inorganic compounds

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

$K_3Gd(PO_4)_2$

Dan Zhao* and Fei Fei Li

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China Correspondence e-mail: iamzd@hpu.edu.cn

Received 9 July 2010; accepted 3 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (P–O) = 0.004 Å; R factor = 0.027; wR factor = 0.065; data-to-parameter ratio = 12.4.

The title compound, tripotassium gadolinium(III) bis[orthophosphate(V)], was synthesized by a high-temperature solution reaction. Of the 12 atoms of the asymmetric unit (1 × Gd, $2 \times P, 3 \times K, 6 \times O$), all but two O atoms (which are in general positions) lie on mirror planes. The crystal structure features sheets of composition $[Gd(PO_4)_2]^{3-}$ which extend parallel to (100) and are built up from isolated PO₄ tetrahedra and GdO₇ monocapped prisms through corner- and edge-sharing. The K⁺ ions, which have coordination numbers of 10, 9 and 11, help to stack the anionic sheets along [100] into a three-dimensional structure.

Related literature

For the structures, properties and applications of phosphates with general formula $M_3RE(PO_4)_2$ (M = alkali metal, RE = rare earth metal), see: K₃Lu(PO₄)₂ (Efremov *et al.*, 1981); K₃(La_{0.99}Nd_{0.01})(PO₄)₂ (Hong & Chinn, 1976); Na₃Ce(PO₄)₂ (Karpov *et al.*, 1980); K₃Eu(PO₄)₂ (Morozov *et al.*, 2001); K₃Sm(PO₄)₂ (Toumi *et al.*, 1999); K₃Ce(PO₄)₂ (Zah-Letho *et al.*, 1988).

Experimental

Crystal data $K_3Gd(PO_4)_2$ $M_r = 464.49$

Monoclinic, $P2_1/m$ a = 7.4153 (15) Å

```
b = 5.6206 (11) \text{ Å}

c = 9.445 (2) \text{ Å}

\beta = 90.723 (14)^{\circ}

V = 393.62 (14) \text{ Å}^{3}

Z = 2
```

Data collection

Rigaku Mercury70 CCD diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.304, T_{\rm max} = 0.624$

Refinement $P[F^2 > 2\pi(F^2)]$

 $R[F^2 > 2\sigma(F^2)] = 0.027$ 80 pa

 $wR(F^2) = 0.065$ $\Delta \rho_{min}$

 S = 1.03 $\Delta \rho_{min}$

 993 reflections
 $\Delta \rho_{min}$

3036 measured reflections 993 independent reflections 946 reflections with $I > 2\sigma(I)$ $R_{int} = 0.045$

80 parameters $\Delta \rho_{\text{max}} = 2.38 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.68 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

 $0.30 \times 0.10 \times 0.10$ mm

 $\mu = 10.43 \text{ mm}^{-1}$

T = 293 K

Data collection: *CrystalClear* (Rigaku, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2004); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2378).

References

Brandenburg, K. (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Efremov, V. A., Melnikov, P. P. & Komissarova, L. N. (1981). *Coord. Chem.* 7, 467–471.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hong, Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 421-428.
- Karpov, O. G., Pushcharovskii, D. Yu., Khomyakov, A. P., Pobedimskaya, E. A. & Belov, N. V. (1980). Kristallografiya, 25, 1135–1141.
- Morozov, V. A., Bobylev, A. P., Gerasimova, N. V., Kirichenko, A. N., Mikhailin, V. V., Pushkina, G. Ya., Lazoryak, B. I. & Komissarova, L. N. (2001). *Zh. Neorg. Khim.* 46, 805–813.
- Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Toumi, M., Smiri-Dogguy, L. & Bulou, A. (1999). Eur. J. Inorg. Chem. pp. 1545–1550.
- Zah-Letho, J. J., Houenou, P. & Eholie, R. (1988). C. R. Acad. Sci. Ser. II, 307, 1177–1179.

Acta Cryst. (2010). E66, i64 [https://doi.org/10.1107/S160053681003103X]

$K_3Gd(PO_4)_2$

Dan Zhao and Fei Fei Li

S1. Comment

Inorganic phosphates with general formula $M_3RE(PO_4)_2$ have been investigated in the past years due to their interesting optical properties, in which *M* is a alkali metal cation and *RE* is a trivalent rare-earth cation: K₃Lu(PO₄)₂, space group $P\overline{3}$ (Efremov *et al.*, 1981); K₃(La_{0.99}Nd_{0.01})(PO₄)₂, $P2_1/m$ (Hong & Chinn, 1976); Na₃Ce(PO₄)₂, $Pca2_1$ (Karpov *et al.*, 1980); K₃Eu(PO₄)₂, $P2_1/m$ (Morozov *et al.*, 2001); K₃Sm(PO₄)₂, $P2_1/m$ (Toumi *et al.*, 1999); K₃Ce(PO₄)₂, $P2_1/m$ (Zah-Letho *et al.*, 1988). We report herein the synthesis and crystal structure of K₃Gd(PO₄)₂ which is isotypic with all structures crystallizing in space group $P2_1/m$.

