Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A one-dimensional inorganic-organic hybrid compound: catena-poly[ethylenediammonium [indate(III)-di- μ-hydrogenphosphato(V)- μ-hydroxido] monohydrate]

Abderrazzak Assani, Mohamed Saadi* and Lahcen El Ammari
Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
Correspondence e-mail: saadi@fsr.ac.ma

Received 25 July 2010; accepted 11 August 2010
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.026 ; w R$ factor $=0.067$; data-to-parameter ratio $=17.1$.

The title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\operatorname{In}\left(\mathrm{HPO}_{4}\right)_{2}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized under hydrothermal conditions. The structure of this hybrid compound consists of isolated inorganic chains with composition ${ }_{\infty}\left[\mathrm{In}\left(\mathrm{HPO}_{4}\right)_{4 / 2}(\mathrm{OH})_{2 / 2}\right]$ running along [010]. The coordination of the $\mathrm{In}^{\mathrm{III}}$ atom is distorted octahedral. The ethylenediammonium cation and the disordered water molecule (site-occupation factors $=0.7: 0.3$) ensure the cohesion of the structure via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For properties of and background to indium phosphates, see: Forster \& Cheetham (2003); Chen, Liu et al. (2006); Chen et al. (2007); Huang et al. (2010); Thirumurugan \& Srinivasan (2003). For compounds with related structures, see: Chen, Yi et al. (2006); Li et al. (2006); Du et al. (2004). For background to bond-valence analysis, see: Brown \& Altermatt (1985).

Experimental

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\operatorname{In}\left(\mathrm{HPO}_{4}\right)_{2}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=403.92$
Monoclinic, $P 2_{1} / n$
$a=10.0702$ (3) A
$b=7.4896$ (2) A
$c=15.6007$ (5) A
$\beta=99.000(1)^{\circ}$

Data collection

Bruker X8 APEXII CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.844, T_{\text {max }}=0.932$

13591 measured reflections 2771 independent reflections 2168 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.067$ independent and constrained refinement
2771 reflections
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.65 \mathrm{e}^{\AA^{-3}}$

162 parameters
1 restraint

Table 1

Selected bond lengths (\AA).

$\mathrm{In} 1-\mathrm{O} 9^{\mathrm{i}}$	$2.089(2)$	$\mathrm{In} 1-\mathrm{O} 3$	$2.148(2)$
$\mathrm{In} 1-\mathrm{O} 9$	$2.094(2)$	$\mathrm{In} 1-\mathrm{O} 6^{\mathrm{i}}$	$2.154(2)$
$\mathrm{In} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.135(2)$	$\mathrm{In} 1-\mathrm{O} 7$	$2.154(2)$

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\text {ii }}$	0.82	1.78	2.595 (3)	174
O8-H8 $\cdots \mathrm{O} 1$	0.82	1.75	2.567 (4)	172
O9-H9 . . O10	0.86 (2)	1.93 (2)	2.780 (5)	170 (3)
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\text {i }}$	0.85	2.44	3.291 (5)	179
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O} 8^{\text {iii }}$	0.87	2.35	2.911 (5)	122
$\mathrm{N} 1-\mathrm{H} 11 A \cdots \mathrm{O}^{\text {iv }}$	0.89	2.00	2.876 (4)	168
$\mathrm{N} 1-\mathrm{H} 11 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.89	2.51	3.137 (4)	128
$\mathrm{N} 1-\mathrm{H} 11 B \cdots \mathrm{O} 10$	0.89	2.43	3.114 (5)	133
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.89	2.41	3.011 (4)	125
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O} 1^{\text {v }}$	0.89	1.98	2.823 (4)	158
$\mathrm{N} 2-\mathrm{H} 22 A \cdots \mathrm{O}$	0.89	1.87	2.750 (4)	170
$\mathrm{N} 2-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.89	2.06	2.911 (4)	160
$\mathrm{N} 2-\mathrm{H} 22 \mathrm{C} \cdots \mathrm{O} 7^{\text {vii }}$	0.89	2.05	2.892 (4)	158

