metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

µ-Oxido-bis({2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato}iron(III)) methanol monosolvate dihydrate

Jia-Hao Yan,^a Xiao-Ping Shen^a* and Hu Zhou^b

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ^bSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China

Correspondence e-mail: xiaopingshen@163.com

Received 29 July 2010; accepted 5 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; Hatom completeness 95%; disorder in solvent or counterion; R factor = 0.051; wR factor = 0.158; data-to-parameter ratio = 13.2.

The title complex, $[Fe_2(C_{20}H_{14}N_2O_2)_2O]\cdot CH_4O\cdot 2H_2O$, is composed of μ -oxido-bridged ferric 2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolate (salphen) dimers, one methanol molecule and two H₂O molecules. Each iron(III) ion, surrounded by two coordinating N and O atoms from the salphen ligand and one bridging O atom, shows a fivecoordinate square-pyramidal geometry. One of the two solvent water molecules is disordered over three positions with occupancies of 0.44 (1), 0.37 (1) and 0.19 (1).

Related literature

For background to μ -oxo-diiron(III) complexes, see: Kurtz *et al.* (1990); Vincent *et al.* (1990); Reedijk & Bouwman (1999); Oyaizu *et al.* (2001). For related structures, see: Ashmawy & Ujaimi (1991); Elmali *et al.* (1993); Oyaizu *et al.* (2001).

Experimental

Crystal data

 $[Fe_{2}(C_{20}H_{14}N_{2}O_{2})_{2}O] \cdot CH_{4}O \cdot 2H_{2}O$ $M_{r} = 824.44$ Triclinic, $P\overline{1}$ a = 13.042 (3) Å b = 13.249 (3) Å c = 13.724 (3) Å $\alpha = 116.60$ (3)° $\beta = 110.50$ (3)°

Data collection

Rigaku CCD area-detector
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.841, \ T_{\max} = 0.854$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.158$ S = 1.056858 reflections 519 parameters $\gamma = 93.80 (3)^{\circ}$ $V = 1914.4 (12) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 0.82 \text{ mm}^{-1}$ T = 298 K $0.22 \times 0.20 \times 0.20 \text{ mm}$

15784 measured reflections 6858 independent reflections 4753 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

4 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H6\cdots O7^{i}$	0.82	2.15	2.916 (6)	156
$O7 - H7WB \cdot \cdot \cdot O6$	0.99	1.87	2.808 (6)	158
$O7 - H7WA \cdots O3$	0.96	2.17	3.090 (5)	160
$O7-H7WA\cdots O4$	0.96	2.62	3.330 (5)	131

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2295).

References

Ashmawy, F. M. & Ujaimi, A. R. (1991). *Inorg. Chim. Acta*, 187, 155–158.
Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
Elmali, A., Atakol, O., Svoboda, I. & Fuess, H. (1993). Z. Kristallogr. 203, 275–278.

Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.

Kurtz, D. M. Jr (1990). Chem. Rev. 90, 585-606.

Oyaizu, K., Dewi, E. L. & Tsuchida, E. (2001). Inorg. Chim. Acta, 321, 205– 208.

Reedijk, J. & Bouwman, E. (1999). *Bioinorganic Catalysis*, 2nd ed. New York: Marcel Dekker.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vincent, J. B., Oliver-Lilley, G. L. & Averill, B. A. (1990). Chem. Rev. 90, 1447– 1467.

supporting information

Acta Cryst. (2010). E66, m1090 [https://doi.org/10.1107/S1600536810031533]

μ-Oxido-bis({2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato}iron(III)) methanol monosolvate dihydrate

Jia-Hao Yan, Xiao-Ping Shen and Hu Zhou

S1. Comment

 μ -Oxo-diiron(III) complexes are of considerable interest to chemists and biologists because of their interesting electronic structures and the magnetic interactions between the two iron(III) centers, and the role played by the oxo-bridged dinuclear iron centres in proteins (Kurtz *et al.*, 1990; Vincent *et al.*, 1990; Oyaizu *et al.*, 2001). The Fe—Fe distances and the corresponding the Fe—O—Fe bond lengths and the angles are the most important factors that determine the electronic and magnetic properties of these complexes (Reedijk *et al.*, 1999). It is important to note that the crystal structure of μ -oxo-bridged ferric salphen dimers [salphenH₂= *N*,*N*[']-*o*-phenylenebis(salicylideneimine)] depend strongly on the presence and type of lattice solvent molecules: [{Fe^{III}(salphen)}₂O].CH₂Cl₂.C₄H₁₀O (Oyaizu *et al.*, 2001); [{Fe^{III}(salphen)}₂O].DMSO (Ashmawy *et al.*, 1991) and [{Fe^{III}(salphen)}₂O].CH₄Bo₂ (Elmali *et al.*, 1993). By using a different solvent system, we obtained a new methanol dihydrate solvate of the μ -oxo-diiron(III) complex, [{Fe^{III}(salphen)}₂O].CH₃OH.2H₂O. Herein, the crystal structure of this solvate is presented.

