organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-1-(2,4,6-Trihydroxybenzylidene)-4ethylthiosemicarbazide dihydrate

Hana Bashir Shawish, Kong Wai Tan, M. Jamil Maah* and Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: mjamil@um.edu.my

Received 1 August 2010; accepted 2 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.074; data-to-parameter ratio = 14.1.

In the title molecule, $C_{10}H_{13}N_3O_3S\cdot 2H_2O$, the thiosemicarbazide = N - NH - C(=S) - NH- fragment [torsion angle = 0.2 (1)°] is nearly coplanar with the benzene ring [dihedral angle = 2.4 (1)°]. The benzene ring and semicarbazide moiety are located on opposite sites of the C=N bond, showing an *E* configuration. The hydroxy, imino and water H atoms are engaged in extensive hydrogen bonding, forming a threedimensional network.

Related literature

For the crystal structure of a related compound, 1-(2,3,4-trihydroxybenzylidene)-4-ethylthiosemicarbazide, see: Shaw-ish *et al.* (2010).

Experimental

 $\begin{array}{l} Crystal \ data \\ C_{10}H_{13}N_{3}O_{3}S\cdot 2H_{2}O \\ M_{r} = 291.33 \\ Monoclinic, \ P2_{1} \\ a = 4.6645 \ (4) \ \text{\AA} \\ b = 10.4006 \ (9) \ \text{\AA} \\ c = 13.5381 \ (11) \ \text{\AA} \\ \beta = 98.674 \ (1)^{\circ} \end{array}$

 $V = 649.27 (10) Å^{3}$ Z = 2 Mo K\alpha radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 100 K 0.30 \times 0.20 \times 0.10 mm