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y-\frac{1}{2}, z+\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $x+\frac{1}{2},-y-\frac{1}{2}, z-\frac{1}{2}$; (vi) $-x,-y-1,-z$; (vii) $-x,-y,-z$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2383).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, C., Liu, Y., Fang, Q., Liu, L., Eubank, J. F., Zhang, N., Gong, S. \& Pang, W. (2006). Microporous Mesoporous Mater. 97, 132-140.

metal-organic compounds

Chen, C., Wang, S., Zhang, N., Yan, Z. \& Pang, W. (2007). Microporous Mesoporous Mater. 106, 1-7.
Chen, C., Yi, Z., Bi, M., Liu, Y., Wang, C., Liu, L., Zhao, Z. \& Pang, W. (2006). J. Solid State Chem. 179, 1478-1485.

Du, Y., Yu, J., Wang, Y., Pan, Q., Zou, Y. \& Xu, R. (2004). J. Solid State Chem. 177, 3032-3037.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Forster, P. M. \& Cheetham, A. K. (2003). Top. Catal. 24, 79-86.
Huang, L., Song, T., Fan, Y., Yang, L., Wang, L., Zhang, H., Wang, L. \& Xu, J. (2010). Microporous Mesoporous Mater. 132, 409-413.

Li, J., Li, L., Yu, J. \& Xu, R. (2006). Inorg. Chem. Commun. 9, 624-627.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thirumurugan, A. \& Srinivasan, N. (2003). Dalton Trans. pp. 3387-3391.

supporting information

Acta Cryst. (2010). E66, m1065-m1066 [https://doi.org/10.1107/S160053681003240X]

A one-dimensional inorganic-organic hybrid compound: catena-poly[ethylenediammonium [indate(III)-di- μ-hydrogenphosphato(V)- μ-hydroxido] monohydrate]

Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

S1. Comment

The research of new porous materials and open-framework structures in the hybrid inorganic-organic systems continues to be of great interest in the field of materials chemistry. Mainly, hybrid metal phosphates are extensively investigated due to their impressive diversity of structures which are strongly required for catalysis applications (Forster \& Cheetham, 2003). Accordingly, in the past two decades, amine templated indium phosphates were in the focus of investigation, providing one-dimensional chain, two-dimensional layered and three-dimensonal open-framework structures with different In: P ratios (Chen et al. 2007; Chen, Liu et al. 2006; Thirumurugan \& Srinivasan, 2003; Huang et al. 2010). In the present work, a new indium phosphate with a In: P ratio of 1:2, namely $\left(\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)\left[\operatorname{In}\left(\mathrm{HPO}_{4}\right)_{2}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$ was hydrothermally synthesized and structurally characterized.
The asymmetric unit of the title compound is drawn in Fig. 1. A three-dimensional polyhedral view of its crystal structure is represented in Fig. 2. It shows $\mathrm{InO}_{4}(\mathrm{OH})_{2}$ octahedra linked to $\mathrm{PO}_{3} \mathrm{OH}$ tetrahedra by sharing corners in the way to build ${ }_{\infty}\left[\mathrm{In}(\mathrm{OH})_{22}\left(\mathrm{HPO}_{4}\right)_{4 / 2}\right]$ chains running along [010]. Fig. 3 shows the InO_{6} octahedra linked to another via their hydroxide vertices, giving rise to a one-dimensional linear chain. Adjacent octahedra are additionally interconnected by $\mathrm{PO}_{3} \mathrm{OH}$ tetrahedra by sharing their terminal O atoms with four tetrahedra. A similar connectivity is observed in the structure of $\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{H}_{12}\right)\left[\mathrm{In}_{2}\left(\mathrm{HPO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \mathrm{~F}_{2}\right]$ (Chen, Yi et al., 2006).
The + III and +V oxidation states of the In and P atoms were confirmed by bond valence sum calculations (Brown \& Altermatt, 1985). The calculated values for the two $\mathrm{In}^{\mathrm{II+}+}$ and $\mathrm{P}^{\mathrm{V}+}$ ions are as expected, viz. 3.25 and 5.04 , respectively. The values of the bond valence sums calculated for all oxygen atoms are: 1.33 and 1.34 for the terminal O atoms O and $\mathrm{O} 5,2.29,2.30$ and 2.26 for $\mathrm{O} 4, \mathrm{O} 8$ and O 9 , respectively, and 1.82 for all other O atoms except that of the water molecule (O10) which amounts to 2.12 . The difference between these values is explained by the nature and the length of the $\mathrm{P}-\mathrm{O}$ bonds. From the two tetrahedrally coordinated phosphorus atoms P 1 and P 2 , each shares two O atoms with adjacent indium atoms (average distance $\mathrm{P}-\mathrm{O}=1.520 \AA$) and possesses one terminal $\mathrm{P} 1=\mathrm{O} 1=1.510(2) \AA, \mathrm{P} 2=\mathrm{O} 5=1.509$ (2) \AA and one $\mathrm{P} 1-\mathrm{O} 4 \mathrm{H}=1.579$ (2) $\AA, \mathrm{P} 2-\mathrm{O} 8 \mathrm{H}=1.577$ (2) \AA bond. The terminal O atoms are involved in strong hydrogen bonds (see below) which likewise explains their low bond valence sum. These results are in good agreement with the framework formula and are in close agreement with those reported in the literature for similar indium phosphates (Li et al. 2006; Du et al. 2004).
The ethylenediammonum cation and the water molecules ensure the cohesion of the structure via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 1, Table 2).

