H13	0.9300
С5—Н5	0.9300	C14—C15	1.384 (4)
С6—С7	1.365 (3)	C15—H15	0.9300
С4—О2—С9	118.86 (17)	С7—С8—Н8	118.6
C2—C1—H1A	109.5	С3—С8—Н8	118.6
C2—C1—H1B	109.5	O2—C9—C10	106.94 (18)
H1A—C1—H1B	109.5	O2—C9—H9A	110.3
C2—C1—H1C	109.5	С10—С9—Н9А	110.3
H1A—C1—H1C	109.5	O2—C9—H9B	110.3
H1B—C1—H1C	109.5	С10—С9—Н9В	110.3
01—C2—C1	119.4 (2)	H9A—C9—H9B	108.6
O1—C2—C3	118.1 (2)	C11—C10—C15	118.4 (2)
C1—C2—C3	122.6 (2)	C11—C10—C9	119.5 (2)
C8—C3—C4	116.9 (2)	C15—C10—C9	122.0 (3)
C8—C3—C2	117.04 (19)	C12-C11-C10	119.4 (3)
C4—C3—C2	126.04 (19)	C12—C11—H11	120.3
O2—C4—C5	122.9 (2)	C10-C11-H11	120.3
O2—C4—C3	116.96 (18)	C13—C12—F1	118.0 (3)
C5—C4—C3	120.2 (2)	C13—C12—C11	123.8 (3)
C6—C5—C4	120.2 (2)	F1-C12-C11	118.2 (3)
С6—С5—Н5	119.9	C12—C13—C14	116.5 (3)
C4—C5—H5	119.9	C12—C13—H13	121.7
C7—C6—C5	120.9 (2)	C14—C13—H13	121.7
С7—С6—Н6	119.6	F2-C14-C13	118.8 (3)
С5—С6—Н6	119.6	F2-C14-C15	118.6 (4)
С6—С7—С8	118.9 (2)	C13—C14—C15	122.6 (3)
С6—С7—Н7	120.5	C10-C15-C14	119.2 (3)
С8—С7—Н7	120.5	C10-C15-H15	120.4

supporting information

122.9 (2)	C14—C15—H15	120.4
-1.7 (3)	C2—C3—C8—C7	179.8 (2)
178.3 (2)	C4—O2—C9—C10	-173.0 (2)
178.8 (2)	O2—C9—C10—C11	107.6 (3)
-1.2 (3)	O2—C9—C10—C15	-70.1 (3)
0.1 (3)	C15-C10-C11-C12	-0.2 (4)
179.2 (2)	C9—C10—C11—C12	-177.9 (2)
-178.31 (19)	C10-C11-C12-C13	1.0 (5)
1.2 (3)	C10-C11-C12-F1	179.0 (3)
0.8 (3)	F1-C12-C13-C14	-179.2 (3)
-179.7 (2)	C11—C12—C13—C14	-1.1 (5)
178.5 (2)	C12—C13—C14—F2	179.7 (3)
-0.6 (3)	C12—C13—C14—C15	0.6 (5)
0.1 (4)	C11—C10—C15—C14	-0.3 (4)
0.1 (4)	C9—C10—C15—C14	177.3 (3)
0.2 (4)	F2-C14-C15-C10	-179.0 (3)
-0.6 (3)	C13-C14-C15-C10	0.1 (5)
	122.9 (2) $-1.7 (3)$ $178.3 (2)$ $178.8 (2)$ $-1.2 (3)$ $0.1 (3)$ $179.2 (2)$ $-178.31 (19)$ $1.2 (3)$ $0.8 (3)$ $-179.7 (2)$ $178.5 (2)$ $-0.6 (3)$ $0.1 (4)$ $0.1 (4)$ $0.2 (4)$ $-0.6 (3)$	122.9 (2) $C14-C15-H15$ $-1.7 (3)$ $C2-C3-C8-C7$ $178.3 (2)$ $C4-O2-C9-C10$ $178.8 (2)$ $O2-C9-C10-C11$ $-1.2 (3)$ $O2-C9-C10-C15$ $0.1 (3)$ $C15-C10-C11-C12$ $179.2 (2)$ $C9-C10-C11-C12$ $-178.31 (19)$ $C10-C11-C12-C13$ $1.2 (3)$ $C10-C11-C12-C13$ $0.8 (3)$ $F1-C12-C13-C14$ $-179.7 (2)$ $C11-C12-C13-C14$ $-178.5 (2)$ $C12-C13-C14-F2$ $-0.6 (3)$ $C12-C13-C14-C15$ $0.1 (4)$ $C11-C10-C15-C14$ $0.1 (4)$ $C9-C10-C15-C14$ $0.2 (4)$ $F2-C14-C15-C10$ $-0.6 (3)$ $C13-C14-C15-C10$