

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2,4-dibromo-6-(*n*-propyliminomethyl)phenolato- $\kappa^2 N$,O]cobalt(II)

Chunyan Li,* Rui Li and Shufang Zhang

College of Health Science, Wuhan Institute of Physical Education, Wuhan 430079, People's Republic of China

Correspondence e-mail: lichunyan2009@yahoo.com.cn

Received 12 July 2010; accepted 10 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.065; data-to-parameter ratio = 17.1.

In the title complex, $[Co(C_{10}H_{10}Br_2NO)_2]$, the Co^{II} atom lies on a twofold rotation axis, the N₂O₂ units having distorted tetrahedral coordination environments comprising two bidentate chelate 2,4-dibromo-6-(*n*-propyliminomethyl)phenolate Schiff base ligands [Co-N = 1.989 (3) Å, Co-O =1.924 (2) Å and $O/N-Co-O/N = 94.53 (10)-125.40 (15)^{\circ}]$. In the crystal structure, the molecules are linked *via* weak intermolecular $C-H \cdots O$ hydrogen bonds [3.334 (5) Å] and there are also short inversion-related intermolecular $Br \cdots Br$ contacts [3.4263 (6) Å]

Related literature

For related compounds, see: Bermejo *et al.* (1996); Chen *et al.* (2007); Li & Wang (2007); Li *et al.* (2008); Maneiro *et al.* (2001); Qiu *et al.* (2007); Yuan *et al.* (2007). For standard bondlength values, see: Allen *et al.* (1987).

Experimental

Crystal data

$Co(C_{10}H_{10}Br_2NO)_2$]	
$M_r = 698.91$	
Monoclinic, $C2/c$	
a = 24.3684 (10) Å	
o = 4.8555 (2) Å	
= 21.8132 (10) Å	
$B = 115.523 \ (4)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.097, T_{max} = 0.218$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.065$ S = 1.002270 reflections $V = 2329.08 (19) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 7.62 mm⁻¹ T = 296 K 0.32 \times 0.22 \times 0.20 mm

6076 measured reflections 2270 independent reflections 1657 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

133 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Education Office of Hubei Province (grant No. D20104104).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2053).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bermejo, M. R., Castineiras, A., Garcia-Monteagudo, J. C., Rey, M., Sousa, A., Watkinson, M., McAuliffe, C. A., Pritchard, R. G. & Beddoes, R. L. (1996). J. Chem. Soc. Dalton Trans. pp. 2935–2944.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, X.-M., Zhang, S.-H. & Yang, Y. (2007). *Acta Cryst.* E63, m1317–m1318. Li, L.-Z. & Wang, L.-H. (2007). *Acta Cryst.* E63, m1791.

- Li, S., Wang, S.-B., Tang, K. & Ma, Y.-F. (2008). Acta Cryst. E64, m823.
- Maneiro, M., Bermejo, M. R., Fondo, M., Gonzalez, A. M., Sanmartin, J., Garcia-Monteagudo, J. C., Pritchard, R. G. & Tyryshkin, A. M. (2001). *Polyhedron*, 20, 711–719.
- Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2007). Z. Anorg. Allg. Chem. 633, 1480–1484.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yuan, W.-B., Xu, H.-W., Li, J.-X., Liu, M. & Zhang, Q. (2007). Acta Cryst. E63, m1702.

supporting information

Acta Cryst. (2010). E66, m1123 [https://doi.org/10.1107/S1600536810032162] Bis[2,4-dibromo-6-(*n*-propyliminomethyl)phenolato-κ²N,O]cobalt(II)

Chunyan Li, Rui Li and Shufang Zhang

S1. Comment

The Lewis base adducts of the 3,5-dibromosalicylidene compounds derived from the condensation of 3,5-dibromosalicylaldehyde with various primary amines are of interest, forming complexes with a large number of transition metals (Chen *et al.*, 2007; Qiu *et al.*, 2007; Maneiro *et al.*, 2001; Bermejo *et al.*, 1996). Recently, mononuclear zinc(II) and nickel(II) compounds of Schiff base ligands derived from the condensation of 3,5-dibromosalicylaldehyde with cyclopropylamine have been structurally characterized (Li & Wang, 2007; Yuan *et al.*, 2007). As an extension of this work, the crystal structure of the title Co^{II} complex, $[C_{20}H_{20}Br_4CoN_2O_2]$ (I), is reported here.

