

 $\gamma = 68.074 \ (2)^{\circ}$

Z = 2

 $V = 952.12 (4) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.08 \text{ mm}$

7715 measured reflections

3356 independent reflections

3003 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.93 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.038$

253 parameters

 $\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ_3 -5-aminoisophthalato- $\kappa^4 O, O': O'': O''')[\mu_2$ -1,2-bis(4-pyridyl)ethane- $\kappa^2 N: N'$]cobalt(II)]

Shie Fu Lush^a and Fwu Ming Shen^b*

^aGeneral Education Center, Yuanpei University, Hsinchu 30015, Taiwan, and ^bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St., Hsinchu 30015, Taiwan

Correspondence e-mail: fmshen@mail.ypu.edu.tw

Received 26 July 2010; accepted 2 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.120; data-to-parameter ratio = 13.3.

In the title compound, $[Co(C_8H_5NO_4)(C_{12}H_{12}N_2)]_n$, the Co^{II} ion presents a distorted CoO_4N_2 octahedral coordination geometry, formed by three 5-aminoisophthalate dianions and two 1,2-bis(4-pyridyl)ethane ligands. One carboxylate group of the 5-aminoisophthalate dianion chelates a Co cation and the other carboxylate group bridges the other two Co cations, while the terminal N atoms of the 1,2-bis(4-pyridyl)ethane ligand coordinate the neighboring Co cations, forming a twodimensional polymeric architecture. Two pyridine rings of the 1,2-bis(4-pyridyl)ethane ligand are twisted to each other with a dihedral angle of 50.94 (16)°. Weak C–H···O hydrogen bonding and N–H··· π interactions are observed in the crystal structure. A void of 69 (5) Å³ is present in the crystal structure, but no solvent molecule can be located reasonably.

Related literature

For similar polymeric structures, see: He *et al.* (2006); Tang *et al.* (2007); Zhang *et al.* (2007); Ou *et al.* (2008); Zhang *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} \left[\text{Co}(\text{C}_8\text{H}_5\text{NO}_4)(\text{C}_{12}\text{H}_{12}\text{N}_2) \right] \\ M_r = 422.30 \\ \text{Triclinic, } P\overline{1} \\ a = 9.9093 \ (2) \text{ Å} \\ b = 10.0755 \ (2) \text{ Å} \\ c = 10.5065 \ (3) \text{ Å} \\ a \approx 78.301 \ (1)^\circ \\ \beta = 83.560 \ (1)^\circ \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.732, T_{\rm max} = 0.840$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.120$ S = 1.163356 reflections

Table 1

Selected bond lengths (Å).

Co1-N1	2.178 (2)	Co1-O2 ⁱⁱ	2.011 (2)
Co1-N2 ⁱ	2.175 (3)	Co1-O3 ⁱⁱⁱ	2.1426 (19)
Co1-O1	2.0416 (18)	Co1-O4 ⁱⁱⁱ	2.228 (2)

Symmetry codes: (i) x - 1, y, z + 1; (ii) -x, -y + 1, -z + 1; (iii) x, y - 1, z.

Table 2

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the N1-pyridine ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O4^{iv}$	0.93	2.35	3.271 (4)	173
$C10-H10\cdots O2^{v}$	0.93	2.44	3.276 (5)	150
$C15-H15\cdots O3^{vi}$	0.93	2.56	3.487 (4)	175
N3-H3 A ··· $Cg4^{vii}$	0.86	2.92	3.765 (3)	169

Symmetry codes: (iv) -x, -y + 2, -z; (v) x + 1, y, z - 1; (vi) -x, -y + 2, -z + 1; (vii) -x, -y + 1, -z.

metal-organic compounds

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

This work was supported financially by Yuanpei University, Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5004).

References

He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2006). *Chin. J. Inorg. Chem.* 22, 142–144. Nonius (2000). *COLLECT*. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
- Ou, Y.-J., Ma, C.-B., Chen, H., Wang, H.-S., Chen, C.-N. & Liu, Q.-T. (2008). Chin. J. Struct. Chem. 27, 159–162.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tang, E., Dai, Y.-M., Li, Z.-J., Wang, X.-Q., Yin, P.-X. & Yao, Y.-G. (2007). Chin. J. Struct. Chem. 26, 529–532.
- Zhang, S.-H., Jin, Z.-J., Zou, H.-H., Zhong, F. & Ge, C.-M. (2009). Chin. J. Struct. Chem. 28, 1630–1634.
- Zhang, K.-L., Qiao, N., Gao, H.-Y., Zhou, F. & Zhang, M. (2007). *Polyhedron*, **26**, 2461–2469.