The title complex is composed of one μ -oxo-diiron(III) unit of [{Fe^{III}(salphen)}₂O], one methanol molecule and two H₂O molecules (Fig. 1). Each iron(III) atom, surrounded by each two coordinating N and O atoms from the salphen ligand, extends outwards of the mean N₂O₂ plane towards the bridging oxygen atom by as much as 0.588 (3) and 0.583 (3) Å for Fe(1) and Fe(2), respectively. The iron atoms thus substantially protrude from the ligand planes and show a typical five-coordinate square-pyramidal geometry. The Fe—O (bridging) bond lengths are 1.786 (3) and 1.784 (3) Å for Fe(1) and Fe(2), respectively. The Fe—O (bridging) bond lengths are 1.786 (3) and 1.784 (3) Å for Fe(1) and Fe(2), respectively. The Fe—O (bridging) bond lengths are 1.786 (3) and 1.784 (3) Å for Fe(1) and Fe(2), respectively. The Fe—O—Fe angle of 146.68 (16)° is almost equal to the value of 146.7 (4)° reported for [{Fe^{III}(salphen)}₂O].DMSO (Ashmawy *et al.*, 1991), and is bigger than the values of 141 (1)° and 145.0 (3)° reported for [{Fe^{III}(salphen)}₂O].CH₂Cl₂.C₄H₁₀O (Oyaizu *et al.*, 2001) and [{Fe^{III}(salphen)}₂O].C₄H₈O₂ (Elmali *et al.*, 1993), respectively. The Fe—Fe distance of 3.420 (3) Å is consistent with the values (3.35–3.55 Å) reported for μ -oxo-diiron(III) complexes with macrocyclic ligands (Oyaizu *et al.*, 2001). One of the two interstitial water molecules in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively. Hydrogen atoms for the disordered water molecule could not be located and were omitted from the refinement.

There are some hydrogen-bonding interactions between methanol and water molecules, and between the water molecules and the salphen ligand. These hydrogen bonding interactions lead to a group of four oxygen atoms - two water and two methanol molecules - that are arranged around a crystallographic inversion center in a quadratic square pattern. The water molecules of the unit form additional bifurcated hydrogen bonds twoards the two oxygen atoms (O3, O4) of a salphen ligand of adjacent [{Fe^{III}(salphen)}₂O] complexes thus binding the complexes together by H-bonds via the square H₂O/MeOH units (Table 1, Fig. 2). The oxygen atoms of the other salphen ligand of the complex (O1, O2) show signs of hydrogen bonding interactions with the disordered water molecule.

S2. Experimental

Red prismatic crystals of the title complex were obtained by slow evaporation of a MeOH and H_2O (V/V = 1:1, 10 mL) mixture of {Fe(salphen)(C₂H₅OH)₂}Cl (0.1 mmol) in the dark at room temperature. The resulting crystals were collected, washed with H₂O and MeOH, respectively, and dried in air. Melting point = 446.6 K. IR (KBr, cm⁻¹): 3416(s), 2958(m), 2921(m), 2115(w), 1605(s), 1581(s), 1532(s), 1462(s), 1446(m), 1381(m), 1323(m), 1193(m), 1158(m), 1050(m), 745(m), 540(m).

S3. Refinement

All non-H atoms were refined anisotropically. The (C)H atoms of the salphenH₂ ligand were placed in calculated positions (C - H = 0.93 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. The (C)H atoms of the methanol molecule were placed geometrically (C - H = 0.96 Å) and refined as riding, with $U_{iso}(H) = 1.5U_{eq}(C)$. The (O)H atoms of the methanol molecule was placed geometrically (O - H = 0.82 Å) with $U_{iso}(H) = 1.5U_{eq}(O)$. The (O)H atoms of water molecule (O7) were located in a difference Fourier map and refined as riding with $U_{iso}(H) = 1.2U_{eq}(O)$. The other water molecule in the structure was found to be svererly disordered and has been refined as disordered over three positions with occupancies of 43.9 (4)%, 37 (1)% and 19 (1)% for O8, O9 and O10, respectively, summing up to 100%. Hydrogen atoms for the disordered water molecule could not be located and were omitted from the refinement.

Figure 1

The molecular structure of the title complex, with atom labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity.

Figure 2

Hydrogen bonding interactions of the title complex; the disordered water molecule is omitted for clarity. Symmetry code: (i) -*x*, -*y*+1, -*z*+1.