In (I), the Co^{II} atoms have distorted tetrahedral coordination environments with two bidentate Schiff base ligands, derived from the condensation of 3,5-dibromosalicylaldehyde and *n*-propylamine, acting as chelates through their phenolate O and azomethine N atoms [Co—N 1.989 (3) Å; Co—O 1.924 (2) Å; bond-angle range 94.53 (10)– 125.40 (15)°] (Fig. 1). The Co atoms lie on two-fold rotation axes. The C7=N1 bond length of 1.274 (4) Å is somewhat shorter than 1.284 (2) Å observed in the previously reported compound of a Schiff base ligand derived from the condensation of salicylaldehyde with *n*-propylamine (Li *et al.*, 2008). The angle between the two O1—Co1—N1 planes of the molecule is equal to 84.13°. All bond lengths are within normal ranges (Allen *et al.*, 1987). In the crystal structure, the molecules are linked *via* weak intermolecular C—H…O hydrogen bonds and there are also short inversion-related inermolecular Br…Br contacts [3.4263 (6) Å] (Fig. 2).

S2. Experimental

3,5-Dibromosalicylaldehyde (560 mg, 2 mmol) and *n*-propylamine (118 mg, 2 mmol) were dissolved in methanol (25 ml). The mixture was stirred for 30 min to give an orange solution, which was added to a methanol solution (15 ml) of $Co(NO_3)_2.6H_2O$ (280 mg, 1 mmol). The mixture was stirred for another 20 min at room temperature to give a red solution and then filtered. The filtrate was kept in air for 5 d, forming red blocky crystals. The crystals were isolated, washed three times with distilled water and dried in a vacuum desiccator containing anhydrous $CaCl_2$ (yield 68%). Analysis calculated for $C_{20}H_{20}Br_4CoN_2O_2$: C 34.37, H 2.88, N 4.01%; found: C 34.17, H 2.90, N 3.99%. IR (KBr, cm⁻¹): 3447, 3062, 2966, 2877, 2359, 1619, 1577, 1504, 1434, 1407, 1307, 1212, 1161, 1095, 1040, 865, 838, 749, 705, 604, 466.

S3. Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ or $1.5U_{eq}(\text{methyl groups})$.

Figure 1

The structure and atom-numbering scheme of the title compound (I), showing 30% probability displacement ellipsoids. The complex has two-fold rotational symmetry, the atoms labeled with the suffix A are related to the primary atoms by the symmetry code -x, y, -z + 3/2.

Figure 2

The crystal packing of the title compound (I) viewed along the b axis, linked *via* intermolecular C—H···O hydrogen bonds (dashed lines).

Bis[2,4-dibromo-6-(*n*-propyliminomethyl)phenolato- $\kappa^2 N_r O$]cobalt(II)

Crystal data F(000) = 1348 $[Co(C_{10}H_{10}Br_2NO)_2]$ $D_{\rm x} = 1.993 {\rm Mg m^{-3}}$ $M_r = 698.91$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, C2/cCell parameters from 1806 reflections Hall symbol: -C 2yc $\theta = 3.3 - 25.5^{\circ}$ a = 24.3684 (10) Å*b* = 4.8555 (2) Å $\mu = 7.62 \text{ mm}^{-1}$ T = 296 Kc = 21.8132 (10) Å $\beta = 115.523 \ (4)^{\circ}$ Block, red $V = 2329.08 (19) \text{ Å}^3$ $0.32 \times 0.22 \times 0.20 \text{ mm}$ Z = 4Data collection Bruker SMART CCD area-detector Absorption correction: multi-scan diffractometer (SADABS; Bruker, 2000) Radiation source: fine-focus sealed tube $T_{\min} = 0.097, \ T_{\max} = 0.218$ Graphite monochromator 6076 measured reflections φ and ω scans 2270 independent reflections