As shown in Fig. 1, the crystal structure of $K_3Gd(PO_4)_2$ features two-dimensional sheets with composition $[Gd(PO_4)_2]^{3-}$ extending in the *bc* plane and constructed from isolated PO₄ tetrahedra and isolated GdO₇ monocapped prisms through corner- and edge-sharing. The K⁺ cations, with coordination numbers of 10 (K1), 9 (K2) and 11 (K3), are situated between these sheets and join them through coulombic action to the O²⁻ anions, eventually forming the three-dimensional framework of K₃Gd(PO₄)₂ (Fig. 2).

S2. Experimental

The finely ground reagents K_2CO_3 , Gd_2O_3 , and $NH_4H_2PO_4$ were mixed in the molar ratio K: Gd: P = 12: 1: 10, placed in a Pt crucible, and heated at 573 K for 4 h. The mixture was re-ground and heated at 1173 K for 20 h, then cooled to 573 K at a rate of 4 K h⁻¹, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.

S3. Refinement

The highest peak in the difference electron density map is 1.10 Å from Gd1 while the deepest hole is 0.85 Å from the same atom.

Figure 1

Section of the structure of $K_3Gd(PO_4)_2$ with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z; (ii) -1+x, y, z; (iii) 1-x, 1-y, 1-z; (iv) 1-x, 0.5+y, 1-z; (v) 1-x, -0.5+y, 1-z; (vi) 1-x, -y, 1-z; (vii) 1-x, 1-y, -z; (viii) x, 0.5-y, z; (ix) 1-x, 0.5+y, -z; (x) -1+x, 1+y, z; (xi) -x, 0.5+y, 1-z; (xii) x, y, -1+z; (xiii) x, 1+y, -1+z.]

Figure 2

View of the crystal structure of K₃Gd(PO₄)₂. K—O bonds were omitted for clarity.

tripotassium gadolinium(III) bis[orthophosphate(V)]

Crystal data

K₃Gd(PO₄)₂ $M_r = 464.49$ Monoclinic, $P2_1/m$ Hall symbol: -P 2yb a = 7.4153 (15) Å b = 5.6206 (11) Å c = 9.445 (2) Å $\beta = 90.723$ (14)° V = 393.62 (14) Å³ Z = 2

Data collection

Rigaku Mercury70 CCD diffractometer Radiation source: fine-focus sealed tube Graphite Monochromator monochromator Detector resolution: 14.6306 pixels mm⁻¹ ω scans F(000) = 430 $D_x = 3.919 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 1264 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 10.43 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.30 \times 0.10 \times 0.10 \text{ mm}$

Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.304$, $T_{max} = 0.624$ 3036 measured reflections 993 independent reflections 946 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.045$	$k = -7 \rightarrow 7$
$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$	$l = -12 \rightarrow 12$
$h = -9 \rightarrow 9$	

Кејтетет	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	$w = 1/[\sigma^2(F_o^2) + (0.0356P)^2]$
$wR(F^2) = 0.065$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
993 reflections	$\Delta ho_{ m max} = 2.38 \ { m e} \ { m \AA}^{-3}$
80 parameters	$\Delta \rho_{\rm min} = -2.68 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
direct methods	Extinction coefficient: 0.0314 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Gd1	0.00699 (3)	0.2500	0.29011 (3)	0.00731 (15)	
P1	0.80967 (19)	0.2500	0.57350 (15)	0.0076 (3)	
P2	0.2303 (2)	0.2500	0.91166 (15)	0.0066 (3)	
K1	0.20438 (17)	0.7500	0.08160 (13)	0.0119 (3)	
K2	0.50495 (17)	0.2500	0.19219 (13)	0.0142 (3)	
K3	0.36353 (18)	0.2500	0.59102 (14)	0.0142 (3)	
01	1.0137 (6)	0.2500	0.5478 (4)	0.0169 (10)	
02	0.7564 (4)	0.4735 (5)	0.6577 (3)	0.0123 (6)	
O3	0.7177 (6)	0.2500	0.4266 (4)	0.0116 (9)	
O4	0.8481 (4)	-0.0269 (5)	0.1623 (3)	0.0129 (6)	
05	0.4337 (6)	0.2500	0.8991 (5)	0.0163 (9)	
O6	0.1744 (6)	0.2500	1.0689 (4)	0.0113 (9)	