µ-Oxido-bis({2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}iron(III)) methanol monosolvate dihydrate

Crystal data

 $[Fe_{2}(C_{20}H_{14}N_{2}O_{2})_{2}O] \cdot CH_{4}O \cdot 2H_{2}O$ $M_{r} = 824.44$ Triclinic, *P*I Hall symbol: -P 1 a = 13.042 (3) Å b = 13.249 (3) Å c = 13.724 (3) Å a = 116.60 (3)° $\beta = 110.50$ (3)° $\gamma = 93.80$ (3)° V = 1914.4 (12) Å³

Data collection

Rigaku Model? CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 14.63 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.841, T_{\max} = 0.854$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.158$ S = 1.056858 reflections 519 parameters 4 restraints Z = 2 F(000) = 848 $D_x = 1.427 \text{ Mg m}^{-3}$ Melting point: 446.6 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7899 reflections $\theta = 2.7-28.9^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 298 KPrism, red $0.22 \times 0.20 \times 0.20 \text{ mm}$

15784 measured reflections 6858 independent reflections 4753 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 25.3^\circ, \ \theta_{min} = 3.0^\circ$ $h = -13 \rightarrow 15$ $k = -15 \rightarrow 15$ $l = -13 \rightarrow 16$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0832P)^2]$	$\Delta ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic	or equivalent isotro	pic displacement	parameters	$(Å^2)$	i
-------------------------------	---------------	----------------------	------------------	------------	---------	---

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Fe1	0.29364 (4)	0.63148 (4)	0.11270 (5)	0.04383 (19)	
Fe2	0.31765 (4)	0.64507 (4)	0.37482 (4)	0.04180 (19)	
01	0.2687 (3)	0.7573 (2)	0.0824 (3)	0.0654 (8)	
O2	0.4527 (2)	0.6843 (2)	0.1582 (3)	0.0634 (8)	
03	0.1917 (2)	0.6451 (2)	0.4169 (2)	0.0561 (7)	
O4	0.3020 (2)	0.4836 (2)	0.3307 (3)	0.0613 (8)	
05	0.2735 (2)	0.6584 (2)	0.2435 (2)	0.0512 (7)	
06	0.1044 (3)	0.5981 (4)	0.6541 (4)	0.1005 (12)	
H6	0.0414	0.6072	0.6256	0.151*	
O7	0.1409 (4)	0.4394 (4)	0.4574 (3)	0.1024 (12)	
08	0.4974 (9)	0.0920 (8)	0.9275 (10)	0.103 (3)	0.439 (4)
09	0.4522 (8)	0.1400 (10)	0.8664 (11)	0.077 (5)	0.367 (14)
O10	0.5116 (18)	0.0771 (17)	0.8511 (15)	0.068 (10)	0.194 (14)
N1	0.1355 (2)	0.5283 (3)	-0.0380 (3)	0.0431 (7)	
N2	0.3115 (3)	0.4595 (3)	0.0466 (3)	0.0433 (7)	
N3	0.3882 (2)	0.8219 (3)	0.5153 (3)	0.0432 (7)	
N4	0.4954 (2)	0.6660 (2)	0.4389 (3)	0.0408 (7)	
C1	0.1774 (4)	0.7752 (4)	0.0167 (4)	0.0558 (10)	
C2	0.1821 (4)	0.8892 (4)	0.0354 (5)	0.0755 (14)	
H2	0.2464	0.9502	0.0955	0.091*	
C3	0.0925 (5)	0.9108 (5)	-0.0347 (6)	0.0900 (17)	
Н3	0.0971	0.9865	-0.0215	0.108*	
C4	-0.0050 (5)	0.8223 (5)	-0.1247 (6)	0.0900 (17)	
H4	-0.0641	0.8379	-0.1732	0.108*	
C5	-0.0128 (4)	0.7132 (4)	-0.1409 (5)	0.0703 (13)	
Н5	-0.0794	0.6545	-0.1992	0.084*	
C6	0.0777 (3)	0.6856 (4)	-0.0714 (4)	0.0529 (10)	
C7	0.0635 (3)	0.5673 (4)	-0.0968 (3)	0.0502 (10)	
H7	-0.0032	0.5130	-0.1613	0.060*	
C8	0.1129 (3)	0.4083 (3)	-0.0722 (3)	0.0434 (9)	
C9	0.0074 (3)	0.3275 (4)	-0.1464 (4)	0.0544 (10)	
H9	-0.0557	0.3503	-0.1787	0.065*	