S2. Experimental

Single crystals of the title compound were hydrothermally synthesized from a reaction mixture of indium oxide $\left(\mathrm{In}_{2} \mathrm{O}_{3}\right.$; $0,388 \mathrm{~g})$, phosphoric acid $85 \% \%_{\mathrm{wt}}\left(\mathrm{H}_{3} \mathrm{PO}_{4} ; 0,35 \mathrm{ml}\right)$, ethylenediamine $\left(\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2} ; 0,3 \mathrm{ml}\right)$ and water $\left(\mathrm{H}_{2} \mathrm{O} ; 10 \mathrm{ml}\right)$. In addition, $40 \%{ }_{\text {wt }}$ fluoric acid ($\mathrm{HF} ; 0,1 \mathrm{ml}$) was added to the mixture to provide fluoride ions which can act as a mineralizing agent in the hydrothermal synthesis and can play a structure-directing role. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogeneous pressure at 398 K for two days. The resulting product was filtered off, washed with deionized water and was dried in air. It consisted of a yellow powder in addition to a few colorless parallelepipedic crystals of the title compound.

S3. Refinement

All O-bound, N -bound and C -bound H atoms were initially located in a difference map and refined with $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ and C-H distance restraints of 0.82 (1) $\AA, 0.89$ (1) \AA and C-H 0.97 (1) \AA, respectively. In a subsequent cycle they were refined in the riding model approximation with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$ or (N) and $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$. The refinement of the site occupancy of the O atoms of the water molecule shows full occupation. However, the electron density is distributed over two adjacent positions (O10 and O11). The refinement of the occupancy rates of these two positions led to a site occupancy factor of 0.7 for O 10 and of 0.3 for O 11 , accompanied with considerable improvements in R and $R w$ factors.

From the synthetic conditions one might expect an incorporation of F^{-}ions. The distinction by X -ray diffraction between F^{-}and O^{2-} is difficult. However, when the relevant OH positions were replaced by F^{-}, a small worsening of the reliability factors was observed. Moreover, the clearly discernible proton positions in the difference Fourier maps point to OH rather than to F . Nevertheless, the existence of a very small amount of F - incorporated in the structure cannot be excluded.

Figure 1
ORTEP plot of the asymmetric unit of the $\left(\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)\left[\mathrm{In}\left(\mathrm{HPO}_{4}\right)_{2}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$ structure. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines.

