

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2,3-Dioxoindolin-1-yl)ethyl 4-(4-nitrophenyl)piperazine-1-carbodithioate

Yao Wang, Chong-Qing Wan, Sheng-Li Cao* and Tingting Zheng

Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: sl_cao@sohu.com

Received 26 July 2010; accepted 31 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.107; data-to-parameter ratio = 20.9.

In the title compound, $C_{21}H_{20}N_4O_4S_2$, the piperazine ring adopts a chair conformation. The 1-ethylindoline-2,3-dione system links to one N atom of the piperazine ring *via* a carbodithioate group. The indoline-2,3-dione ring and the nitrobenzene ring subtend adihedral angle of 37.27 (7)°. In the crystal structure, weak C-H···O and π - π stacking interactions [centroid–centroid distances = 3.534 (5) and 3.797 (5) Å] may help to establish the packing.

Related literature

For the fungicidal activity of dithiocarbamates, see: Farghaly *et al.* (1999); Xu *et al.* (2002); Ozkirimli *et al.* (2005) and for their antibacterial activity, see: Chourasia *et al.* (1999); Imamura *et al.* (2001). For the effective antitumor activity of dithiocarbamates, see: Cao *et al.* (2005); Gaspari *et al.* (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$C_{21}H_{20}N_4O_4S_2$	
$M_r = 456.53$	
Monoclinic, C2/c	

a = 34.4244 (8) Å	r
b = 6.8754 (2) Å	
c = 17.9938 (4) Å	Ł

 $\beta = 103.185 (1)^{\circ}$ $V = 4146.53 (18) \text{ Å}^{3}$ Z = 8Mo K α radiation

Data collection

Bruker APEXII CCD area-detector diffractometer 25340 measured reflections	5843 independent reflections 4309 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.039$	280 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$

5843 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13···O2 ⁱ	0.93	2.52	3.252 (2)	136
$C5-H5\cdots O3^{ii}$	0.93	2.33	3.125 (2)	143

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x, -y + 2, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2* and *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This work was supported by the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education (project No. KM200710028008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2052).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917.
- Chourasia, M. R. & Tyagi, D. (1999). Indian J. Phy. Nat. Sci. 15, 15-21.
- Farghaly, A. O. & Moharram, A. M. (1999). Boll. Chim. Farmaceut. 138, 280– 289.
- Gaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., Bennett, S. & Donovan, A. M. (2006). J. Med. Chem. 49, 684–692.
- Imamura, H., Ohtake, N., Jona, H., Shimizu, A., Moriya, M., Sato, H., Sugimoto, Y., Ikeura, C., Kiyonaga, H., Nakano, M., Nagano, R., Abe, S., Yamada, K., Hashizume, T. & Morishima, H. (2001). *Bioorg. Med. Chem.* 9, 1571–1578.
- Ozkirimli, S., Apak, T. I., Kiraz, M. & Yegenoglu, Y. (2005). Arch. Pharm. Res. 28, 1213–1218.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Xu, L. Z., Jiao, K., Zhang, S. S. & Kuang, S. P. (2002). Bull. Korean Chem. Soc. 23, 1699–1701.

organic compounds

 $\mu = 0.29 \text{ mm}^{-1}$

 $0.15 \times 0.13 \times 0.10$ mm

 $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

. T – 296 K

supporting information

Acta Cryst. (2010). E66, o2243 [https://doi.org/10.1107/S1600536810030618]

2-(2,3-Dioxoindolin-1-yl)ethyl 4-(4-nitrophenyl)piperazine-1-carbodithioate

Yao Wang, Chong-Qing Wan, Sheng-Li Cao and Tingting Zheng

S1. Comment

Dithiocarbamates represent a broad spectrum of biological activities such as fungicidal (Farghaly *et al.*, 1999; Xu *et al.*, 2002; Ozkirimli *et al.*, 2005) and antibacterial effects (Chourasia *et al.*, 1999; Imamura *et al.*, 2001). Dithiocarbamates were also proved to have *in vitro* and *in vivo* effective antitumor activities (Cao *et al.*, 2005; Gaspari *et al.*, 2006). In an effort to obtain new and more potent antibacterial and antitumor compounds, we synthesized the title compound, a kind of novel dithiocarbamate derivative. Here, we report the crystal structure of the title compound.