Data collection

```
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.923, T_{\rm max} = 0.973
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.074$ S = 1.032937 reflections 208 parameters 12 restraints 6232 measured reflections 2937 independent reflections 2826 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H10···N1	0.85 (1)	1.99 (2)	2.722 (2)	144 (2)
O2−H2o···O1 ⁱ	0.83 (1)	2.27 (2)	2.955 (2)	140 (2)
$O3-H30\cdots O1W$	0.85 (2)	1.76 (2)	2.598 (2)	174 (2)
O1w−H11···O2w	0.84 (1)	1.94 (1)	2.785 (2)	177 (3)
O1w−H12···O3 ⁱⁱ	0.84 (1)	2.22 (1)	3.002 (2)	155 (2)
O2w−H21···S1 ⁱⁱⁱ	0.84 (1)	2.45 (1)	3.279(1)	169 (2)
$O2w-H22\cdots S1^{iv}$	0.84 (1)	2.49 (1)	3.292 (1)	162 (2)
$N2-H2n \cdot \cdot \cdot O2w^{v}$	0.86(1)	2.13 (1)	2.965 (2)	166 (2)
$N3-H3n\cdots O2^{vi}$	0.86 (1)	2.26 (2)	2.934 (2)	136 (2)

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + 1$; (ii) x - 1, y, z; (iii) x - 2, y - 1, z; (iv) x - 1, y - 1, z; (v) $-x + 1, y + \frac{1}{2}, -z$; (vi) $-x + 2, y + \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (PS354/2009) and MOHE (FRGS-FP001/2009) for supporting this study. HBS also thanks the Libyan People's Bureau in Malaysia for a scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5011).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Shawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, 01151.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- $M_{\text{control}} = \frac{1}{2} \left(\frac{1}{2} \right) \left($

supporting information

Acta Cryst. (2010). E66, o2230 [https://doi.org/10.1107/S1600536810030783]

(E)-1-(2,4,6-Trihydroxybenzylidene)-4-ethylthiosemicarbazide dihydrate

Hana Bashir Shawish, Kong Wai Tan, M. Jamil Maah and Seik Weng Ng

S1. Experimental

2,4,6-Trihydroxybenzaldehyde (1.54 g, 10 mmol) and 4-ethylthiosemicarbazide (1.19 g, 1 mmol) were heated in ethanol (20 ml) for 2 h; acetic acid (0.5 ml) was also added. A brown solid separated from the cool solution; this was recrystallized from methanol.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The imino H and hydroxy H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.86 ± 0.01 and O–H 0.84 ± 0.01 Å; their temperature factors were freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{10}H_{13}N_3O_3S'2H_2O$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

(E)-1-(2,4,6-Trihydroxybenzylidene)-4-ethylthiosemicarbazide dihydrate

Crystal data	
$C_{10}H_{13}N_3O_3S\cdot 2H_2O$	$V = 649.27 (10) \text{ Å}^3$
$M_r = 291.33$	Z = 2
Monoclinic, $P2_1$	F(000) = 308
Hall symbol: P 2yb	$D_{\rm x} = 1.490 {\rm ~Mg} {\rm ~m}^{-3}$
a = 4.6645 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.4006 (9) Å	Cell parameters from 3449 reflections
c = 13.5381 (11) Å	$\theta = 2.5 - 28.2^{\circ}$
$\beta = 98.674 \ (1)^{\circ}$	$\mu = 0.27 \mathrm{~mm^{-1}}$

T = 100 KPrism, yellow

Data collection

Dura concernon	
Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\rm eff} = 0.973$	6232 measured reflections 2937 independent reflections 2826 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -6 \rightarrow 5$ $k = -13 \rightarrow 13$ $I = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.074$ S = 1.03	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independen and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.0466P]$
293 / reflections	where $P = (F_0^2 + 2F_c^2)/3$

208 parameters