Figure 2
A three-dimensional polyhedral view of the crystal structure of the $\left(\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)\left[\operatorname{In}\left(\mathrm{HPO}_{4}\right)_{2}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

Figure 3
A view of an inorganic chain built up from corner sharing indium octahedra linked by HPO_{4} tetraedra.
catena-poly[ethylenediammonium [indate(III)-di- μ-hydrogenphosphato(V)- μ-hydroxido] monohydrate]

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\operatorname{In}\left(\mathrm{HPO}_{4}\right)_{2}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=403.92$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=10.0702$ (3) \AA
$b=7.4896$ (2) \AA
$c=15.6007(5) \AA$

$$
\begin{aligned}
& \beta=99.000(1)^{\circ} \\
& V=1162.15(6) \AA^{3} \\
& Z=4 \\
& F(000)=800 \\
& D_{\mathrm{x}}=2.309 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2771 \text { reflections }
\end{aligned}
$$

$\theta=2.6-27.9^{\circ}$
$\mu=2.36 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$

Data collection

Bruker X8 APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.844, T_{\text {max }}=0.932$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
$S=1.03$
2771 reflections
162 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Plate, colourless
$0.20 \times 0.06 \times 0.03 \mathrm{~mm}$

> 13591 measured reflections
> 2771 independent reflections
> 2168 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.045$
> $\theta_{\max }=27.9^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-9 \rightarrow 9$
> $l=-20 \rightarrow 19$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.031 P)^{2}+0.4367 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.65$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
In1	$0.247040(19)$	$0.02859(3)$	$0.250039(14)$	$0.01340(8)$	
P1	$0.12174(8)$	$-0.22253(11)$	$0.39952(5)$	$0.01587(17)$	
P2	$-0.02212(8)$	$-0.22671(10)$	$0.15538(5)$	$0.01537(17)$	
O1	$-0.0298(2)$	$-0.2219(4)$	$0.37808(17)$	$0.0389(7)$	
O2	$0.1861(2)$	$-0.3858(3)$	$0.36661(15)$	$0.0271(5)$	
O3	$0.1849(2)$	$-0.0520(3)$	$0.36984(15)$	$0.0271(6)$	
O4	$0.1498(2)$	$-0.2250(3)$	$0.50197(14)$	$0.0235(5)$	
H4	0.2297	-0.2449	0.5186	0.035^{*}	
O5	$-0.0986(2)$	$-0.2250(3)$	$0.06416(15)$	$0.0233(5)$	
O6	$0.0672(2)$	$-0.3905(3)$	$0.17185(15)$	$0.0246(5)$	
O7	$0.0595(2)$	$-0.0564(3)$	$0.17533(16)$	$0.0243(5)$	
O8	$-0.1324(2)$	$-0.2335(4)$	$0.21683(17)$	$0.0366(7)$	

H8	-0.0965	-0.2205	0.2673	0.055^{*}	
O9	$0.3367(2)$	$-0.2199(3)$	$0.23619(15)$	$0.0174(5)$	0.026^{*}
H9	$0.4156(15)$	$-0.208(4)$	$0.222(2)$	$0.0634(14)$	0.70
O10	$0.5844(4)$	$-0.1357(6)$	$0.1893(3)$	0.095^{*}	0.095^{*}
H10A	0.5706	-0.0285	0.1724	$0.0634(14)$	0.30
H10B	0.6316	-0.2340	0.1945	$0.0309(7)$	
O11	$0.5872(10)$	$-0.3060(14)$	$0.2029(9)$	0.046^{*}	0.046^{*}
N1	$0.3639(3)$	$-0.2375(4)$	$0.0340(2)$	0.046^{*}	
H11A	0.3562	-0.3278	0.0701	$0.0281(7)$	0.042^{*}
H11B	0.4083	-0.1482	0.0633	0.042^{*}	0.042^{*}
H11C	0.4086	-0.2738	-0.0076	$0.0276(8)$	
N2	$0.0128(3)$	$-0.2744(4)$	$-0.0842(2)$	0.033^{*}	
H22A	-0.0222	-0.2442	-0.0372	0.033^{*}	
H22B	-0.0317	-0.3677	-0.1098	$0.0300(8)$	
H22C	0.0059	-0.1828	-0.1209	0.036^{*}	
C1	$0.2296(3)$	$-0.1762(5)$	$-0.0048(2)$	0.036^{*}	
H1A	0.2376	-0.0727	-0.0410	0.0406	
H1B	0.1792	-0.1414	$-0.0585(2)$	-0.1101	
C2	$0.1563(3)$	$-0.3220(5)$	-0.3411		
H2A	0.1972	-0.4322			