The X-ray crystal analysis shown that the piperazine ring adopts a chair conformation. The indole-2,3-dione ring and the nitrobenzene ring exhibit a dihedral angle of 37.27 (7)° (Fig.1). Considering the molecule with a U shape conformation, two molecules arrange in a face-to-face mode interacting through intermolecular hydrogen bonding (C13 —H13···O2ⁱ (nitro) = 2.52 Å, D···A 3.252 (2) Å, D—H···A 136.2°). The dimers are further stacked through π - π and C—H···O intermolecular interactions: C5—H5···O3ⁱⁱ (dione) = 2.33 Å (D···A 3.125 (1) Å, D—H···A 143.3°) and the centroid-centroid distance between the C1—C2—C3—C4—C5—C6 (benzene) and C11ⁱⁱⁱ—C16ⁱⁱⁱ—C18ⁱⁱⁱ—N4ⁱⁱⁱ (pyrrole) rings is 3.534 (5) Å, and the distance between the C1—C2—C3—C4—C5—C6 (benzene) and C11ⁱⁱⁱ—C16ⁱⁱⁱ—C12ⁱⁱⁱ—C13ⁱⁱⁱ—C13ⁱⁱⁱ—C13ⁱⁱⁱ—C13ⁱⁱⁱ

S2. Experimental

A suspension of 1-(4-nitrophenyl) piperazine (2.4 mmol), carbon disulfide (0.72 ml,12 mmol) and anhydrous potassium phosphate (0.51 g, 2.4 mmol) in *N*,*N*-dimethylformamide (15 ml) was stirred at room temperature for 30 min. Then, 1-(2-bromoethyl) indoline-2,3-dione (2 mmol) was added and the stirring was continued for 30 min. The reaction mixture was poured into water (100 ml) and the resulting precipitate was separated by filtration and purified by column chromatography (CC) on silica gel with dichloromethane/methanol = 95:5, *v*/*v*, as an eluent, to give the title compound (R_f = 0.79, dichloromethane/methanol = 95:5, *v*/*v*; m.p. 252–254°C; yield 90.6%). The orange crystals of the title compound were obtained by slow evaporation from a solution of dichloromethane/*N*,*N*-dimethylformamide 50:50 (*v*/*v*) at room temperature.

S3. Refinement

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene H atoms, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 50% probability level.

Figure 2

The packing structure of the title compound. The red dashed lines indicate the intermolecular C—H···O interactions, while the π - π stacking interactions are omitted for clarity.

2-(2,3-Dioxoindolin-1-yl)ethyl 4-(4-nitrophenyl)piperazine-1-carbodithioate

Crystal data

 $C_{21}H_{20}N_4O_4S_2$ $M_r = 456.53$ Monoclinic, C2/c a = 34.4244 (8) Å b = 6.8754 (2) Å c = 17.9938 (4) Å $\beta = 103.185 (1)^{\circ}$ $V = 4146.53 (18) \text{ Å}^3$ Z = 8F(000) = 1904

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $D_{\rm x} = 1.463 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.463 \text{ Mg m}^{-3}$ $D_{\rm m} \text{ measured by not measured}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8247 reflections $\theta = 2.3-29.2^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 296 KBlock, orange $0.15 \times 0.13 \times 0.10 \text{ mm}$

phi and ω scans 25340 measured reflections 5843 independent reflections 4309 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.027$	$k = -9 \rightarrow 7$
$\theta_{\rm max} = 29.8^{\circ}, \theta_{\rm min} = 2.3^{\circ}$	$l = -24 \rightarrow 22$
$h = -45 \longrightarrow 48$	