Atomic displacement parameter.	s (Ų)
--------------------------------	-------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	0.0066 (2)	0.0068 (2)	0.0085 (2)	0.000	-0.00097 (12)	0.000
P1	0.0065 (7)	0.0086 (8)	0.0076 (7)	0.000	-0.0012 (5)	0.000
P2	0.0070 (7)	0.0052 (7)	0.0076 (6)	0.000	-0.0009 (5)	0.000
K1	0.0137 (6)	0.0100 (7)	0.0118 (6)	0.000	-0.0001 (5)	0.000
K2	0.0101 (7)	0.0186 (8)	0.0138 (6)	0.000	-0.0021 (5)	0.000
K3	0.0126 (6)	0.0136 (7)	0.0165 (6)	0.000	-0.0002 (5)	0.000

01	0.007(2)	0.031(3)	0.012(2)	0.000	-0.0023(16)	0.000
01	0.007(2)	0.0087(15)	0.012(2)	-0.0023(12)	0.0025(10)	-0.0019(11)
03	0.0087 (19)	0.015 (2)	0.0110 (19)	0.000	-0.0010(16)	0.000
O4	0.0152 (15)	0.0081 (15)	0.0152 (14)	-0.0033 (12)	-0.0016 (12)	-0.0018 (12)
05	0.010 (2)	0.021 (3)	0.018 (2)	0.000	0.0017 (16)	0.000
O6	0.013 (2)	0.014 (2)	0.0076 (19)	0.000	0.0012 (16)	0.000

Geometric parameters (Å, °)

Gd1—O4 ⁱ	2.287 (3)	K1—O4 ^{xii}	3.030 (3)
Gd1—O4 ⁱⁱ	2.287 (3)	K1—O6 ^{xiii}	3.132 (4)
Gd1—O2 ⁱⁱⁱ	2.390 (3)	K2—O6 ^v	2.700 (4)
Gd1—O2 ^{iv}	2.390 (3)	К2—ОЗ	2.702 (4)
Gd1—O1 ⁱ	2.434 (4)	K2—O5 ^v	2.812 (4)
$Gd1-O6^{v}$	2.444 (4)	K2—O2 ^{iv}	2.872 (3)
Gd1—O3 ⁱ	2.517 (4)	K2—O2 ⁱⁱⁱ	2.872 (3)
P1—O1	1.535 (4)	K2—O5 ^{vii}	2.9761 (15)
P1—O3	1.538 (4)	K2—O5 ⁱⁱⁱ	2.9761 (16)
P1—O2	1.541 (3)	K2—O4 ^{vi}	2.999 (3)
P1-02 ^{vi}	1.541 (3)	K2—O4	2.999 (3)
P2—O5	1.515 (4)	K3—O1 ⁱ	2.621 (4)
P2—O6	1.547 (4)	K3—O3 ^{vii}	2.8785 (11)
P2—O4 ^{vii}	1.545 (3)	K3—O3 ⁱⁱⁱ	2.8785 (11)
P2—O4 ^{viii}	1.545 (3)	K3—O2 ^{iv}	2.945 (3)
K1—O5 ⁱⁱⁱ	2.687 (5)	K3—O2 ⁱⁱⁱ	2.945 (3)
K1—O2 ^{viii}	2.776 (3)	К3—О5	2.949 (4)
K1—O2 ⁱⁱⁱ	2.776 (3)	К3—ОЗ	3.067 (4)
K1—O4 ^{ix}	2.803 (3)	K3—O4 ^{viii}	3.092 (3)
K1—O4 ^x	2.803 (3)	K3—O4 ^{vii}	3.092 (3)
K1—O6 ^v	2.8215 (7)	К3—О2	3.227 (3)
K1—O6 ^{xi}	2.8215 (7)	K3—O2 ^{vi}	3.227 (3)
K1—O4 ⁱⁱ	3.030 (3)		
O4 ⁱ —Gd1—O4 ⁱⁱ	85.75 (15)	O3 ^{vii} —K3—O5	95.24 (9)
O4 ⁱ —Gd1—O2 ⁱⁱⁱ	157.36 (10)	O3 ⁱⁱⁱ —K3—O5	95.24 (9)
O4 ⁱⁱ —Gd1—O2 ⁱⁱⁱ	92.20 (11)	O2 ^{iv} —K3—O5	146.60 (6)
O4 ⁱ —Gd1—O2 ^{iv}	92.20 (11)	O2 ⁱⁱⁱ —K3—O5	146.60 (6)
$O4^{ii}$ — $Gd1$ — $O2^{iv}$	157.36 (10)	O1 ⁱ —K3—O3	140.64 (13)
O2 ⁱⁱⁱ —Gd1—O2 ^{iv}	81.09 (14)	O3 ^{vii} —K3—O3	98.65 (8)
O4 ⁱ —Gd1—O1 ⁱ	122.12 (9)	O3 ⁱⁱⁱ —K3—O3	98.65 (8)
$O4^{ii}$ —Gd1—O1 ⁱ	122.12 (9)	O2 ^{iv} —K3—O3	81.26 (9)
O2 ⁱⁱⁱ —Gd1—O1 ⁱ	77.78 (10)	O2 ⁱⁱⁱ —K3—O3	81.26 (9)
$O2^{iv}$ — $Gd1$ — $O1^{i}$	77.78 (10)	O5—K3—O3	110.96 (12)
O4 ⁱ —Gd1—O6 ^v	79.20 (10)	O1 ⁱ —K3—O4 ^{viii}	66.82 (11)
O4 ⁱⁱ —Gd1—O6 ^v	79.20 (10)	O3 ^{vii} —K3—O4 ^{viii}	109.38 (10)
$O2^{iii}$ — $Gd1$ — $O6^{v}$	78.27 (10)	O3 ⁱⁱⁱ —K3—O4 ^{viii}	62.60 (10)
$O2^{iv}$ —Gd1—O6 ^v	78.27 (10)	O2 ^{iv} —K3—O4 ^{viii}	131.63 (9)
$O1^{i}$ — $Gd1$ — $O6^{v}$	148.30 (14)	O2 ⁱⁱⁱ —K3—O4 ^{viii}	103.66 (8)

