Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dicyanidobis(N, N^{\prime}-dimethythiourea- κS)mercury(II)

Muhammad Riaz Malik, ${ }^{\text {a }}$ Saqib Ali, ${ }^{\text {a }}$ Saeed Ahmad, ${ }^{\text {b }}$ * Muhammad Altaf ${ }^{\text {c }}$ and Helen Stoeckli-Evans ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan,
${ }^{\text {b }}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and ${ }^{\text {c }}$ Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
Correspondence e-mail: saeed_a786@hotmail.com
Received 29 July 2010; accepted 30 July 2010
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.008 \AA$; R factor $=0.017 ; w R$ factor $=0.036 ;$ data-to-parameter ratio $=16.5$.

In the title complex, $\left[\mathrm{Hg}(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, the $\mathrm{Hg}^{\text {II }}$ atom is located on a twofold rotation axis. It is four-coordinate having an irregular tetrahedral geometry composed of two cyanide C atoms $[\mathrm{Hg}-\mathrm{C}=2.090(6) \AA]$ and two thione S atoms of $N, N^{\prime}-$ dimethylthiourea (dmtu) $[\mathrm{Hg}-\mathrm{S}=2.7114$ (9) Å]. The NC-$\mathrm{Hg}-\mathrm{CN}$ bond angle of $148.83(13)^{\circ}$ has the greatest deviation from the ideal tetrahedral geometry. The molecular structure is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions involving dmtu units related by the twofold symmetry. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}(\mathrm{CN})$ hydrogen-bonding interactions link symmetry-related molecules into a twodimensional network in (110).

Related literature

For the biological applications of mercury(II) complexes of thiones, see: Akrivos (2001); Bell et al. (2001); Popovic et al. (2000). For background to mercury(II) complexes of thiourea and its derivatives, see: Ahmad et al. (2009); Jiang et al. (2001); Lobana et al. (2008); Mufakkar et al. (2010); Nawaz et al. (2010); Popovic et al. (2000); Wu et al. (2004). For the crystal structures of cyanide complexes of d^{10} metals, see: Ahmad et al. (2009); Altaf et al. (2010); Fettouhi et al. (2010); Hanif et al. (2007).

Experimental

Crystal data
$\left[\mathrm{Hg}(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=460.98$
Monoclinic, $C 2 / c$.
$V=1544.32(16) \AA^{3}$
$Z=4$
$a=18.1161$ (11) \AA
Mo $K \alpha$ radiation
$b=7.7533$ (5) A
$\mu=10.23 \mathrm{~mm}^{-1}$
$c=14.0553$ (8) \AA
$T=173 \mathrm{~K}$
$\beta=128.533$ (3) ${ }^{\circ}$
$0.40 \times 0.31 \times 0.25 \mathrm{~mm}$

Data collection

Stoe IPDS 2 diffractometer
Absorption correction: multi-scan (MULscanABS embedded in PLATON; Spek, 2009)
$T_{\text {min }}=0.270, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.036$
$S=1.14$
1451 reflections
88 parameters

8116 measured reflections 1451 independent reflections 1411 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.049$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.68$ e \AA^{-3}
> $\Delta \rho_{\min }=-1.97 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~S}^{\mathrm{i}}$	$0.80(6)$	$2.67(5)$	$3.415(4)$	$157(4)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.79(5)$	$2.21(6)$	$2.951(7)$	$155(4)$

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: $X-A R E A$ (Stoe \& Cie, 2009); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

We thank the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2389).

References

Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. \& Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.
Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.
Altaf, M., Stoeckli-Evans, H., Ahmad, S., Isab, A. A., Al-Arfaj, A. R., Malik, M. R. \& S. Ali, (2010). J. Chem. Crystallogr. 40. In the press.

Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. \& Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130-136.
Fettouhi, M., Riaz Malik, M., Ali, S. A., Isab, A. \& Ahmad, S. (2010). Acta Cryst. E66, m997.
Hanif, M., Ahmad, S., Altaf, M. \& Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.
Jiang, X. N., Xu, D., Yuan, D. R. \& Yu, W. T. (2001). Chin. Chem. Lett. 12, 279282.

Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. \& Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.
Mufakkar, M., Tahir, M. N., Sadaf, H., Ahmad, S. \& Waheed, A. (2010). Acta Cryst. E66, m1001-m1002.

metal-organic compounds

Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. \& Ahmad, S. (2010). Acta Cryst. E66, m952.
Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., M. Rajic, M. Vikic-Topic, D., Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2009). X-AREA and X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany.
Wu, Z.-Y., Xu, D.-J. \& Hung, C.-H. (2004). J. Coord. Chem. 57, 791-796.

supporting information

Acta Cryst. (2010). E66, m1060-m1061 [https://doi.org/10.1107/S1600536810030424]

Dicyanidobis(\mathbf{N}, N^{\prime}-dimethythiourea- κ S $)$ mercury(II)

Muhammad Riaz Malik, Saqib Ali, Saeed Ahmad, Muhammad Altaf and Helen Stoeckli-Evans

S1. Comment

The structural characterization of mercury(II) complexes of thioamides is an important aspect of inorganic chemistry because such complexes can be used as models for metal-sulfur interactions in biological systems (Akrivos, 2001; Bell et al., 2001; Popovic et al., 2000). Several crystallographic reports about mercury(II) complexes of the type, $L_{2} \mathrm{Hg}_{2}$ ($L=$ thiourea or its derivatives) reveal that these complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Ahmad et al., 2009; Bell et al., 2001; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). Recently, we have reported the crystal structures of a number of cyanido complexes of d^{10} metal ions with L-type ligands, including the crystal structure of a trinuclear complex, $\left[\left\{(\mathrm{tmtu})_{2} \mathrm{Hg}(\mathrm{CN})_{2}\right\}_{2} \cdot \mathrm{Hg}(\mathrm{CN})_{2}\right](\mathrm{tmtu}=$ tetramethylthiourea), which presents a unique example of a $\mathrm{Hg}(\mathrm{CN})_{2}$ bridged mercury(II)-thione complex (Ahmad et al., 2009; Altaf et al., 2010; Fettouhi et al. 2010; Hanif et al., 2007). Herein, we report on the crystal structure of the title mercury cyanide complex of N, N^{\prime}-dimethylthiourea, $\left[\mathrm{Hg}(\mathrm{dmtu})_{2}(\mathrm{CN})_{2}\right]$.
The title monomeric complex is composed of an $\operatorname{Hg}(\mathrm{CN})_{2}$ unit with two N, N^{\prime}-dimethylthiourea (dmtu) ligands coordinated to the Hg atom via the S atom (Fig. 1). The four-coordinate mercury atom is located on a two-fold rotation axis and adopts a severely distorted tetrahedral geometry, the bond angles being in the range of 94.31 (3) - $148.83(13)^{\circ}$. The molecular structure is stabilized by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions involving dmtu units related by the two-fold symmetry (Fig. 1, Table 1). The bond distances and bond angles are in agreement with those reported for related compounds (Ahmad et al., 2009; Altaf et al., 2010; Jiang et al., 2001; Lobana et al., 2008; Mufakkar et al., 2010; Nawaz et al., 2010; Popovic et al., 2000; Wu et al., 2004). The SCN_{2} moiety of dmtu is planar [to within 0.002 (1) \AA] with the C -N and $\mathrm{C}-\mathrm{S}$ bond lengths corresponding to the values intermediate between single and double bonds. The $\mathrm{Hg}-\mathrm{C} \equiv \mathrm{N}$ unit is nearly linear with a bond angle of $175.3(3)^{\circ}$. The compound is closely related with $\left[\operatorname{Hg}\left(N, N^{\prime}\right.\right.$-dibutylthiourea $)_{2}(\mathrm{CN})_{2}$] (Ahmad et al., 2009).
In the crystal packing of the title complex, symmetry-related molecules are connected via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, involving the thiourea NH atoms and the N atom of the CN^{-}anions (Fig. 2, Table 1). This gives rise to the formation of a two-dimensional network in (110). This is the same arrangement as observed previously for the dibutylthiourea compound mentioned above.