Acta Cryst. (2010). E66, m1069-m1070 [https://doi.org/10.1107/S1600536810030710]

Poly[(μ_3 -5-aminoisophthalato- $\kappa^4 O$,O':O'':O''')[μ_2 -1,2-bis(4-pyridyl)ethane- $\kappa^2 N$:N']cobalt(II)]

Shie Fu Lush and Fwu Ming Shen

S1. Comment

In recent years, we have been focused on organic-inorganic hybrid material containing either N– or O-donor rigid heteroaromatic ligands, such as 5-Aminoisophthalic acid (aip). The polycarboxylic acid ligands can bridge one or more metal centers and produce neutral architectures. Hence, metal-organic coordination polymers constructed by mixed ligands of pyridyl and carboxylate groups not only incorporate interesting propertied of different functional groups but also are more adjustable through changing one of the mixing organic ligands. However, few coordination polymers based on amino aromatic di or poly(carboxylic acids) ligands and bipyridine has been reported (He *et al.* 2006; Tang *et al.* 2007; Zhang *et al.* 2009).

The title compound by X-ray crystallography reveals that the symmetric unit consist of one Co^{II} ion, two 1,2-bis(4pyridyl)ethane (dpe) ligands and three aip ligands, as shown in Fig. 1. The Co^{II} ion is six-coordinated with a slightly distorted octahedral geometry. The equatorial plane is occupied by two monodentate carboxylate oxygen atoms from two aip ligands and one bidentate carboxylate oxygen atoms from one aip ligand, while the axial sites are occupied by two nitrogen atoms of the pyridine groups from two dpe ligands (Table 1). Each aip ligand employs its two carboxylate groups in turn to coordinate to three metal centers, while the remains amino group in uncoordinated manner. The four symmetry-related metal centers are linked by two aip ligands and two dpe ligands to form a 30-membered macro cycle with Co…Co separation of 6.956 (3) Å and 13.610 (8) Å, respectively, showing 1-D open channels along the crystallographic *c* axis. In title polymer, there are no classical hydrogen bonding interactions, but C—H…O hydrogenbonding is observed in the crystal structure (Table 2).

In addition, C—H··· π interactions C11—H11···*Cg*3 (N1/C2—C5), N—H··· π interactions N3—H···*Cg*4 (N2/C8—C12) are present in the crystal structure (full details and symmetry codes are given in Table 2). π ··· π stacking interactions are also observed, the centroid-centroid between *Cg*3(O3—O4/C17/Co1c)···*Cg*4^{vii}(N1/C1—C5), *Cg*3···*Cg*5(N2/C8—C12)^{viii} are 3.8307 (17) and 3.9143 (18) [symmetry codes: (vii)= X, 1+Y, Z, (viii)= 1-X,1-Y,-Z.], respectively.

S2. Experimental

CoBr₂ (0.1097 g, 0.5 mmol), 5-aminoisophthalic acid, (0.0903 g, 0.5 mmol) and 1,2-bis(4-pyridyl)ethane (0.0913 g, 0.5 mmol) were mixed in 10 ml deionized water. After being stirred for 30 min, the mixture was placed in a 25 ml Teflon liner reactor and heated at 423 K in the oven for 24 h. The resulting solution was slowly cooled to room temperature. The purple transparent single crystals of the title compound were obtained in 46.45% yield (based on cobalt).

S3. Refinement

H atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 (aromatic) and 0.97 Å (methylene), and were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C,N)$. A voids of 69 Å³ exists close to an inversion center in the crystal

structure, a solvent water molecule with a fractional site occupancy factor was tried to located, however the refinement including the water molecule gave an abnormal large displacement parameter and small SOF.

Figure 1

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Poly[(μ_3 -5-aminoisophthalato- $\kappa^4 O, O': O'': O'''$)[μ_2 -1,2-bis(4- pyridyl)ethane- $\kappa^2 N: N'$] cobalt(II)]

Crystal data

$a = 9.9093$ (2) A Cell $b = 10.0755$ (2) Å $\theta = 2$ $c = 10.5065$ (3) Å $\mu = 0$ $a = 78.301$ (1)° $T = 2$ $\beta = 83.560$ (1)° Prism $\gamma = 68.074$ (2)° 0.22 $V = 952.12$ (4) Å ³ Cell	parameters from 6854 reflections 2.0–25.0°).93 mm ⁻¹ 298 K n, purple \times 0.18 \times 0.08 mm
Data collectionNonius KappaCCD7715diffractometer3356Radiation source: fine-focus sealed tube3003Graphite monochromator $R_{int} =$ Detector resolution: 9 pixels mm ⁻¹ $\theta_{max} =$ $\omega/2\theta$ scans $h = -$ Absorption correction: multi-scan $k = -$ (SCALEPACK; Otwinowski & Minor, 1997) $l = T_{min} = 0.732$ $T_{max} = 0.840$	measured reflections independent reflections reflections with $I > 2\sigma(I)$ 0.038 = 25.0°, $\theta_{min} = 2.2°$ -11 \rightarrow 11 -11 \rightarrow 11 12 \rightarrow 12