C10	-0.0034 (4)	0.2133 (4)	-0.1720 (4)	0.0692 (13)
H10	-0.0740	0.1590	-0.2226	0.083*
C11	0.0890 (4)	0.1786 (4)	-0.1238 (4)	0.0688 (13)
H11	0.0800	0.1016	-0.1404	0.083*
C12	0.1933 (4)	0.2558 (4)	-0.0520 (4)	0.0597 (11)
H12	0.2553	0.2313	-0.0203	0.072*
C13	0.2079 (3)	0.3717 (3)	-0.0258(3)	0.0426 (9)
C14	0.4083 (3)	0.4325 (4)	0.0679 (4)	0.0511 (10)
H14	0.4054	0.3534	0.0367	0.061*
C15	0.5183 (3)	0.5133 (4)	0.1349 (3)	0.0508 (10)
C16	0.6140 (4)	0 4682 (5)	0 1558 (4)	0.0675 (13)
H16	0.6028	0 3884	0.1278	0.081*
C17	0.0020 0.7222(4)	0.5385 (6)	0.1278 (5)	0.0794 (16)
H17	0.7839	0.5074	0.2313	0.095*
C18	0.7388(4)	0.6556 (6)	0.2513 0.2532(4)	0.0799 (16)
H18	0.8125	0.0000 (0)	0.2002 (4)	0.0755 (10)
C19	0.6123	0.7031 0.7042 (5)	0.2321 0.2346 (4)	0.0702(13)
U19	0.6635	0.7042 (3)	0.2540 (4)	0.0702 (13)
П19 С20	0.0033	0.7636 0.6337(4)	0.2004	0.064°
C20	0.3303(3)	0.0337(4)	0.1701(4)	0.0348(11)
C21	0.1505(5)	0.7323(4)	0.4700 (4)	0.0517(10)
C22	0.0402 (4)	0.7060 (4)	0.4609 (4)	0.0624 (12)
H22	-0.0027	0.6284	0.4162	0.075*
C23	-0.0049 (4)	0.7924 (5)	0.5166 (5)	0.0818 (16)
H23	-0.0///	0.7725	0.5099	0.098*
C24	0.0557 (5)	0.9092 (5)	0.5830 (6)	0.101 (2)
H24	0.0229	0.9676	0.6177	0.121*
C25	0.1636 (4)	0.9372 (4)	0.5965 (5)	0.0924 (18)
H25	0.2060	1.0151	0.6449	0.111*
C26	0.2139 (4)	0.8500 (4)	0.5382 (4)	0.0590 (11)
C27	0.3295 (4)	0.8878 (4)	0.5621 (4)	0.0578 (11)
H27	0.3662	0.9668	0.6161	0.069*
C28	0.5039 (3)	0.8682 (3)	0.5481 (3)	0.0424 (9)
C29	0.5628 (3)	0.9868 (3)	0.6164 (4)	0.0525 (10)
H29	0.5259	1.0428	0.6464	0.063*
C30	0.6742 (4)	1.0215 (4)	0.6398 (4)	0.0614 (11)
H30	0.7124	1.1007	0.6847	0.074*
C31	0.7297 (4)	0.9379 (4)	0.5960 (4)	0.0645 (12)
H31	0.8055	0.9614	0.6125	0.077*
C32	0.6732 (3)	0.8196 (4)	0.5278 (4)	0.0558 (11)
H32	0.7105	0.7644	0.4972	0.067*
C33	0.5609 (3)	0.7839 (3)	0.5052 (3)	0.0427 (9)
C34	0.5450 (3)	0.5817 (3)	0.4215 (3)	0.0449 (9)
H34	0.6239	0.6026	0.4540	0.054*
C35	0.4890 (3)	0.4598 (3)	0.3569 (3)	0.0432 (9)
C36	0.5582 (4)	0.3811 (3)	0.3384 (4)	0.0558 (10)
H36	0.6362	0.4106	0.3696	0.067*
C37	0.5117 (4)	0.2625 (4)	0.2752 (4)	0.0658 (12)
H37	0.5577	0.2118	0.2625	0.079*