S2. Experimental

To $0.25 \mathrm{~g}(1.0 \mathrm{mmol})$ mercury(II) cyanide in 10 ml methanol was added 2 equivalents of N, N^{\prime}-dimethylthiourea in methanol. On mixing, a clear solution was obtained. It was then stirred for 30 minutes after which it was filtered and the filtrate kept at RT for crystallization by slow evaporation of the solvent. As a result, colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained.

S3. Refinement

The NH H-atoms were located in difference electron-density maps and were freely refined: $\mathrm{N}-\mathrm{H}=0.80$ (6) \& 0.79 (5) \AA. The C-bound H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{cq}}$ (parent C -atom).

Figure 1
The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions are shown as double dashed lines (see Table 1 for details). [Symmetry code (a) $-\mathrm{x}+1, \mathrm{y},-\mathrm{z}+1 / 2$.]

Figure 2
A crystal packing diagram of the title complex showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding interactions (dashed lines; see Table 1 for details).

Dicyanidobis($\mathrm{N}, \mathrm{N}^{\prime}$-dimethythiourea- $\kappa \mathrm{S}$)mercury(II)

Crystal data

$\left[\mathrm{Hg}(\mathrm{CN})_{2}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$	$c=14.0553(8) \AA$
$M_{r}=460.98$	$\beta=128.533(3)^{\circ}$
Monoclinic, $C 2 / c$	$V=1544.32(16) \AA^{3}$
Hall symbol: -C 2 yc	$Z=4$
$a=18.1161(11) \AA$	$F(000)=872$
$b=7.7533(5) \AA$	$D_{\mathrm{x}}=1.983 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12331 reflections
$\theta=1.9-26.1^{\circ}$
$\mu=10.23 \mathrm{~mm}^{-1}$

Data collection

Stoe IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi-+\omega-$ scans
Absorption correction: multi-scan
(MULscanABS embedded in PLATON; Spek, 2009)
$T_{\min }=0.270, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.036$
$S=1.14$
1451 reflections
88 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& T=173 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.31 \times 0.25 \mathrm{~mm} \\
& \\
& 8116 \text { measured reflections } \\
& 1451 \text { independent reflections } \\
& 1411 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.049 \\
& \theta_{\max }=25.6^{\circ}, \theta_{\min }=2.9^{\circ} \\
& h=-21 \rightarrow 21 \\
& k=-9 \rightarrow 9 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0129 P)^{2}+2.6833 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.68$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.97 \mathrm{e}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Hg 1	0.50000	$-0.21587(2)$	0.25000	$0.0231(1)$
S 1	$0.37952(6)$	$0.02195(11)$	$0.08082(7)$	$0.0255(3)$
N 1	$0.3941(2)$	$0.1650(4)$	$0.2640(3)$	$0.0277(9)$
N 2	$0.2450(2)$	$0.0856(4)$	$0.1004(2)$	$0.0241(8)$
N 3	$0.3776(3)$	$-0.3173(4)$	$0.3370(3)$	$0.0441(12)$
C 1	$0.3355(2)$	$0.0948(4)$	$0.1535(3)$	$0.0210(9)$
C 2	$0.3657(3)$	$0.2174(5)$	$0.3367(3)$	$0.0386(13)$
C 3	$0.1748(2)$	$0.0052(5)$	$-0.0168(3)$	$0.0306(11)$
C 4	$0.4229(3)$	$-0.2883(4)$	$0.3084(3)$	$0.0295(10)$
H 1 N	$0.449(3)$	$0.161(5)$	$0.296(3)$	$0.024(10)^{*}$
H 2 A	0.31970	0.31150	0.29540	0.0580^{*}
H2B	0.42120	0.25690	0.41680	0.0580^{*}