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.120$ S = 1.16	neighbouring sites H-atom parameters constrained
3356 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0694P)^2 + 0.2452P]$
253 parameters	where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.58 \ { m e} \ { m \AA}^{-3}$ $\Delta ho_{ m min} = -0.60 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	-0.03642 (4)	0.35863 (3)	0.37674 (3)	0.0234 (1)
01	-0.1184 (2)	0.57793 (18)	0.31360 (18)	0.0285 (6)
O2	-0.0962 (2)	0.6739 (2)	0.47933 (18)	0.0323 (6)
O3	0.0094 (2)	1.1365 (2)	0.36324 (18)	0.0308 (6)
O4	-0.1437 (2)	1.3060 (2)	0.2285 (2)	0.0359 (6)
N1	0.1467 (2)	0.3521 (2)	0.2393 (2)	0.0279 (7)
N2	0.7840 (3)	0.3556 (3)	-0.4846 (2)	0.0317 (7)
N3	-0.2170 (3)	0.9890 (3)	-0.0716 (2)	0.0406 (9)
C1	0.2784 (3)	0.2469 (3)	0.2530 (3)	0.0358 (9)
C2	0.3902 (3)	0.2352 (3)	0.1606 (3)	0.0395 (9)
C3	0.3706 (3)	0.3366 (3)	0.0468 (3)	0.0355 (9)
C4	0.2349 (3)	0.4469 (4)	0.0337 (3)	0.0423 (10)
C5	0.1282 (3)	0.4506 (3)	0.1293 (3)	0.0381 (9)
C6	0.4901 (3)	0.3287 (4)	-0.0575 (3)	0.0493 (10)
C7	0.4432 (4)	0.3491 (5)	-0.1921 (3)	0.0622 (16)
C8	0.5608 (3)	0.3512 (4)	-0.2951 (3)	0.0434 (10)
C9	0.5940 (4)	0.4743 (4)	-0.3398 (4)	0.0577 (12)
C10	0.7050 (4)	0.4714 (4)	-0.4323 (3)	0.0490 (11)
C11	0.7517 (3)	0.2363 (3)	-0.4412 (3)	0.0435 (10)
C12	0.6425 (4)	0.2314 (4)	-0.3494 (3)	0.0491 (11)
C13	-0.1119 (3)	0.6807 (3)	0.3616 (3)	0.0247 (8)
C14	-0.1282 (3)	0.8214 (3)	0.2696 (3)	0.0252 (8)
C15	-0.1013 (3)	0.9306 (3)	0.3130 (3)	0.0269 (8)
C16	-0.1136 (3)	1.0592 (3)	0.2279 (3)	0.0266 (8)
C17	-0.0809 (3)	1.1747 (3)	0.2751 (3)	0.0267 (8)