C38	0.3965 (4)	0.2190 (4)	0.2305 (4)	0.0693 (13)
H38	0.3649	0.1384	0.1866	0.083*
C39	0.3272 (4)	0.2930 (4)	0.2499 (4)	0.0691 (13)
H39	0.2498	0.2615	0.2209	0.083*
C40	0.3718 (3)	0.4161 (3)	0.3133 (4)	0.0503 (10)
C41	0.1861 (5)	0.7092 (5)	0.7313 (5)	0.0967 (18)
H41A	0.1500	0.7682	0.7646	0.145*
H41B	0.2180	0.7274	0.6859	0.145*
H41C	0.2453	0.7068	0.7952	0.145*
H7WB	0.1494	0.5026	0.5366	0.116*
H7WA	0.1725	0.4961	0.4429	0.116*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U ¹²	U^{13}	U ²³
Fel	0.0386 (3)	0.0414 (3)	0.0389 (3)	0.0049 (3)	0.0090 (2)	0.0168 (3)
Fe2	0.0351 (3)	0.0388 (3)	0.0406 (3)	0.0037 (2)	0.0097 (2)	0.0171 (3)
01	0.0621 (19)	0.0489 (16)	0.0628 (19)	0.0002 (14)	0.0035 (15)	0.0300 (15)
O2	0.0445 (16)	0.0534 (17)	0.071 (2)	0.0017 (14)	0.0187 (15)	0.0212 (15)
O3	0.0485 (16)	0.0500 (16)	0.0631 (18)	0.0052 (14)	0.0257 (14)	0.0227 (14)
O4	0.0406 (15)	0.0438 (15)	0.086 (2)	0.0047 (13)	0.0159 (15)	0.0312 (15)
05	0.0489 (15)	0.0534 (15)	0.0409 (15)	0.0117 (13)	0.0140 (12)	0.0198 (13)
O6	0.082 (3)	0.105 (3)	0.094 (3)	0.013 (2)	0.025 (2)	0.044 (2)
07	0.104 (3)	0.107 (3)	0.084 (3)	-0.006 (2)	0.033 (2)	0.048 (2)
08	0.151 (9)	0.083 (6)	0.102 (7)	0.030 (6)	0.061 (7)	0.064 (6)
09	0.056 (6)	0.060 (6)	0.130 (9)	0.008 (5)	0.036 (6)	0.063 (6)
O10	0.069 (14)	0.057 (12)	0.036 (10)	-0.037 (10)	0.033 (8)	-0.009(7)
N1	0.0367 (17)	0.0464 (18)	0.0414 (18)	0.0088 (15)	0.0140 (14)	0.0206 (15)
N2	0.0392 (17)	0.0455 (17)	0.0414 (18)	0.0088 (15)	0.0137 (14)	0.0218 (15)
N3	0.0376 (17)	0.0428 (17)	0.0430 (18)	0.0070 (15)	0.0128 (15)	0.0204 (14)
N4	0.0364 (16)	0.0388 (16)	0.0364 (17)	0.0026 (14)	0.0103 (14)	0.0154 (14)
C1	0.064 (3)	0.051 (2)	0.057 (3)	0.015 (2)	0.025 (2)	0.032 (2)
C2	0.077 (3)	0.064 (3)	0.087 (4)	0.015 (3)	0.026 (3)	0.046 (3)
C3	0.092 (4)	0.077 (4)	0.136 (5)	0.038 (3)	0.053 (4)	0.075 (4)
C4	0.072 (4)	0.097 (4)	0.128 (5)	0.038 (3)	0.032 (4)	0.082 (4)
C5	0.053 (3)	0.078 (3)	0.083 (3)	0.026 (3)	0.021 (2)	0.047 (3)
C6	0.054 (3)	0.056 (2)	0.054 (3)	0.020 (2)	0.023 (2)	0.031 (2)
C7	0.037 (2)	0.058 (2)	0.042 (2)	0.0086 (19)	0.0101 (17)	0.0205 (19)
C8	0.039 (2)	0.040 (2)	0.039 (2)	0.0032 (17)	0.0140 (17)	0.0138 (17)
C9	0.040 (2)	0.056 (3)	0.050(2)	0.001 (2)	0.0145 (19)	0.019 (2)
C10	0.057 (3)	0.052 (3)	0.063 (3)	-0.014 (2)	0.015 (2)	0.012 (2)
C11	0.075 (3)	0.043 (2)	0.072 (3)	0.000 (2)	0.024 (3)	0.024 (2)
C12	0.065 (3)	0.049 (2)	0.060 (3)	0.012 (2)	0.021 (2)	0.029 (2)
C13	0.044 (2)	0.040 (2)	0.035 (2)	0.0047 (18)	0.0138 (17)	0.0149 (17)
C14	0.054 (3)	0.057 (2)	0.051 (2)	0.020 (2)	0.022 (2)	0.033 (2)
C15	0.038 (2)	0.073 (3)	0.043 (2)	0.013 (2)	0.0155 (19)	0.032 (2)
C16	0.057 (3)	0.105 (4)	0.067 (3)	0.036 (3)	0.033 (2)	0.057 (3)
C17	0.043 (3)	0.146 (5)	0.062 (3)	0.033 (3)	0.022 (2)	0.061 (4)