H2C	0.33710	0.11910	0.34680	0.0580^{*}
H2N	$0.227(3)$	$0.128(5)$	$0.134(3)$	$0.030(10)^{*}$
H3A	0.17870	0.05510	-0.07770	0.0460^{*}
H3B	0.11180	0.02530	-0.04110	0.0460^{*}
H3C	0.18680	-0.11920	-0.01060	0.0460^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0209(1)$	$0.0274(1)$	$0.0294(1)$	0.0000	$0.0197(1)$	0.0000
S 1	$0.0249(5)$	$0.0344(4)$	$0.0242(4)$	$0.0067(3)$	$0.0188(4)$	$0.0020(3)$
N 1	$0.0244(18)$	$0.0359(17)$	$0.0275(13)$	$0.0008(14)$	$0.0185(14)$	$-0.0045(12)$
N 2	$0.0225(16)$	$0.0279(15)$	$0.0273(13)$	$0.0015(11)$	$0.0181(12)$	$-0.0035(11)$
N 3	$0.040(2)$	$0.058(2)$	$0.054(2)$	$-0.0070(17)$	$0.0389(19)$	$0.0028(16)$
C1	$0.0236(18)$	$0.0192(15)$	$0.0255(14)$	$0.0042(12)$	$0.0179(14)$	$0.0031(11)$
C2	$0.041(3)$	$0.050(2)$	$0.0352(18)$	$-0.0019(18)$	$0.0288(19)$	$-0.0128(16)$
C3	$0.022(2)$	$0.0341(19)$	$0.0336(16)$	$-0.0025(15)$	$0.0163(16)$	$-0.0047(14)$
C4	$0.028(2)$	$0.0288(17)$	$0.0344(16)$	$-0.0018(15)$	$0.0207(16)$	$0.0009(14)$

Geometric parameters ($\AA,{ }^{\circ}$)

Hg1-S1	2.7114 (9)	N3-C4	1.139 (8)
$\mathrm{Hg} 1-\mathrm{C} 4$	2.090 (6)	N1-H1N	0.80 (6)
Hg1-S1 ${ }^{\text {i }}$	2.7114 (9)	N2-H2N	0.79 (5)
$\mathrm{Hg} 1-\mathrm{C} 4{ }^{\text {i }}$	2.090 (6)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
S1-C1	1.736 (4)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800
N1-C1	1.335 (5)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
N1-C2	1.459 (7)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
N2-C1	1.314 (6)	С3-H3B	0.9800
N2-C3	1.452 (4)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{C} 4$	99.05 (11)	S1-C1-N1	119.6 (3)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 1^{\text {i }}$	94.31 (3)	$\mathrm{Hg} 1-\mathrm{C} 4-\mathrm{N} 3$	175.3 (3)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{C} 4^{\text {i }}$	102.01 (9)	N1-C2-H2A	109.00
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{C} 4$	102.01 (9)	N1-C2-H2B	110.00
$\mathrm{C} 4-\mathrm{Hg} 1-\mathrm{C} 4^{\text {i }}$	148.83 (13)	N1-C2-H2C	109.00
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{C} 4^{\mathrm{i}}$	99.05 (11)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.00
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1$	96.84 (11)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00
C1-N1-C2	123.8 (4)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.00
C1-N2-C3	124.7 (3)	N2-C3-H3A	109.00
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	117 (3)	N2-C3-H3B	110.00
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	118 (3)	N2-C3-H3C	109.00
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	117 (3)	H3A-C3-H3B	110.00
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	118 (3)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.00
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	121.1 (3)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.00
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	119.3 (4)		
$\mathrm{C} 4-\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1$	32.52 (15)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	-174.9 (3)

$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1$	$-70.39(13)$
$\mathrm{C} 4-\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1$	$-170.60(16)$
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$60.6(3)$
$\mathrm{Hg} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2$	$-121.0(3)$

$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$6.6(5)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$4.6(5)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-177.0(3)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.80(6)$	$2.67(5)$	$3.415(4)$	$157(4)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{~N} 3^{\mathrm{ii}}$	$0.79(5)$	$2.21(6)$	$2.951(7)$	$155(4)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