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 1.03	H-atom parameters constrained
5843 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 1.1993P]$
280 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.22169 (4)	0.0960 (3)	0.55107 (9)	0.0525 (4)
C2	0.20345 (5)	-0.0339 (3)	0.49616 (10)	0.0586 (4)
H2	0.2133	-0.1597	0.4960	0.070*
C3	0.17055 (5)	0.0221 (2)	0.44143 (9)	0.0522 (4)
Н3	0.1585	-0.0664	0.4042	0.063*
C4	0.15485 (4)	0.2101 (2)	0.44084 (8)	0.0418 (3)
C5	0.17505 (5)	0.3391 (3)	0.49705 (9)	0.0529 (4)
Н5	0.1660	0.4664	0.4974	0.063*
C6	0.20780 (5)	0.2823 (3)	0.55145 (10)	0.0561 (4)
H6	0.2205	0.3700	0.5884	0.067*
C7	0.10263 (5)	0.1336 (2)	0.32661 (9)	0.0469 (3)
H7A	0.1046	0.0009	0.3453	0.056*
H7B	0.1175	0.1426	0.2870	0.056*
C8	0.05960 (5)	0.1827 (2)	0.29344 (9)	0.0476 (3)
H8A	0.0493	0.0991	0.2500	0.057*
H8B	0.0441	0.1595	0.3313	0.057*
C9	0.07011 (5)	0.5142 (2)	0.33419 (8)	0.0499 (4)
H9A	0.0544	0.4955	0.3721	0.060*
H9B	0.0673	0.6487	0.3175	0.060*
C10	0.11353 (5)	0.4710 (2)	0.36929 (9)	0.0509 (4)
H10A	0.1295	0.5070	0.3335	0.061*
H10B	0.1222	0.5493	0.4149	0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.12259 (4)	0.8667 (2)	0.12798 (7)	0.0400 (3)
C12	0.13746 (5)	0.7170 (3)	0.17715 (9)	0.0526 (4)
H12	0.1250	0.5962	0.1733	0.063*
C13	0.17187 (5)	0.7545 (4)	0.23274 (10)	0.0698 (6)
H13	0.1826	0.6558	0.2666	0.084*
C14	0.19059 (5)	0.9315 (4)	0.23961 (11)	0.0757 (6)
H14	0.2135	0.9509	0.2779	0.091*
C15	0.17588 (5)	1.0806 (3)	0.19041 (11)	0.0672 (5)
H15	0.1885	1.2012	0.1948	0.081*
C16	0.14155 (4)	1.0463 (2)	0.13361 (9)	0.0483 (4)
C17	0.12020 (5)	1.1645 (2)	0.07061 (10)	0.0509 (4)
C18	0.08641 (4)	1.0341 (2)	0.02587 (8)	0.0436 (3)
C19	0.06096 (4)	0.7055 (2)	0.04397 (8)	0.0415 (3)
H19A	0.0745	0.5833	0.0592	0.050*
H19B	0.0517	0.7040	-0.0111	0.050*
C20	0.02520 (4)	0.7204 (2)	0.07963 (8)	0.0411 (3)
H20A	0.0061	0.6212	0.0573	0.049*
H20B	0.0126	0.8459	0.0665	0.049*
C22	0.04231 (4)	0.4390 (2)	0.19615 (7)	0.0368 (3)
N1	0.12011 (4)	0.26548 (18)	0.38917 (7)	0.0420 (3)
N2	0.05537 (4)	0.38618 (19)	0.26924 (7)	0.0446 (3)
N3	0.25633 (5)	0.0353 (3)	0.60869 (9)	0.0688 (4)
N4	0.08920 (3)	0.86365 (18)	0.06542 (6)	0.0386 (3)
01	0.27296 (4)	0.1532 (3)	0.65616 (9)	0.0878 (5)
O2	0.26757 (6)	-0.1329 (3)	0.60752 (10)	0.1117 (7)
03	0.12620 (4)	1.32892 (19)	0.05188 (9)	0.0767 (4)
O4	0.06274 (4)	1.07378 (18)	-0.03291 (6)	0.0592 (3)
S1	0.031276 (12)	0.28227 (6)	0.12387 (2)	0.04687 (11)
S2	0.036236 (11)	0.69395 (5)	0.18228 (2)	0.04120 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0424 (8)	0.0715 (12)	0.0423 (8)	0.0063 (8)	0.0071 (6)	0.0042 (8)
C2	0.0598 (10)	0.0559 (11)	0.0567 (10)	0.0124 (8)	0.0061 (8)	0.0048 (8)
C3	0.0558 (9)	0.0501 (9)	0.0463 (8)	0.0047 (7)	0.0025 (7)	-0.0024 (7)
C4	0.0403 (7)	0.0501 (9)	0.0361 (7)	0.0013 (6)	0.0108 (6)	0.0001 (6)
C5	0.0470 (8)	0.0566 (10)	0.0516 (9)	0.0072 (7)	0.0043 (7)	-0.0127 (8)
C6	0.0455 (8)	0.0718 (12)	0.0479 (9)	0.0012 (8)	0.0047 (7)	-0.0132 (8)
C7	0.0557 (8)	0.0401 (8)	0.0420 (8)	0.0016 (7)	0.0051 (6)	-0.0050 (6)
C8	0.0551 (8)	0.0400 (8)	0.0429 (8)	-0.0050 (7)	0.0011 (6)	0.0027 (6)
C9	0.0687 (10)	0.0426 (9)	0.0328 (7)	0.0089 (7)	-0.0002 (6)	-0.0043 (6)
C10	0.0633 (9)	0.0414 (8)	0.0417 (8)	-0.0043 (7)	-0.0011 (7)	-0.0021 (7)
C11	0.0381 (7)	0.0504 (8)	0.0315 (7)	0.0028 (6)	0.0078 (5)	0.0015 (6)
C12	0.0474 (8)	0.0650(11)	0.0425 (8)	0.0055 (7)	0.0040 (6)	0.0119 (7)
C13	0.0485 (9)	0.1117 (17)	0.0451 (9)	0.0125 (10)	0.0025 (7)	0.0187 (10)
C14	0.0451 (9)	0.130 (2)	0.0468 (10)	-0.0066 (11)	-0.0011 (7)	-0.0083 (11)
C15	0.0524 (10)	0.0881 (15)	0.0624 (11)	-0.0210 (10)	0.0160 (8)	-0.0200 (10)