supporting information

C18	0.038 (3)	0.131 (5)	0.049 (3)	0.004 (3)	0.013 (2)	0.035 (3)
C19	0.047 (3)	0.083 (3)	0.051 (3)	-0.005 (3)	0.016 (2)	0.019 (2)
C20	0.038 (2)	0.076 (3)	0.043 (2)	0.007 (2)	0.0164 (19)	0.026 (2)
C21	0.040 (2)	0.062 (3)	0.045 (2)	0.007 (2)	0.0121 (19)	0.026 (2)
C22	0.044 (2)	0.075 (3)	0.056 (3)	0.009 (2)	0.018 (2)	0.027 (2)
C23	0.042 (3)	0.102 (4)	0.072 (3)	0.013 (3)	0.020 (3)	0.024 (3)
C24	0.058 (3)	0.092 (4)	0.119 (5)	0.027 (3)	0.044 (3)	0.022 (4)
C25	0.067 (3)	0.059 (3)	0.113 (5)	0.012 (3)	0.040 (3)	0.012 (3)
C26	0.046 (2)	0.055 (3)	0.067 (3)	0.013 (2)	0.024 (2)	0.023 (2)
C27	0.051 (2)	0.043 (2)	0.059 (3)	0.006 (2)	0.018 (2)	0.015 (2)
C28	0.040 (2)	0.042 (2)	0.035 (2)	0.0020 (17)	0.0100 (17)	0.0169 (17)
C29	0.054 (3)	0.039 (2)	0.051 (2)	0.0057 (19)	0.019 (2)	0.0158 (18)
C30	0.052 (3)	0.047 (2)	0.056 (3)	-0.007(2)	0.014 (2)	0.013 (2)
C31	0.042 (2)	0.058 (3)	0.070 (3)	-0.006 (2)	0.020 (2)	0.019 (2)
C32	0.042 (2)	0.048 (2)	0.057 (3)	0.0008 (19)	0.018 (2)	0.014 (2)
C33	0.038 (2)	0.041 (2)	0.036 (2)	-0.0014 (17)	0.0097 (17)	0.0158 (17)
C34	0.039 (2)	0.049 (2)	0.043 (2)	0.0033 (18)	0.0144 (18)	0.0241 (18)
C35	0.048 (2)	0.041 (2)	0.038 (2)	0.0071 (18)	0.0160 (18)	0.0213 (17)
C36	0.060 (3)	0.049 (2)	0.059 (3)	0.017 (2)	0.024 (2)	0.029 (2)
C37	0.077 (3)	0.058 (3)	0.070 (3)	0.030 (3)	0.034 (3)	0.035 (2)
C38	0.076 (3)	0.040 (2)	0.070 (3)	0.011 (2)	0.014 (3)	0.024 (2)
C39	0.052 (3)	0.050 (3)	0.080 (3)	0.001 (2)	0.005 (2)	0.031 (2)
C40	0.048 (2)	0.041 (2)	0.052 (2)	0.0055 (19)	0.0114 (19)	0.0236 (19)
C41	0.082 (4)	0.111 (5)	0.085 (4)	0.017 (4)	0.027 (3)	0.047 (4)

Geometric parameters (Å, °)

1.786 (3)	C12—H12	0.9300
1.912 (3)	C14—C15	1.429 (5)
1.921 (3)	C14—H14	0.9300
2.106 (3)	C15—C20	1.404 (6)
2.123 (3)	C15—C16	1.413 (5)
1.784 (3)	C16—C17	1.365 (7)
1.919 (3)	C16—H16	0.9300
1.922 (3)	C17—C18	1.372 (7)
2.116 (3)	C17—H17	0.9300
2.119 (3)	C18—C19	1.366 (7)
1.329 (5)	C18—H18	0.9300
1.325 (5)	C19—C20	1.421 (6)
1.327 (5)	C19—H19	0.9300
1.325 (5)	C21—C26	1.403 (6)
1.424 (6)	C21—C22	1.405 (6)
0.8200	C22—C23	1.364 (6)
0.9910	C22—H22	0.9300
0.9611	C23—C24	1.386 (7)
1.063 (14)	С23—Н23	0.9300
1.280 (12)	C24—C25	1.356 (7)
1.18 (2)	C24—H24	0.9300
	$\begin{array}{c} 1.786 (3) \\ 1.912 (3) \\ 1.921 (3) \\ 2.106 (3) \\ 2.123 (3) \\ 1.784 (3) \\ 1.919 (3) \\ 1.922 (3) \\ 2.116 (3) \\ 2.119 (3) \\ 1.329 (5) \\ 1.325 (5) \\ 1.325 (5) \\ 1.325 (5) \\ 1.424 (6) \\ 0.8200 \\ 0.9910 \\ 0.9611 \\ 1.063 (14) \\ 1.280 (12) \\ 1.18 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