12 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

heighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.0466P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³ Absolute structure: Flack (1983), 1370 Friedel pairs

Absolute structure parameter: -0.05 (6)

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	1.52160 (9)	1.00002 (4)	0.04613 (3)	0.01642 (10)
01	1.0480 (3)	0.82234 (12)	0.44254 (9)	0.0175 (3)
O2	0.4114 (3)	0.51122 (13)	0.53548 (9)	0.0185 (3)
O3	0.5005 (3)	0.56687 (12)	0.18897 (9)	0.0171 (3)
O1W	0.0357 (3)	0.42702 (13)	0.15044 (10)	0.0204 (3)
O2W	0.0077 (3)	0.21977 (12)	0.01907 (10)	0.0197 (3)
N1	1.1216 (3)	0.83376 (14)	0.24708 (10)	0.0136 (3)
N2	1.2187 (3)	0.87300 (14)	0.16047 (10)	0.0139 (3)
N3	1.5378 (3)	1.01558 (15)	0.24590 (10)	0.0147 (3)
C1	0.8575 (3)	0.72575 (16)	0.41274 (13)	0.0133 (3)
C2	0.7317 (4)	0.66456 (16)	0.48651 (13)	0.0152 (3)
H2	0.7859	0.6873	0.5547	0.018*
C3	0.5256 (4)	0.56959 (17)	0.45936 (12)	0.0149 (3)
C4	0.4389 (4)	0.53585 (15)	0.36022 (12)	0.0142 (3)
H4	0.2932	0.4726	0.3427	0.017*
C5	0.5697 (4)	0.59662 (15)	0.28686 (13)	0.0136 (3)
C6	0.7848 (4)	0.69196 (15)	0.31126 (13)	0.0126 (3)
C7	0.9158 (4)	0.74927 (16)	0.23201 (13)	0.0135 (3)
H7	0.8477	0.7237	0.1652	0.016*
C8	1.4257 (3)	0.96307 (15)	0.15970 (13)	0.0131 (3)
C9	1.7695 (4)	1.11131 (17)	0.25974 (13)	0.0179 (4)

H9A	1.8548	1.1188	0.1973	0.021*
H9B	1.9242	1.0822	0.3133	0.021*
C10	1.6620 (5)	1.24156 (18)	0.28688 (17)	0.0274 (4)
H10A	1.8236	1.3028	0.2953	0.041*
H10B	1.5812	1.2350	0.3495	0.041*
H10C	1.5113	1.2715	0.2335	0.041*
H1O	1.132 (4)	0.846 (2)	0.3945 (12)	0.022 (6)*
H2O	0.280 (4)	0.462 (2)	0.5106 (17)	0.036 (7)*
H3O	0.356 (4)	0.517 (2)	0.1785 (17)	0.029 (6)*
H11	0.024 (5)	0.3659 (19)	0.1092 (18)	0.048 (8)*
H12	-0.122 (4)	0.467 (2)	0.1412 (19)	0.059 (10)*
H21	-0.127 (3)	0.1711 (18)	0.0304 (18)	0.029 (7)*
H22	0.162 (3)	0.178 (2)	0.022 (2)	0.047 (8)*
H2N	1.140 (4)	0.841 (2)	0.1046 (10)	0.020 (5)*
H3N	1.476 (4)	0.9852 (19)	0.2978 (10)	0.014 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01776 (19)	0.0203 (2)	0.01189 (19)	-0.00408 (18)	0.00442 (14)	0.00107 (17)
01	0.0181 (6)	0.0191 (6)	0.0151 (6)	-0.0046(5)	0.0025 (5)	-0.0017 (5)
O2	0.0223 (6)	0.0215 (6)	0.0122 (6)	-0.0044 (6)	0.0042 (5)	0.0020 (5)
O3	0.0195 (6)	0.0208 (6)	0.0113 (6)	-0.0057 (5)	0.0031 (5)	-0.0035 (5)
O1W	0.0173 (7)	0.0228 (7)	0.0204 (7)	-0.0006(5)	0.0009 (5)	-0.0031 (5)
O2W	0.0190 (7)	0.0185 (7)	0.0215 (7)	-0.0023 (6)	0.0033 (6)	0.0019 (5)
N1	0.0141 (7)	0.0146 (6)	0.0128 (7)	0.0017 (5)	0.0042 (6)	0.0024 (5)
N2	0.0155 (7)	0.0167 (7)	0.0097 (7)	-0.0028(5)	0.0029 (6)	0.0004 (5)
N3	0.0158 (7)	0.0176 (7)	0.0117 (6)	-0.0026 (6)	0.0052 (5)	-0.0001 (6)
C1	0.0114 (8)	0.0134 (7)	0.0150 (8)	0.0024 (6)	0.0014 (6)	-0.0002 (6)
C2	0.0165 (9)	0.0182 (8)	0.0102 (8)	0.0027 (7)	0.0001 (6)	-0.0001 (6)
C3	0.0168 (8)	0.0146 (8)	0.0142 (8)	0.0038 (7)	0.0057 (6)	0.0033 (6)
C4	0.0139 (8)	0.0136 (8)	0.0153 (8)	-0.0008 (6)	0.0033 (6)	-0.0008 (6)
C5	0.0141 (8)	0.0137 (7)	0.0133 (8)	0.0026 (6)	0.0033 (6)	0.0004 (6)
C6	0.0115 (8)	0.0129 (7)	0.0137 (8)	0.0025 (6)	0.0027 (6)	0.0011 (6)
C7	0.0150 (8)	0.0141 (8)	0.0115 (8)	0.0028 (6)	0.0020 (6)	0.0000 (6)
C8	0.0118 (8)	0.0134 (7)	0.0146 (8)	0.0019 (6)	0.0033 (6)	0.0020 (6)
C9	0.0164 (9)	0.0202 (8)	0.0171 (9)	-0.0032 (7)	0.0031 (7)	-0.0027 (7)
C10	0.0308 (11)	0.0174 (9)	0.0363 (12)	-0.0024(8)	0.0122 (9)	0.0012 (8)