supporting information

C16	0.0455 (8)	0.0548 (10)	0.0470 (8)	-0.0061 (7)	0.0158 (6)	-0.0067 (7)
C17	0.0543 (9)	0.0430 (9)	0.0628 (10)	0.0008 (7)	0.0289 (8)	0.0016 (7)
C18	0.0490 (8)	0.0447 (8)	0.0405 (7)	0.0114 (6)	0.0177 (6)	0.0067 (6)
C19	0.0469 (7)	0.0418 (8)	0.0329 (7)	0.0010 (6)	0.0029 (5)	-0.0030 (6)
C20	0.0401 (7)	0.0442 (8)	0.0348 (7)	0.0019 (6)	-0.0005 (5)	0.0030 (6)
C22	0.0335 (6)	0.0390 (7)	0.0363 (7)	-0.0002 (5)	0.0048 (5)	-0.0025 (5)
N1	0.0470 (6)	0.0385 (7)	0.0374 (6)	0.0021 (5)	0.0032 (5)	-0.0027 (5)
N2	0.0545 (7)	0.0387 (7)	0.0357 (6)	0.0014 (5)	0.0000 (5)	-0.0014 (5)
N3	0.0573 (9)	0.0930 (14)	0.0513 (9)	0.0138 (9)	0.0020 (7)	0.0054 (9)
N4	0.0404 (6)	0.0400 (6)	0.0333 (6)	0.0021 (5)	0.0042 (5)	0.0037 (5)
01	0.0680 (8)	0.1118 (13)	0.0681 (9)	0.0036 (9)	-0.0170 (7)	-0.0075 (9)
O2	0.1188 (14)	0.1077 (14)	0.0826 (11)	0.0530 (12)	-0.0310 (10)	-0.0040 (10)
03	0.0829 (9)	0.0482 (7)	0.1107 (11)	-0.0045 (7)	0.0461 (9)	0.0118 (7)
O4	0.0647 (7)	0.0675 (8)	0.0443 (6)	0.0220 (6)	0.0101 (5)	0.0179 (5)
S1	0.0547 (2)	0.0437 (2)	0.0383 (2)	-0.00326 (16)	0.00241 (15)	-0.00880 (15)
S2	0.0496 (2)	0.0381 (2)	0.03489 (18)	0.00262 (14)	0.00753 (14)	-0.00231 (14)

Geometric parameters (Å, °)