1657 reflections with $I > 2\sigma(I)$	$h = -29 \rightarrow 21$
$R_{\rm int} = 0.036$	$k = -5 \rightarrow 5$
$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$	$l = -26 \rightarrow 26$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.065$	neighbouring sites
S = 1.00	H-atom parameters constrained
2270 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0251P)^2 + 0.88P]$
133 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
Col	0.0000	0.31955 (14)	0.7500	0.03770 (18)
Br1	0.028614 (18)	0.79002 (8)	0.569909 (19)	0.05211 (14)
Br2	0.232643 (17)	0.11525 (10)	0.62503 (2)	0.06655 (17)
N1	0.07574 (11)	0.1053 (6)	0.80081 (13)	0.0385 (7)
01	0.03028 (9)	0.5013 (5)	0.69236 (11)	0.0413 (6)
C1	0.11919 (14)	0.2181 (7)	0.72164 (16)	0.0369 (8)
C2	0.07618 (13)	0.4180 (7)	0.68171 (16)	0.0341 (8)
C3	0.08482 (14)	0.5258 (7)	0.62579 (16)	0.0368 (8)
C4	0.13048 (15)	0.4419 (8)	0.60975 (18)	0.0440 (9)
H4	0.1343	0.5164	0.5725	0.053*
C5	0.17107 (15)	0.2444 (8)	0.64965 (19)	0.0437 (9)
C6	0.16661 (15)	0.1351 (8)	0.70498 (18)	0.0468 (9)
H6	0.1949	0.0056	0.7318	0.056*
C7	0.11686 (14)	0.0829 (7)	0.77979 (17)	0.0415 (9)
H7	0.1491	-0.0336	0.8046	0.050*
C8	0.08417 (17)	-0.0483 (8)	0.86238 (18)	0.0516 (10)
H8A	0.1148	-0.1894	0.8712	0.062*
H8B	0.0464	-0.1385	0.8552	0.062*
C9	0.10364 (16)	0.1417 (9)	0.92354 (18)	0.0559 (11)
H9A	0.0750	0.2931	0.9127	0.067*
H9B	0.1023	0.0408	0.9612	0.067*
C10	0.16709 (18)	0.2569 (10)	0.9451 (2)	0.0746 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H10A	0.1958	0.1081	0.9567	0.112*
H10B	0.1772	0.3744	0.9838	0.112*
H10C	0.1685	0.3610	0.9083	0.112*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0308 (3)	0.0523 (4)	0.0343 (4)	0.000	0.0181 (3)	0.000
Br1	0.0656 (3)	0.0533 (3)	0.0443 (2)	0.0123 (2)	0.03017 (19)	0.01239 (19)
Br2	0.0498 (2)	0.0945 (4)	0.0726 (3)	0.0031 (2)	0.0427 (2)	-0.0139 (3)
N1	0.0333 (15)	0.0490 (19)	0.0339 (16)	-0.0022 (14)	0.0150 (12)	0.0031 (14)
01	0.0377 (12)	0.0517 (16)	0.0424 (13)	0.0080 (11)	0.0247 (11)	0.0090 (12)
C1	0.0351 (18)	0.044 (2)	0.0357 (19)	-0.0021 (16)	0.0191 (15)	-0.0042 (16)
C2	0.0324 (17)	0.038 (2)	0.0349 (19)	-0.0042 (16)	0.0176 (15)	-0.0035 (16)
C3	0.0448 (19)	0.035 (2)	0.0363 (19)	-0.0020 (16)	0.0230 (16)	-0.0034 (16)
C4	0.050(2)	0.050(2)	0.042 (2)	-0.0075 (19)	0.0297 (18)	-0.0053 (18)
C5	0.0372 (19)	0.056 (3)	0.049 (2)	-0.0048 (18)	0.0285 (17)	-0.0104 (19)
C6	0.0334 (19)	0.061 (3)	0.045 (2)	0.0065 (18)	0.0156 (16)	0.0001 (19)
C7	0.0323 (18)	0.049 (2)	0.042 (2)	0.0064 (16)	0.0147 (16)	0.0080 (17)
C8	0.050 (2)	0.060 (3)	0.047 (2)	-0.003 (2)	0.0231 (18)	0.015 (2)
C9	0.046 (2)	0.088 (3)	0.037 (2)	-0.006 (2)	0.0215 (17)	0.010 (2)
C10	0.053 (3)	0.112 (4)	0.051 (3)	-0.016 (3)	0.015 (2)	0.002 (3)