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	$0.01468(13)$	$0.00975(12)$	$0.01524(12)$	$-0.00045(8)$	$0.00069(8)$	$-0.00008(8)$
P1	$0.0160(4)$	$0.0180(4)$	$0.0139(4)$	$0.0005(3)$	$0.0032(3)$	$-0.0003(3)$
P2	$0.0134(4)$	$0.0151(4)$	$0.0162(4)$	$-0.0004(3)$	$-0.0022(3)$	$-0.0006(3)$
O1	$0.0158(12)$	$0.081(2)$	$0.0204(14)$	$0.0028(12)$	$0.0031(10)$	$0.0022(13)$
O2	$0.0413(14)$	$0.0192(13)$	$0.0237(13)$	$0.0033(10)$	$0.0145(11)$	$-0.0014(9)$
O3	$0.0441(15)$	$0.0177(13)$	$0.0230(14)$	$-0.0017(10)$	$0.0159(11)$	$0.0001(9)$
O4	$0.0207(12)$	$0.0355(14)$	$0.0144(12)$	$0.0046(10)$	$0.0035(9)$	$-0.0007(9)$
O5	$0.0197(12)$	$0.0277(13)$	$0.0193(12)$	$-0.0008(9)$	$-0.0070(9)$	$0.0009(9)$
O6	$0.0204(11)$	$0.0160(12)$	$0.0337(14)$	$0.0022(9)$	$-0.0077(10)$	$0.0014(9)$
O7	$0.0203(11)$	$0.0156(12)$	$0.0335(15)$	$-0.0041(9)$	$-0.0064(10)$	$-0.0034(9)$
O8	$0.0180(13)$	$0.068(2)$	$0.0241(14)$	$-0.0055(12)$	$0.0042(11)$	$-0.0058(13)$
O9	$0.0156(11)$	$0.0103(10)$	$0.0279(13)$	$-0.0003(8)$	$0.0079(9)$	$0.0003(9)$
O10	$0.035(2)$	$0.044(2)$	$0.119(4)$	$-0.003(2)$	$0.037(2)$	$-0.018(3)$
O11	$0.035(2)$	$0.044(2)$	$0.119(4)$	$-0.003(2)$	$0.037(2)$	$-0.018(3)$
N1	$0.0255(16)$	$0.0401(19)$	$0.0276(18)$	$-0.0053(13)$	$0.0055(13)$	$0.0052(13)$
N2	$0.0241(16)$	$0.0328(17)$	$0.0243(16)$	$-0.0039(12)$	$-0.0058(12)$	$-0.0003(12)$
C1	$0.0253(18)$	$0.0244(19)$	$0.032(2)$	$0.0018(15)$	$0.0003(15)$	$-0.0030(15)$
C2	$0.0292(19)$	$0.0234(19)$	$0.036(2)$	$0.0025(15)$	$-0.0010(16)$	$-0.0070(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{In} 1 — \mathrm{O} 9^{\mathrm{i}}$	$2.089(2)$	$\mathrm{O} 9 — \mathrm{H} 9$	$0.862(17)$
$\mathrm{In} 1 — \mathrm{O} 9$	$2.094(2)$	$\mathrm{O} 10-\mathrm{O} 11$	$1.293(12)$