C18	-0.1542 (3)	1.0802 (3)	0.1017 (3)	0.0295 (8)
C19	-0.1780 (3)	0.9694 (3)	0.0556 (3)	0.0289 (8)
C20	-0.1643 (3)	0.8411 (3)	0.1413 (3)	0.0274 (8)
H1	0.29510	0.17810	0.32900	0.0430*
H2	0.47920	0.15920	0.17450	0.0470*
H3A	-0.23300	0.92110	-0.09820	0.0490*
H3B	-0.22510	1.06900	-0.12380	0.0490*
H4	0.21640	0.51860	-0.04030	0.0510*
H5	0.03820	0.52540	0.11730	0.0460*
H6A	0.52950	0.40260	-0.05370	0.0590*
H6B	0.56780	0.23490	-0.03870	0.0590*
H7A	0.36110	0.43990	-0.20910	0.0750*
H7B	0.41040	0.27120	-0.19800	0.0750*
H9	0.54140	0.55930	-0.30760	0.0690*
H10	0.72570	0.55580	-0.45960	0.0590*
H11	0.80580	0.15250	-0.47470	0.0520*
H12	0.62370	0.14580	-0.32390	0.0590*
H15	-0.07540	0.91760	0.39830	0.0320*
H18	-0.16590	1.16830	0.04670	0.0350*
H20	-0.17950	0.76670	0.11240	0.0330*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0327 (2)	0.0192 (2)	0.0210 (2)	-0.0133 (2)	0.0040 (2)	-0.0048 (2)
01	0.0409 (10)	0.0202 (9)	0.0278 (10)	-0.0143 (8)	-0.0001 (8)	-0.0062 (8)
O2	0.0487 (11)	0.0302 (11)	0.0229 (10)	-0.0211 (9)	-0.0035 (9)	-0.0009 (8)
O3	0.0425 (11)	0.0253 (10)	0.0294 (10)	-0.0169 (8)	-0.0038 (9)	-0.0052 (8)
O4	0.0529 (12)	0.0208 (10)	0.0365 (11)	-0.0157 (9)	-0.0079 (10)	-0.0025 (8)
N1	0.0343 (12)	0.0288 (12)	0.0216 (11)	-0.0134 (10)	0.0039 (9)	-0.0057 (9)
N2	0.0359 (12)	0.0333 (13)	0.0279 (12)	-0.0167 (10)	0.0082 (10)	-0.0067 (10)
N3	0.0644 (17)	0.0355 (14)	0.0287 (13)	-0.0250 (13)	-0.0137 (12)	-0.0003 (11)
C1	0.0415 (16)	0.0321 (16)	0.0280 (15)	-0.0108 (13)	0.0031 (13)	0.0001 (12)
C2	0.0342 (15)	0.0410 (17)	0.0355 (17)	-0.0062 (13)	0.0022 (13)	-0.0059 (14)
C3	0.0336 (15)	0.0454 (18)	0.0281 (15)	-0.0158 (13)	0.0058 (12)	-0.0088 (13)
C4	0.0431 (17)	0.0459 (18)	0.0262 (15)	-0.0104 (14)	0.0074 (13)	0.0040 (13)
C5	0.0336 (15)	0.0386 (17)	0.0305 (16)	-0.0043 (12)	0.0056 (12)	-0.0011 (13)
C6	0.0356 (16)	0.072 (2)	0.0366 (18)	-0.0191 (16)	0.0097 (14)	-0.0081 (16)
C7	0.0402 (18)	0.116 (4)	0.0359 (19)	-0.037(2)	0.0131 (15)	-0.016 (2)
C8	0.0347 (15)	0.071 (2)	0.0256 (15)	-0.0241 (16)	0.0068 (13)	-0.0057 (15)
C9	0.063 (2)	0.062 (2)	0.054 (2)	-0.0273 (19)	0.0290 (18)	-0.0309 (19)
C10	0.060 (2)	0.0447 (19)	0.053 (2)	-0.0313 (16)	0.0259 (17)	-0.0232 (16)
C11	0.0495 (18)	0.0369 (17)	0.0438 (19)	-0.0200 (14)	0.0148 (15)	-0.0068 (14)
C12	0.0530 (19)	0.049 (2)	0.046 (2)	-0.0283 (16)	0.0121 (16)	0.0020 (16)
C13	0.0282 (12)	0.0216 (13)	0.0252 (14)	-0.0116 (10)	0.0023 (10)	-0.0031 (11)
C14	0.0314 (13)	0.0192 (13)	0.0269 (14)	-0.0122 (10)	0.0006 (11)	-0.0029 (10)
C15	0.0379 (14)	0.0213 (13)	0.0231 (13)	-0.0121 (11)	-0.0015 (11)	-0.0044 (10)
C16	0.0344 (13)	0.0210 (13)	0.0269 (14)	-0.0128 (11)	0.0012 (11)	-0.0057 (11)

C17	0.0367 (14)	0.0243 (14)	0.0215 (13)	-0.0157 (11)	0.0054 (11)	-0.0039 (11)
C18	0.0387 (14)	0.0219 (14)	0.0272 (14)	-0.0118 (11)	-0.0013 (12)	-0.0011 (11)
C19	0.0350 (14)	0.0285 (14)	0.0255 (14)	-0.0141 (11)	-0.0034 (11)	-0.0032 (11)
C20	0.0357 (14)	0.0234 (13)	0.0281 (14)	-0.0141 (11)	-0.0020 (12)	-0.0082 (11)

Geometric parameters (Å, °)