Geometric parameters (Å, °)

S1-C8	1.7085 (17)	N3—H3N	0.86(1)
O1—C1	1.362 (2)	C1—C2	1.387 (2)
01—H10	0.85 (1)	C1—C6	1.409 (2)
O2—C3	1.3710 (19)	C2—C3	1.389 (2)
O2—H2O	0.83 (1)	С2—Н2	0.9500
O3—C5	1.352 (2)	C3—C4	1.387 (2)
O3—H3O	0.85 (1)	C4—C5	1.393 (2)

supporting information

O1W—H11	0.84(1)	C4—H4	0.9500
O1W—H12	0.84 (1)	C5—C6	1.414 (2)
O2W—H21	0.84 (1)	C6—C7	1.442 (2)
O2W—H22	0.84 (1)	C7—H7	0.9500
N1-C7	1.294 (2)	C9—C10	1.509 (3)
N1—N2	1 3809 (19)	C9—H9A	0.9900
N2-C8	1 346 (2)	C9—H9B	0.9900
N2—H2N	0.86(1)	C10—H10A	0.9800
N3-C8	1 323 (2)	C10 H10R	0.9800
N3_C9	1.323(2) 1.461(2)		0.9800
NJC9	1.401 (2)	C10—1110C	0.9800
C1—01—H10	110.3 (16)	O3—C5—C4	121.98 (15)
C3—O2—H2O	108.4 (17)	O3—C5—C6	116.47 (15)
С5—О3—НЗО	111.8 (16)	C4—C5—C6	121.55 (15)
H11—O1W—H12	107.8 (15)	C1—C6—C5	117.44 (15)
H21—O2W—H22	109.8 (15)	C1—C6—C7	123.77 (15)
C7—N1—N2	113.40 (14)	C5—C6—C7	118.80 (15)
C8—N2—N1	122.67 (15)	N1-C7-C6	123.43 (15)
C8 - N2 - H2N	118.4 (15)	N1-C7-H7	118.3
N1 - N2 - H2N	118.9(15)	C6-C7-H7	118.3
C8 - N3 - C9	125 54 (14)	N3-C8-N2	117.97 (15)
C8—N3—H3N	115.7(14)	N3-C8-S1	125.35(13)
C9 N3 H3N	113.7(14) 118.6(14)	N2-C8-S1	116 68 (13)
01 - C1 - C2	116.95(15)	N_{3} C9 C10	110.00(15) 112.11(15)
01 - 01 - 02	121 56 (15)	$N_3 = C_9 = C_{10}$	112.11 (13)
$C_{1}^{2} = C_{1}^{2} = C_{0}^{2}$	121.30(15) 121.46(15)	10 C0 H0A	109.2
$C_2 = C_1 = C_0$	121.40(13) 110.14(15)	$N_2 = C_0 = H_0 P$	109.2
C1 - C2 - C3	119.14 (13)	N_{3} C_{9} H_{9} H_{9} H_{9}	109.2
C1 = C2 = H2	120.4	C10 - C9 - H9B	109.2
$C_3 = C_2 = H_2$	120.4	H9A - C9 - H9B	107.9
02 - C3 - C4	121./1(10)	C9 - C10 - H10A	109.5
02 - C3 - C2	116.61 (15)	C9—C10—H10B	109.5
C4—C3—C2	121.67 (15)	HI0A—CI0—HI0B	109.5
C3—C4—C5	118.68 (16)	C9—C10—H10C	109.5
C3—C4—H4	120.7	H10A—C10—H10C	109.5
C5—C4—H4	120.7	H10B—C10—H10C	109.5
C7—N1—N2—C8	178.00 (15)	03	179 15 (15)
01 - C1 - C2 - C3	176.00 (15)	C4-C5-C6-C1	-15(2)
C6-C1-C2-C3	-12(2)	03-C5-C6-C7	-0.6(2)
$C_1 - C_2 - C_3 - O_2$	1.2(2) 179 17 (15)	C4-C5-C6-C7	17874(15)
C1 $C2$ $C3$ $C4$	-1.1(2)	$N^2 N^1 C^7 C^6$	178.51(14)
$0^{2}-0^{3}-0^{4}-0^{5}$	$-178\ 27\ (15)$	$C_1 - C_2 - C_1 - C_1$	29(3)
$C_2 = C_3 = C_4 = C_5$	20(2)	$C_{1} = C_{0} = C_{1} = N_{1}$	2.9(3) -177 42 (15)
$C_2 - C_3 - C_4 - C_5 - C_3$	2.0 (2)	$C_{9} N_{3} C_{8} N_{2}$	177 06 (15)
$C_3 = C_4 = C_5 = C_6$	-0.6(2)	$C_{1} = \frac{1}{10} = \frac$	-21(2)
01 C1 C6 C5	-175.62(14)	10^{-10} 10^{-0} $10^$	2.1(2) -0.2(2)
C_{1}^{-} C_{1}^{-} C_{6}^{-} C_{5}^{-}	173.03(14)	$\frac{1}{1} \frac{1}{1} \frac{1}$	0.2(2)
$C_2 - C_1 - C_0 - C_3$	2.3(2)	$\frac{1}{10} \frac{1}{10} \frac$	1/7.70(12)
$U_1 - U_1 - U_0 - U_1$	4.1 (3)	U0-1N3-U9-U10	110.37(19)

C2—C1—C6—C7	-177.80 (15)					
Hydrogen-bond geometry (Å, °)						
D—H···A	D—H	H···A	$D \cdots A$	D—H···A		
01—H10···N1	0.85 (1)	1.99 (2)	2.722 (2)	144 (2)		
O2—H2o····O1 ⁱ	0.83 (1)	2.27 (2)	2.955 (2)	140 (2)		
O3—H3o…O1 <i>W</i>	0.85 (2)	1.76 (2)	2.598 (2)	174 (2)		
O1w—H11…O2w	0.84 (1)	1.94 (1)	2.785 (2)	177 (3)		
O1w—H12…O3 ⁱⁱ	0.84 (1)	2.22 (1)	3.002 (2)	155 (2)		
O2w—H21···S1 ⁱⁱⁱ	0.84 (1)	2.45 (1)	3.279(1)	169 (2)		
O2w— $H22$ ···S1 ^{iv}	0.84 (1)	2.49 (1)	3.292 (1)	162 (2)		
$N2$ — $H2n$ ···O2 w^{v}	0.86(1)	2.13 (1)	2.965 (2)	166 (2)		
N3—H3n····O2 ^{vi}	0.86(1)	2.26 (2)	2.934 (2)	136 (2)		

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*-2, *y*-1, *z*; (iv) *x*-1, *y*-1, *z*; (v) -*x*+1, *y*+1/2, -*z*; (vi) -*x*+2, *y*+1/2, -*z*+1.