In1-O2 ${ }^{\text {i }}$	2.135 (2)
In1-O3	2.148 (2)
In1-O6 ${ }^{\text {i }}$	2.154 (2)
In1-O7	2.154 (2)
P1-O1	1.510 (3)
P1-O2	1.511 (2)
P1-O3	1.530 (2)
P1-O4	1.579 (2)
P2-O5	1.509 (2)
P2-O6	1.519 (2)
$\mathrm{P} 2-\mathrm{O} 7$	1.523 (2)
$\mathrm{P} 2-\mathrm{O} 8$	1.577 (3)
O 2 - In $1^{\text {ii }}$	2.135 (2)
O4-H4	0.8200
O6-In1 ${ }^{\text {ii }}$	2.154 (2)
O8-H8	0.8200
O9-In1 ${ }^{\text {ii }}$	2.089 (2)
O9i--In1-09	178.25 (5)
O9i--In1-O2 ${ }^{\text {i }}$	90.18 (9)
O9-In $1-\mathrm{O} 2^{\text {i }}$	88.87 (9)
O9i--In1-O3	89.24 (8)
O9-In1-O3	91.66 (8)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{In} 1-\mathrm{O} 3$	178.07 (9)
O9i--In1-O6 ${ }^{\text {i }}$	90.97 (8)
O9-In1-06 ${ }^{\text {i }}$	87.60 (8)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{In} 1-\mathrm{O} 6^{\text {i }}$	92.06 (9)
O3-In1-O6 ${ }^{\text {i }}$	86.11 (9)
O9i--In1-O7	89.32 (8)
O9-In1-O7	92.14 (8)
O2 ${ }^{\text {i }}$ - $\mathrm{In} 1-\mathrm{O} 7$	89.67 (9)
O3-In1-O7	92.16 (9)
O6--In1-O7	178.24 (9)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	113.55 (15)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	112.56 (15)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	110.60 (13)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	103.80 (13)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	108.44 (13)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	107.41 (14)
O5-P2-O6	111.58 (13)
O5-P2-07	111.43 (13)
O6-P2-O7	110.81 (13)
O5-P2-O8	105.63 (14)
O6-P2-O8	109.01 (15)
O7-P2-O8	108.16 (14)
$\mathrm{P} 1-\mathrm{O} 2-\mathrm{In} 1{ }^{\text {ii }}$	137.89 (14)
P1-O3-In1	133.57 (14)
P1-O4-H4	109.5

supporting information

$\mathrm{P} 2-\mathrm{O} 6-\mathrm{In} 1^{\mathrm{ii}}$	$139.63(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{P} 2-\mathrm{O} 7-\mathrm{In} 1$	$139.23(14)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 5^{\text {iii }}$	0.82	1.78	2.595 (3)	174
O8-H8 \cdots O1	0.82	1.75	2.567 (4)	172
O9- $\mathrm{H} 9 \cdots \mathrm{O} 10$	0.86 (2)	1.93 (2)	2.780 (5)	170 (3)
$\mathrm{O} 10-\mathrm{H} 10 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.85	2.44	3.291 (5)	179
$\mathrm{O} 10-\mathrm{H} 10 B^{\cdots} \mathrm{O}^{\text {iv }}$	0.87	2.35	2.911 (5)	122
$\mathrm{N} 1-\mathrm{H} 11 A \cdots \mathrm{O} 3^{\text {ii }}$	0.89	2.00	2.876 (4)	168
$\mathrm{N} 1-\mathrm{H} 11 B \cdots \mathrm{O} 2^{\text {i }}$	0.89	2.51	3.137 (4)	128
$\mathrm{N} 1-\mathrm{H} 11 B \cdots \mathrm{O} 10$	0.89	2.43	3.114 (5)	133
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{C} \cdots{ }^{\text {a }}$	0.89	2.41	3.011 (4)	125
$\mathrm{N} 1-\mathrm{H} 11 \mathrm{C} \cdots{ }^{\text {O }}{ }^{\text {v }}$	0.89	1.98	2.823 (4)	158
$\mathrm{N} 2-\mathrm{H} 222 \cdot \cdots \mathrm{O} 5$	0.89	1.87	2.750 (4)	170
$\mathrm{N} 2-\mathrm{H} 22 B \cdots \mathrm{O} 6^{\text {vi }}$	0.89	2.06	2.911 (4)	160
$\mathrm{N} 2-\mathrm{H} 22 \mathrm{C} \cdots{ }^{\text {V }}$ vii	0.89	2.05	2.892 (4)	158

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iii) $x+1 / 2,-y-1 / 2, z+1 / 2$; (iv) $x+1, y, z$; (v) $x+1 / 2,-y-1 / 2, z-1 / 2$; (vi) $-x,-y-1$, $-z$; (vii) $-x,-y,-z$.