C1—C6	1.368 (3)	C11—C16	1.390 (2)
C1—C2	1.373 (2)	C11—N4	1.4136 (18)
C1—N3	1.452 (2)	C12—C13	1.389 (2)
С2—С3	1.375 (2)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.369 (3)
С3—С4	1.400 (2)	C13—H13	0.9300
С3—Н3	0.9300	C14—C15	1.374 (3)
C4—N1	1.3899 (19)	C14—H14	0.9300
C4—C5	1.404 (2)	C15—C16	1.395 (2)
С5—С6	1.371 (2)	C15—H15	0.9300
С5—Н5	0.9300	C16—C17	1.451 (2)
С6—Н6	0.9300	C17—O3	1.211 (2)
C7—N1	1.4635 (19)	C17—C18	1.542 (2)
С7—С8	1.504 (2)	C18—O4	1.2097 (17)
С7—Н7А	0.9700	C18—N4	1.3633 (19)
С7—Н7В	0.9700	C19—N4	1.4511 (19)
C8—N2	1.462 (2)	C19—C20	1.516 (2)
C8—H8A	0.9700	C19—H19A	0.9700
C8—H8B	0.9700	C19—H19B	0.9700
C9—N2	1.4585 (18)	C20—S2	1.8080 (14)
C9—C10	1.513 (2)	C20—H20A	0.9700
С9—Н9А	0.9700	C20—H20B	0.9700
С9—Н9В	0.9700	C22—N2	1.3394 (17)
C10-N1	1.4624 (19)	C22—S1	1.6650 (14)
C10—H10A	0.9700	C22—S2	1.7760 (14)
C10—H10B	0.9700	N3—O2	1.221 (2)
C11—C12	1.377 (2)	N3—O1	1.221 (2)
C6—C1—C2	120.64 (15)	C13—C12—H12	121.5

C6—C1—N3	119.78 (16)	C14—C13—C12	122.45 (19)
C2—C1—N3	119.58 (17)	C14—C13—H13	118.8
C1—C2—C3	120.01 (17)	C12—C13—H13	118.8
C1—C2—H2	120.0	C13—C14—C15	120.56 (17)
C3—C2—H2	120.0	C13—C14—H14	1197
$C^2 - C^3 - C^4$	121.14 (16)	C15—C14—H14	119.7
$C_2 = C_3 = H_3$	119.4	C14 - C15 - C16	118.17 (19)
C4 - C3 - H3	119.1	C_{14} C_{15} H_{15}	120.9
N1 - C4 - C3	121 97 (14)	C16-C15-H15	120.9
N1 - C4 - C5	121.97(14) 121.19(14)	C_{11} C_{16} C_{15}	120.9 120.60(17)
$C_3 C_4 C_5$	121.19(14) 116.79(14)	$C_{11} = C_{10} = C_{13}$	120.00(17) 107.15(14)
$C_{5} - C_{4} - C_{5}$	121 74 (16)	C_{15} C_{16} C_{17}	107.15(14) 132 16(17)
C6 C5 H5	110.1	$C_{13} = C_{10} = C_{17}$	132.10(17) 130.71(17)
C_{4} C_{5} H_{5}	119.1	03 - C17 - C18	130.71(17) 123.61(17)
C_{1}	117.1	$C_{16} = C_{17} = C_{18}$	125.01(17) 105.65(12)
$C_1 = C_0 = C_3$	119.05 (10)	$C_{10} - C_{17} - C_{18}$	103.03(13) 127.11(15)
	120.2	04 - 018 - 017	127.11(13)
C_{3} — C_{0} — H_{0}	120.2	04-018-017	127.08 (13)
NI = C7 = U7A	111.19 (13)	N4	105.80(12)
NI - C / - H / A	109.4	N4-C19-C20	113.34 (12)
C8 - C / - H / A	109.4	N4—C19—H19A	108.9
NI - C / - H / B	109.4	C20—C19—H19A	108.9
C8—C/—H/B	109.4	N4—C19—H19B	108.9
H/A—C/—H/B	108.0	С20—С19—Н19В	108.9
N2—C8—C7	110.79 (13)	H19A—C19—H19B	107.7
N2—C8—H8A	109.5	C19—C20—S2	115.08 (10)
С7—С8—Н8А	109.5	С19—С20—Н20А	108.5
N2—C8—H8B	109.5	S2—C20—H20A	108.5
С7—С8—Н8В	109.5	C19—C20—H20B	108.5
H8A—C8—H8B	108.1	S2—C20—H20B	108.5
N2—C9—C10	110.25 (13)	H20A—C20—H20B	107.5
N2—C9—H9A	109.6	N2—C22—S1	123.85 (11)
С10—С9—Н9А	109.6	N2—C22—S2	114.09 (10)
N2—C9—H9B	109.6	S1—C22—S2	122.04 (8)
С10—С9—Н9В	109.6	C4—N1—C10	119.33 (12)
H9A—C9—H9B	108.1	C4—N1—C7	119.01 (12)
N1—C10—C9	112.02 (13)	C10—N1—C7	113.37 (12)
N1-C10-H10A	109.2	C22—N2—C9	126.91 (13)
С9—С10—Н10А	109.2	C22—N2—C8	122.69 (12)
N1-C10-H10B	109.2	C9—N2—C8	110.23 (11)
C9-C10-H10B	109.2	O2—N3—O1	122.74 (18)
H10A—C10—H10B	107.9	O2—N3—C1	118.16 (18)
C12—C11—C16	121.17 (14)	O1—N3—C1	119.10 (18)
C12—C11—N4	128.02 (15)	C18—N4—C11	110.53 (12)
C16—C11—N4	110.75 (13)	C18—N4—C19	122.84 (12)
C11—C12—C13	117.04 (18)	C11—N4—C19	126.64 (12)
C11—C12—H12	121.5	C22—S2—C20	103.51 (7)
C6—C1—C2—C3	-0.9 (3)	C5—C4—N1—C10	27.1 (2)