Co1—N1	2.178 (2)	C9—C10	1.380 (6)
Co1—N2 ⁱ	2.175 (3)	C11—C12	1.375 (5)
Co1—O1	2.0416 (18)	C13—C14	1.509 (4)
Co1—O2 ⁱⁱ	2.011 (2)	C14—C20	1.390 (4)
Co1—O3 ⁱⁱⁱ	2.1426 (19)	C14—C15	1.393 (4)
Co1—O4 ⁱⁱⁱ	2.228 (2)	C15—C16	1.389 (4)
O1—C13	1.265 (3)	C16—C17	1.502 (4)
O2—C13	1.249 (4)	C16—C18	1.381 (4)
O3—C17	1.261 (4)	C18—C19	1.406 (4)
O4—C17	1.252 (3)	C19—C20	1.387 (4)
N1-C1	1.340 (4)	C1—H1	0.9300
N1C5	1.342 (4)	С2—Н2	0.9300
N2-C10	1.326 (5)	C4—H4	0.9300
N2-C11	1.337 (4)	С5—Н5	0.9300
N3—C19	1.388 (4)	C6—H6A	0.9700
N3—H3A	0.8600	С6—Н6В	0.9700
N3—H3B	0.8600	С7—Н7А	0.9700
C1—C2	1.375 (4)	С7—Н7В	0.9700
C2—C3	1.386 (4)	С9—Н9	0.9300
C3—C6	1.511 (5)	C10—H10	0.9300
C3—C4	1.388 (5)	C11—H11	0.9300
C4—C5	1.370 (4)	C12—H12	0.9300
C6—C7	1.489 (5)	C15—H15	0.9300
С7—С8	1.502 (5)	C18—H18	0.9300
C8—C12	1.373 (5)	C20—H20	0.9300
С8—С9	1.379 (5)		
Co1····C15 ⁱⁱ	3.893 (3)	C19C18 ^{ix}	3.421 (4)
Co1…H15 ⁱⁱ	3.1900	C1····H3A ^{iv}	2.7500
O1…O4 ⁱⁱⁱ	3.151 (3)	C2···H3A ^{iv}	2.8000
01…N1	2.913 (3)	C4···H7A	2.7100
O1…N2 ⁱ	3.111 (3)	C6···H6A ^{vi}	3.0900
01···C5	2.995 (4)	С7…Н4	2.8200
O1…C10 ⁱ	3.246 (4)	С9…Н6А	3.0000
O1…O2 ⁱⁱ	3.235 (3)	C11H15 ^{vi}	3.0400
O1····C7 ^{iv}	3.362 (5)	C12···H3B ^{xiii}	2.7500
O2…O1 ⁱⁱ	3.235 (3)	C13…H10 ⁱ	2.7500
O2…C10 ⁱ	3.276 (5)	C17····H11 ^{viii}	2.7400
O2…O3 ^v	3.155 (3)	C18····H6B ^{xii}	2.9900
O2…N2 ^{vi}	3.001 (4)	C19····H6B ^{xii}	2.9900
O2···C1 ⁱⁱ	3.241 (4)	C20····H7B ^{iv}	3.0100

O2…N1 ⁱⁱ	2.917 (3)	H1····O2 ⁱⁱ	2.8800
O3…N1 ^{vii}	2.988 (3)	H2…H6B	2.4000
O3····C1 ^{vii}	3.269 (4)	H3A…H20	2.4200
O3…N2viii	3.060 (3)	H3A····C1 ^{iv}	2.7500
O3····C11 ^{viii}	3.082 (4)	H3A····C2 ^{iv}	2.8000
O3…O2 ^v	3.155 (3)	H3B····C12 ^{xii}	2.7500
O4…C4 ^{ix}	3.271 (4)	H3B····H6B ^{xii}	2.3300
O4…O1 ^{vii}	3.151 (3)	H3B…H12 ^{xii}	2.5400
O4…N2 ^{viii}	3.116 (3)	H3B…H18	2.4400
O4…N1 ^{vii}	3.099 (3)	H4…C7	2.8200
O1…H5	2.4600	H4…H7A	2.2300
01···H20	2.5000	H4····O4 ^{ix}	2.3500
01H10 ⁱ	2.7100	H5…O1	2 4600
O1···H7A ^{iv}	2.8300	H5H20	2.5700
02…H15	2.5100	H6AC9	3 0000
02 H10 ⁱ	2.4400	H6A····C6 ^{vi}	3 0900
02 ···H1 ⁱⁱ	2.8800	H6AH6A ^{vi}	2 3200
02 III 03H15	2.5900	H6BN3 ^{xiii}	2.5200
O3…H15 ^v	2.5500	H6B···C18 ^{xiii}	2.0500
O3…H11 ^{viii}	2.5000	H6B···C19 ^{xiii}	2.9900
O3…H11 ^{vi}	2.4700	H6BH2	2.5500
03 HII 04…H18	2.6500	H6B···H3B ^{xiii}	2.1000
O4…H4 ^{ix}	2.0500	H7AC4	2.3300
O4…H7A ^{ix}	2.5500	H7A…H4	2 2300
N1…01	2.0300 2.913 (3)	H7AH9	2.2300
N1…O3 ⁱⁱⁱ	2.913(3)	H7A…O1 ^{iv}	2.8300
N1…O4 ⁱⁱⁱ	3,099(3)	H7A····O4 ^{ix}	2.6500
N1···C17 ⁱⁱⁱ	3 312 (4)	H7B…H12	2.0300
N1…O2 ⁱⁱ	2.917(3)	$H7B\cdots C20^{iv}$	3 0100
N2…01 ^x	3 111 (3)	$H7B \cdots H20^{iv}$	2 5000
N2…O3 ^{xi}	3 060 (3)	H9H7A	2.5300
N2…O4 ^{xi}	3,116 (3)	H10····O1 ^x	2.7100
N2····C17 ^{xi}	3.282 (4)	$H10 \cdots O2^{x}$	2.4400
N2…O2 ^{vi}	3.202(1) 3.001(4)	$H10 \cdots C13^{x}$	2.7500
N3…C16 ^{ix}	3.405 (4)	H11····O3 ^{xi}	2.4700
N3…H6B ^{xii}	2.6500	H11····C17 ^{xi}	2.7400
C4…O4 ^{ix}	3.271 (4)	H11····O3 ^{vi}	2.8800
C7…O1 ^{iv}	3362(5)	H12····H3B ^{xiii}	2 5400
$C10\cdots O2^{x}$	3.276 (5)	H12···H7B	2.4200
$C10\cdots C13^{x}$	3.543 (5)	H15…O2	2.5100
C11····C17 ^{xi}	3.301 (4)	H15O3	2.5900
C11···C15 ^{vi}	3.524 (4)	H15···Co1 ⁱⁱ	3.1900
C11O3 ^{xi}	3.082(4)	H15O3v	2.5600
C13…C10 ⁱ	3.543 (5)	H15C11 ^{vi}	3.0400
C15…C11 ^{vi}	3.524 (4)	H18…O4	2.6500
C15···Co1 ⁱⁱ	3.893 (3)	H18…H3B	2.4400
C16···N3 ^{ix}	3.405 (4)	H20…O1	2.5000
C17···C11 ^{viii}	3.301 (4)	Н20…НЗА	2.4200
		-	