Geometric parameters (Å, °)

Co1–O1 ⁱ	1.924 (2)	C4—C5	1.383 (5)
Co1—O1	1.924 (2)	C4—H4	0.9300
Co1—N1 ⁱ	1.989 (3)	C5—C6	1.365 (5)
Co1—N1	1.989 (3)	С6—Н6	0.9300
Br1—C3	1.889(3)	С7—Н7	0.9300
Br2—C5	1.905 (3)	C8—C9	1.520 (5)
N1C7	1.274 (4)	C8—H8A	0.9700
N1-C8	1.471 (4)	C8—H8B	0.9700
O1—C2	1.301 (3)	C9—C10	1.516 (5)
C1—C6	1.411 (5)	С9—Н9А	0.9700
C1—C2	1.419 (4)	С9—Н9В	0.9700
C1—C7	1.451 (4)	C10—H10A	0.9600
С2—С3	1.424 (4)	C10—H10B	0.9600
C3—C4	1.365 (4)	C10—H10C	0.9600
01 ⁱ —Co1—O1	125.40 (15)	C5—C6—C1	120.2 (3)
Ol ⁱ —Col—Nl ⁱ	94.53 (10)	C5—C6—H6	119.9
O1-Co1-N1 ⁱ	113.63 (10)	С1—С6—Н6	119.9
Ol ⁱ —Col—Nl	113.64 (10)	N1—C7—C1	127.5 (3)
01—Co1—N1	94.53 (10)	N1—C7—H7	116.2
N1 ⁱ —Co1—N1	116.90 (16)	C1—C7—H7	116.2
C7—N1—C8	117.6 (3)	N1—C8—C9	111.2 (3)
C7—N1—Co1	122.0 (2)	N1—C8—H8A	109.4

C8—N1—Co1	120.3 (2)	C9—C8—H8A	109.4
C2-O1-Co1	125.1 (2)	N1—C8—H8B	109.4
C6—C1—C2	120.5 (3)	C9—C8—H8B	109.4
C6—C1—C7	116.1 (3)	H8A—C8—H8B	108.0
C2—C1—C7	123.3 (3)	C10—C9—C8	112.8 (3)
O1—C2—C1	124.6 (3)	С10—С9—Н9А	109.0
O1—C2—C3	119.6 (3)	С8—С9—Н9А	109.0
C1—C2—C3	115.8 (3)	С10—С9—Н9В	109.0
C4—C3—C2	123.2 (3)	С8—С9—Н9В	109.0
C4—C3—Br1	118.8 (3)	Н9А—С9—Н9В	107.8
C2—C3—Br1	117.9 (2)	C9—C10—H10A	109.5
C3—C4—C5	119.1 (3)	C9—C10—H10B	109.5
C3—C4—H4	120.4	H10A—C10—H10B	109.5
С5—С4—Н4	120.4	C9—C10—H10C	109.5
C6—C5—C4	121.2 (3)	H10A-C10-H10C	109.5
C6—C5—Br2	119.6 (3)	H10B-C10-H10C	109.5
C4—C5—Br2	119.2 (3)		

Symmetry code: (i) -x, y, -z+3/2.