N3—C1—C2—C3	179.84 (16)	C3—C4—N1—C7	-9.1 (2)
C1—C2—C3—C4	-0.6 (3)	C5—C4—N1—C7	173.37 (14)
C2-C3-C4-N1	-175.64 (15)	C9—C10—N1—C4	-161.47 (12)
C2—C3—C4—C5	2.0 (2)	C9—C10—N1—C7	50.45 (17)
N1-C4-C5-C6	175.60 (15)	C8—C7—N1—C4	161.00 (13)
C3—C4—C5—C6	-2.0 (2)	C8—C7—N1—C10	-50.81 (18)
C2-C1-C6-C5	0.8 (3)	S1—C22—N2—C9	172.05 (12)
N3—C1—C6—C5	-179.89 (15)	S2—C22—N2—C9	-9.64 (19)
C4—C5—C6—C1	0.7 (3)	S1—C22—N2—C8	-2.8 (2)
N1—C7—C8—N2	55.31 (17)	S2—C22—N2—C8	175.50 (11)
N2-C9-C10-N1	-54.06 (17)	C10—C9—N2—C22	-116.39 (16)
C16—C11—C12—C13	0.6 (2)	C10—C9—N2—C8	58.99 (17)
N4—C11—C12—C13	177.47 (15)	C7—C8—N2—C22	115.48 (15)
C11—C12—C13—C14	0.2 (3)	C7—C8—N2—C9	-60.14 (16)
C12—C13—C14—C15	-0.5 (3)	C6-C1-N3-O2	178.82 (19)
C13—C14—C15—C16	0.0 (3)	C2-C1-N3-O2	-1.9 (3)
C12—C11—C16—C15	-1.2 (2)	C6-C1-N3-O1	-1.1 (3)
N4—C11—C16—C15	-178.54 (13)	C2-C1-N3-O1	178.16 (17)
C12—C11—C16—C17	175.79 (13)	O4—C18—N4—C11	175.30 (14)
N4—C11—C16—C17	-1.57 (16)	C17-C18-N4-C11	-3.55 (14)
C14—C15—C16—C11	0.9 (2)	O4—C18—N4—C19	-4.8 (2)
C14—C15—C16—C17	-175.21 (16)	C17-C18-N4-C19	176.33 (12)
C11—C16—C17—O3	-178.79 (16)	C12-C11-N4-C18	-173.73 (14)
C15—C16—C17—O3	-2.3 (3)	C16-C11-N4-C18	3.40 (16)
C11—C16—C17—C18	-0.57 (15)	C12-C11-N4-C19	6.4 (2)
C15—C16—C17—C18	175.91 (16)	C16-C11-N4-C19	-176.48 (13)
O3—C17—C18—O4	2.1 (2)	C20-C19-N4-C18	-88.55 (15)
C16—C17—C18—O4	-176.31 (14)	C20-C19-N4-C11	91.31 (16)
O3—C17—C18—N4	-179.08 (15)	N2-C22-S2-C20	172.63 (10)
C16—C17—C18—N4	2.54 (14)	S1—C22—S2—C20	-9.02 (10)
N4—C19—C20—S2	-66.16 (15)	C19—C20—S2—C22	-77.72 (12)
C3—C4—N1—C10	-155.40 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13…O2 ⁱ	0.93	2.52	3.252 (2)	136
C5—H5…O3 ⁱⁱ	0.93	2.33	3.125 (2)	143

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y+2, z+1/2.