C17…N2 ^{viii}	3.282 (4)	H20…H5	2.5700
C18…C18 ^{ix}	3.573 (4)	$H20$ ···H7 B^{iv}	2.5000
C18…C19 ^{ix}	3.421 (4)		
O1—Co1—N1	87.24 (8)	O1—C13—C14	117.0 (3)
O1—Co1—N2 ⁱ	95.05 (9)	C13—C14—C15	119.3 (3)
O1—Co1—O3 ⁱⁱⁱ	154.55 (8)	C13—C14—C20	120.9 (3)
O1—Co1—O4 ⁱⁱⁱ	95.00 (8)	C15—C14—C20	119.7 (3)
O1—Co1—C17 ⁱⁱⁱ	124.90 (9)	C14—C15—C16	119.5 (3)
O1—Co1—O2 ⁱⁱ	105.91 (8)	C17—C16—C18	120.5 (3)
N1—Co1—N2 ⁱ	177.68 (9)	C15—C16—C18	120.6 (3)
O3 ⁱⁱⁱ —Co1—N1	87.51 (7)	C15—C16—C17	118.9 (3)
$O4^{iii}$ —Co1—N1	89.38 (8)	O3—C17—O4	121.1 (3)
$N1 - Co1 - C17^{iii}$	89.68 (9)	O_{3} C_{17} C_{16}	1186(3)
Ω^{2i} —Co1—N1	88 18 (8)	C_{01}^{vii} - C17 - O3	58 69 (14)
O_{2}^{iii} C_{01} N_{2}^{ii}	90.27 (9)	04-C17-C16	120.3(3)
O_{4}^{iii} Col N2 ⁱ	90.08 (9)	C_{01}^{vii} C_{17} O_{4}	62.59(15)
N^{2i} Col Cl ⁷ⁱⁱⁱ	90.08 (9) 98.72 (10)	$C_{01}^{VII} = C_{17}^{VII} = C_{16}^{VII}$	174.0(2)
$N_2 = C01 = C17$	00.72(10)	$C_{16} = C_{17} = C_{10}$	1/4.0(2) 120.5(2)
$02^{$	91.32 (9)	10 - 10 - 19	120.3(3)
03^{m} -01^{m} 04^{m}	60.05 (7)	N_{3} $-C_{19}$ $-C_{18}$	120.9 (3)
	30.19 (9)	N_{3} $-C_{19}$ $-C_{20}$	120.9 (3)
$02^{m} - 001 - 03^{m}$	98.80 (8)	C18 - C19 - C20	118.3 (3)
O4 ^m —Co1—C1 ⁷ ^m	29.93 (9)	C14—C20—C19	121.4 (3)
$O2^n$ —Co1—O4 ^m	158.80 (7)	N1—C1—H1	118.00
O2 ⁱⁱ —Co1—C17 ⁱⁱⁱ	128.97 (9)	C2—C1—H1	118.00
Co1—O1—C13	130.47 (19)	C1—C2—H2	120.00
Co1 ⁱⁱ —O2—C13	148.9 (2)	C3—C2—H2	120.00
Co1 ^{vii} —O3—C17	91.12 (17)	C3—C4—H4	120.00
Co1 ^{vii} —O4—C17	87.48 (18)	C5—C4—H4	120.00
Co1—N1—C1	123.40 (18)	N1—C5—H5	118.00
Co1—N1—C5	120.13 (18)	C4—C5—H5	118.00
C1—N1—C5	116.3 (2)	C3—C6—H6A	109.00
C10—N2—C11	115.9 (3)	C3—C6—H6B	109.00
Co1 ^x —N2—C10	121.2 (2)	C7—C6—H6A	109.00
Co1 ^x —N2—C11	122.7 (2)	C7—C6—H6B	109.00
C19—N3—H3B	120.00	H6A—C6—H6B	108.00
H3A—N3—H3B	120.00	С6—С7—Н7А	109.00
C19—N3—H3A	120.00	C6—C7—H7B	109.00
N1—C1—C2	123.5 (3)	C8—C7—H7A	109.00
C1 - C2 - C3	120.1 (3)	C8—C7—H7B	109.00
$C_{2} - C_{3} - C_{4}$	1163(3)	H7A - C7 - H7B	108.00
$C_2 = C_3 = C_6$	122.1(3)	С8—С9—Н9	120.00
$C_{4} - C_{3} - C_{6}$	122.1(3) 121.5(3)	C10-C9-H9	120.00
$C_{3} - C_{4} - C_{5}$	121.3(3) 120.3(3)	N_{2} C_{10} H_{10}	118.00
N1-C5-C4	120.5(3) 123 5 (3)	C9 - C10 - H10	118.00
C_{3}	125.5(3) 114 5 (3)	N_{2}	118.00
$C_{5} = C_{5} = C_{7}$	117.3(3) 112.7(2)	$C_{12} C_{11} H_{11}$	110.00
$C_{0} = C_{0} = C_{12}$	115.7(5)	C_{12} C_{12} C_{12} C_{12} C_{12}	110.00
し9—し8—し12	110.0 (3)	Uð-U12-H12	120.00