supporting information

N1—C7	1.307 (5)	C25—C26	1.430 (6)
N1—C8	1.416 (5)	С25—Н25	0.9300
N2—C14	1.304 (5)	C26—C27	1.428 (6)
N2—C13	1.409 (5)	С27—Н27	0.9300
N3—C27	1.301 (5)	C28—C29	1.398 (5)
N3—C28	1.418 (5)	C28—C33	1.405 (5)
N4—C34	1.300 (5)	C29—C30	1.371 (6)
N4—C33	1.416 (4)	C29—H29	0.9300
C1—C6	1.403 (6)	C30—C31	1.388 (6)
C1—C2	1.407 (6)	C30—H30	0.9300
$C^2 - C^3$	1 370 (7)	$C_{31} - C_{32}$	1 387 (6)
C2—H2	0.9300	C31—H31	0.9300
C3—C4	1 386 (8)	C_{32} — C_{33}	1 387 (5)
C3—H3	0.9300	C32—H32	0.9300
C4-C5	1 351 (7)	C_{34} C_{35}	1,427(5)
C4—H4	0.9300	C34—H34	0.9300
C_{5}	1 421 (6)	C_{35} C_{40}	1 400 (5)
C5_H5	1.421(0)	$C_{33} = C_{40}$	1.400(3)
С5—П5	0.9300	$C_{33} = C_{30}$	1.418(3)
CoC7	1.428 (0)	C_{30}	1.309 (0)
C/—H/	0.9300	C36—H36	0.9300
	1.387 (5)	C37—C38	1.3/4 (6)
C8—C13	1.408 (5)	C3/—H3/	0.9300
C9—C10	1.376 (6)	C38—C39	1.379 (6)
С9—Н9	0.9300	C38—H38	0.9300
C10—C11	1.374 (7)	C39—C40	1.416 (6)
C10—H10	0.9300	С39—Н39	0.9300
C11—C12	1.357 (6)	C41—H41A	0.9600
C11—H11	0.9300	C41—H41B	0.9600
C12—C13	1.393 (5)	C41—H41C	0.9600
05_Fe1_01	109 47 (13)	C_{20} C_{15} C_{16}	118 4 (4)
$O_5 = F_{e1} = O_1^2$	109.47(13) 100.06(13)	$C_{20} = C_{15} = C_{10}$	110.4(4)
03 - 101 - 02	80 13 (13)	$C_{20} = C_{15} = C_{14}$	123.0(4)
$O_5 = F_{e1} = N_2$	102 31 (12)	$C_{10} - C_{15} - C_{14}$	117.9(4)
$O_{1} = P_{1} = N_{2}$	102.31(12) 147.27(13)	C17 - C16 - U16	121.9(3)
$O_1 = Fe_1 = N_2$	147.27(13) 87.70(12)	$C_{1} = C_{10} = 1110$	119.0
O_2 —rei—N ₂	87.79(13) 106.82(12)	C15 - C10 - H10	119.0
OJ_FeI_NI	100.82(12)	C10-C17-C18	119.1 (3)
OI—FeI—NI	87.13 (12)		120.4
02—FeI—NI	143.05 (12)		120.4
N2—FeI—NI	/6.19 (12)		121.7 (5)
05—Fe2—04	110.14 (13)	C19—C18—H18	119.1
U5—Fe2—U3	107.68 (12)	C1/C18H18	119.1
04—Fe2—O3	90.01 (12)	C18—C19—C20	120.3 (5)
05—Fe2—N3	102.33 (12)	C18—C19—H19	119.9
O4—Fe2—N3	146.57 (13)	C20—C19—H19	119.9
O3—Fe2—N3	87.54 (12)	O2—C20—C15	123.3 (4)
O5—Fe2—N4	106.81 (12)	O2—C20—C19	118.2 (4)
O4—Fe2—N4	87.08 (12)	C15—C20—C19	118.5 (4)