C7—C8—C12	122.5 (3)	C11—C12—H12	120.00
С7—С8—С9	121.6 (4)	C14—C15—H15	120.00
C8—C9—C10	120.1 (3)	C16—C15—H15	120.00
N2-C10-C9	124.0 (4)	C16—C18—H18	120.00
N2-C11-C12	123.2 (3)	C19—C18—H18	120.00
C8-C12-C11	120.2(3) 120.8(3)	C_{14} C_{20} H_{20}	119.00
02 - C13 - C14	120.0(3) 118.6(3)	C19-C20-H20	119.00
01 - C13 - 02	1244(3)	019 020 1120	119.00
01-015-02	124.4 (5)		
N1 Co1 O1 C13	-078(3)	C_{01} N2 C_{10} C9	-1771(3)
N^{2i} Col Ol Cl3	97.8 (5) 82.6 (3)	C10 N2 C11 C12	177.1(3)
$\Omega_{2}^{3} = C_{01}^{2} = O_{1}^{2} = C_{13}^{3}$	-176 (3)	$C_{10} = N_2 = C_{11} = C_{12}$	177 1 (3)
03 - c01 - 01 - c13	170.1(2) 172 1(2)	$N_1 = C_1 = C_2 = C_1^2$	1/7.1(3)
C_{17}^{iii} Col Cl	173.1(3) 174.5(2)	N1 - C1 - C2 - C3	1.0(3)
C17 - C01 - C13	1/4.5(2)	C1 - C2 - C3 - C4	0.2(3)
02 - C01 - 01 - C13	-10.5(3)	C1 - C2 - C3 - C0	1/9.9(3)
OI = COI = NI = CI	133.3(2)	$C_2 = C_3 = C_4 = C_5$	-0.9(3)
OI = COI = NI = CS	-29.6(2)	$C_0 - C_3 - C_4 - C_3$	1/9.4 (3)
03^{IIII} $-CoI$ $-NI$ $-CI$	-49.4 (2)	$C_2 = C_3 = C_6 = C_7$	133.5 (4)
03^{m} —Col—Nl—CS	125.5 (2)	C4 - C3 - C6 - C7	-46.8 (5)
$O4^{\text{IIII}}$ CoI NI CI	-109.5 (2)	C_{3} — C_{4} — C_{5} — N_{1}	0.6 (5)
O4 ^m —Co1—N1—C5	65.4 (2)	C3—C6—C7—C8	176.0 (3)
C17 ^m —Co1—N1—C1	-79.6 (2)	C6—C7—C8—C9	-80.7 (5)
C17 ^{III} —Co1—N1—C5	95.4 (2)	C6—C7—C8—C12	98.6 (4)
O2 ⁿ —Co1—N1—C1	49.5 (2)	C7—C8—C9—C10	178.5 (3)
O2 ⁱⁱ —Co1—N1—C5	-135.6 (2)	C12—C8—C9—C10	-0.9 (5)
$O1-Co1-N2^{i}-C10^{i}$	-26.1 (3)	C7—C8—C12—C11	-178.4 (3)
$O1-Co1-N2^{i}-C11^{i}$	157.9 (2)	C9—C8—C12—C11	1.0 (5)
O1—Co1—O3 ⁱⁱⁱ —C17 ⁱⁱⁱ	-15.4 (3)	C8—C9—C10—N2	0.9 (6)
N1—Co1—O3 ⁱⁱⁱ —C17 ⁱⁱⁱ	-93.66 (18)	N2—C11—C12—C8	-1.0 (5)
O1—Co1—O4 ⁱⁱⁱ —C17 ⁱⁱⁱ	177.63 (18)	O1—C13—C14—C15	-170.9 (3)
N1—Co1—O4 ⁱⁱⁱ —C17 ⁱⁱⁱ	90.45 (18)	O1—C13—C14—C20	6.7 (4)
O1—Co1—C17 ⁱⁱⁱ —O3 ⁱⁱⁱ	172.00 (15)	O2—C13—C14—C15	10.6 (4)
O1—Co1—C17 ⁱⁱⁱ —O4 ⁱⁱⁱ	-2.9 (2)	O2—C13—C14—C20	-171.8 (3)
N1-Co1-C17 ⁱⁱⁱ -O3 ⁱⁱⁱ	85.58 (17)	C13-C14-C15-C16	178.8 (3)
N1—Co1—C17 ⁱⁱⁱ —O4 ⁱⁱⁱ	-89.30 (17)	C20-C14-C15-C16	1.2 (5)
O1-Co1-O2 ⁱⁱ -C13 ⁱⁱ	86.0 (4)	C13—C14—C20—C19	-179.3 (3)
N1-Co1-O2 ⁱⁱ -C13 ⁱⁱ	172.6 (4)	C15-C14-C20-C19	-1.7 (5)
Co1—O1—C13—O2	-25.5 (5)	C14—C15—C16—C17	-178.6 (3)
Co1-01-C13-C14	156.1 (2)	C14—C15—C16—C18	1.0 (5)
Co1 ⁱⁱ —O2—C13—O1	97.8 (4)	C15—C16—C17—O3	28.8 (4)
Co1 ⁱⁱ —O2—C13—C14	-83.8 (4)	C15—C16—C17—O4	-150.4(3)
Co1 ^{vii} —O3—C17—O4	5.3 (3)	C18—C16—C17—O3	-150.7(3)
Co1 ^{vii} —O3—C17—C16	-173.9(3)	C18—C16—C17—O4	30.1 (5)
Co1 ^{vii} —O4—C17—O3	-5.1 (3)	C15—C16—C18—C19	-2.6 (5)
Co1 ^{vii} —O4—C17—C16	174.1 (3)	C17—C16—C18—C19	176.9 (3)
Co1—N1—C1—C2	173.8 (2)	C16—C18—C19—N3	-179.2 (3)
C5—N1—C1—C2	-1.3 (4)	C16—C18—C19—C20	2.1 (5)
Co1—N1—C5—C4	-174.8 (2)	N3—C19—C20—C14	-178.7 (3)
	、 /	-	

C1—N1—C5—C4	0.5 (4)	C18—C19—C20—C14	0.1 (5)
C11—N2—C10—C9	-0.8 (5)		

Symmetry codes: (i) x-1, y, z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) -x, -y+2, -z+1; (vi) -x+1, -y+1, -z; (vii) x, y+1, z; (viii) x-1, y+1, z+1; (ix) -x, -y+2, -z; (x) x+1, y, z-1; (xi) x+1, y-1, z-1; (xii) x-1, y+1, z; (viii) x+1, y-1, z.

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the N1-pyridine ring.

D—H···A	D—H	H···A	D····A	D—H···A
C4—H4····O4 ^{ix}	0.93	2.35	3.271 (4)	173
С5—Н5…О1	0.93	2.46	2.995 (4)	117
C10—H10····O2 ^x	0.93	2.44	3.276 (5)	150
C11—H11····O3 ^{xi}	0.93	2.47	3.082 (4)	124
C15—H15····O3 ^v	0.93	2.56	3.487 (4)	175
N3—H3 <i>A</i> ··· <i>Cg</i> 4 ^{iv}	0.86	2.92	3.765 (3)	169
C11—H11···· $Cg3^{xi}$	0.93	2.65	3.019 (3)	105

Symmetry codes: (iv) -x, -y+1, -z; (v) -x, -y+2, -z+1; (ix) -x, -y+2, -z; (x) x+1, y, z-1; (xi) x+1, y-1, z-1.