O3—Fe2—N4	144.17 (12)	O3—C21—C26	122.6 (3)
N3—Fe2—N4	75.93 (12)	O3—C21—C22	118.8 (4)
C1—O1—Fe1	133.1 (3)	C26—C21—C22	118.5 (4)
C20—O2—Fe1	131.4 (3)	C23—C22—C21	121.0 (5)
C21—O3—Fe2	130.6 (3)	C23—C22—H22	119.5
C40—O4—Fe2	131.8 (3)	C21—C22—H22	119.5
Fe2—O5—Fe1	146.68 (16)	C22—C23—C24	121.4 (5)
C41—O6—H6	109.5	С22—С23—Н23	119.3
H7WB—O7—H7WA	90.6	С24—С23—Н23	119.3
010-08-09	59.4 (14)	C25—C24—C23	119.0 (5)
010-09-08	51.1 (9)	C25—C24—H24	120.5
08-010-09	69.5 (12)	C23—C24—H24	120.5
C7-N1-C8	1212(3)	C_{24} C_{25} C_{26}	121.7(5)
C7—N1—Fel	121.2(3) 1254(3)	$C_{24} = C_{25} = H_{25}$	119.2
C8-N1-Fel	123.4(3) 113.4(2)	$C_{24} = C_{25} = H_{25}$	119.2
C14 N2 $C13$	113.4(2) 120.9(3)	$C_{20} = C_{23} = H_{23}$	119.2 124.1(4)
$C_{14} = N_2 = C_{13}$	120.9(3)	$C_{21} = C_{20} = C_{27}$	124.1(4)
$C_{14} = N_2 = Fe_1$	124.9(3)	$C_{21} = C_{20} = C_{23}$	117.2(4)
C13 - N2 - Fei	114.2(2) 121.2(2)	$C_2/-C_{20}-C_{23}$	117.3(4)
$C_2 / - N_3 - C_{28}$	121.3 (3)	$N_{3} = C_{27} = C_{26}$	126.0 (4)
$C_2/-N_3$ -Fe2	123.7 (3)	$N_3 = C_2 / = H_2 / C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	117.0
C28—N3—Fe2	114.8 (2)	C26—C27—H27	117.0
C34—N4—C33	120.2 (3)	C29—C28—C33	119.3 (3)
C34—N4—Fe2	125.6 (2)	C29—C28—N3	126.0 (3)
C33—N4—Fe2	114.2 (2)	C33—C28—N3	114.7 (3)
O1—C1—C6	123.0 (4)	C30—C29—C28	120.9 (4)
O1—C1—C2	118.1 (4)	С30—С29—Н29	119.6
C6—C1—C2	118.8 (4)	С28—С29—Н29	119.6
C3—C2—C1	120.3 (5)	C29—C30—C31	119.6 (4)
С3—С2—Н2	119.9	С29—С30—Н30	120.2
С1—С2—Н2	119.9	С31—С30—Н30	120.2
C2—C3—C4	121.5 (5)	C32—C31—C30	120.7 (4)
С2—С3—Н3	119.2	C32—C31—H31	119.7
С4—С3—Н3	119.2	С30—С31—Н31	119.7
C5—C4—C3	119.0 (5)	C33—C32—C31	119.9 (4)
C5—C4—H4	120.5	С33—С32—Н32	120.0
C3—C4—H4	120.5	C31—C32—H32	120.0
C4-C5-C6	121.9 (5)	C_{32} C_{33} C_{28}	1196(3)
C4—C5—H5	119.1	$C_{32} = C_{33} = N_4$	125.0(3)
C6-C5-H5	119.1	C_{28} C_{33} N4	125.0(3) 115.4(3)
$C_1 C_2 C_5$	119.1 118.4.(4)	N4 C34 C35	115.7(3)
$C_1 = C_0 = C_3$	110.4(4)	N4 C34 H34	123.7(3)
$C_1 = C_0 = C_7$	123.4(4)	1134	117.2
C_{3}	110.2(4)	$C_{33} = C_{34} = H_{34}$	11/.2
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	120.0 (4)	$C_{40} = C_{33} = C_{30}$	119.0 (4)
$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	117.0	$C_{40} = C_{33} = C_{34}$	123.4(3)
CO = C = H / C = C = C = C = C = C = C = C = C = C	11/.0	$C_{30} - C_{30} - C_{34}$	110.8(3)
$C_{2} = C_{2} = C_{13}$	119.5 (4)	$C_3/-C_3b-C_35$	121.0 (4)
C9—C8—NI	125.4 (4)	C37/—C36—H36	119.5
C13—C8—N1	115.2 (3)	С35—С36—Н36	119.5

С10—С9—С8	119.7 (4)	C36—C37—C38	119.6 (4)
С10—С9—Н9	120.1	С36—С37—Н37	120.2
С8—С9—Н9	120.1	С38—С37—Н37	120.2
C11—C10—C9	120.7 (4)	C37—C38—C39	121.0 (4)
C11—C10—H10	119.6	С37—С38—Н38	119.5
С9—С10—Н10	119.6	С39—С38—Н38	119.5
C12—C11—C10	120.6 (4)	C38—C39—C40	121.1 (4)
C12—C11—H11	119.7	С38—С39—Н39	119.4
C10-C11-H11	119.7	С40—С39—Н39	119.5
C11—C12—C13	120.3 (4)	O4—C40—C35	123.5 (3)
C11—C12—H12	119.9	O4—C40—C39	118.9 (4)
C13—C12—H12	119.8	C35—C40—C39	117.6 (4)
C12—C13—C8	119.3 (4)	O6—C41—H41A	109.5
C12—C13—N2	125.6 (4)	O6—C41—H41B	109.5
C8—C13—N2	115.1 (3)	H41A—C41—H41B	109.5
N2—C14—C15	126.0 (4)	O6—C41—H41C	109.5
N2-C14-H14	117.0	H41A—C41—H41C	109.5
C15—C14—H14	117.0	H41B—C41—H41C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O6—H6···O7 ⁱ	0.82	2.15	2.916 (6)	156
О7—H7 <i>WB</i> ···О6	0.99	1.87	2.808 (6)	158
O7—H7 <i>WA</i> ···O3	0.96	2.17	3.090 (5)	160
O7—H7 <i>WA</i> ···O4	0.96	2.62	3.330 (5)	131

Symmetry code: (i) -x, -y+1, -z+1.