$O4^{i}$ — $Gd1$ — $O3^{i}$	80.43 (10)	O5—K3—O4 ^{viii}	48.81 (9)
O4 ⁱⁱ —Gd1—O3 ⁱ	80.43 (10)	O3—K3—O4 ^{viii}	145.84 (9)
O2 ⁱⁱⁱ —Gd1—O3 ⁱ	121.51 (9)	O1 ⁱ —K3—O4 ^{vii}	66.82 (11)
$O2^{iv}$ —Gd1—O3 ⁱ	121.51 (9)	O3 ^{vii} —K3—O4 ^{vii}	62.60 (10)
O1 ⁱ —Gd1—O3 ⁱ	59.63 (13)	O3 ⁱⁱⁱ —K3—O4 ^{vii}	109.38 (10)
$O6^{v}$ — $Gd1$ — $O3^{i}$	152.07 (14)	O2 ^{iv} —K3—O4 ^{vii}	103.66 (8)
O1—P1—O3	106.5 (2)	O2 ⁱⁱⁱ —K3—O4 ^{vii}	131.63 (9)
O1—P1—O2	109.94 (15)	O5—K3—O4 ^{vii}	48.81 (9)
O3—P1—O2	110.60 (15)	03—K3—04 ^{vii}	145.84 (9)
01 — $P1$ — 02^{vi}	109.94 (15)	$O4^{\text{viii}}$ —K3— $O4^{\text{vii}}$	47.86 (11)
$03-P1-02^{vi}$	110 60 (15)	$01^{i} - K_{3} - 02$	156 87 (6)
Ω_{2} P1 Ω_{2}^{vi}	109.2 (2)	03^{vii} K3 02	125.38 (10)
$05-P^2-06$	110.7(2)	03^{iii} K3 -02	79 56 (10)
$05 - P^2 - 04^{vii}$	109 50 (16)	02^{iv} K3 02	128 60 (6)
$06-P^2-O^{4^{vii}}$	109.28 (15)	02^{11} K3-02	120.00(0) 102.30(8)
$05 P^2 O^{\text{viii}}$	109.20 (16)	05-K3-02	70 11 (10)
$06 P^2 O^{viii}$	109.30(10) 109.28(15)	03 - K3 = 02	47 34 (8)
O_{4}^{vii} P2 O_{4}^{viii}	109.20(15) 108.5(2)	O_{1}^{viii} K3 O2	90 24 (8)
$O_{4} = 12 = O_{4}$	81 16 (11)	O4 - K3 - O2	<i>33.2</i> 4 (8)
$O_{3} = K_{1} = O_{2}$	81.16 (11)	$04 - K_3 - 02$	110.43(9)
03 - K1 - 02	52.82(12)	$\Gamma 2 - K3 - O2$	93.98 (7) 156 87 (6)
$O_2 - K_1 - O_2$	100.61(10)	$O_1 - K_3 - O_2$	130.87(0)
$O_{3} - K_{1} - O_{4}$	100.01(10) 172.75(0)	O_2^{iii} K_2^{ii} O_2^{iii}	79.30(10)
O_2^{iii} K1 O_4^{iix}	1/2.73(9)	O_{2}^{iv} K_{2}^{iv} O_{2}^{iv}	123.38(10) 102.20(8)
$02^{$	119.50 (8)	02''-K3-02''	102.30 (8)
03^{m} K1 04 ^x	100.61(10)	$02^{$	128.60 (6)
02^{m} K1 04^{m}	119.30 (8)	$03 - K3 - 02^{11}$	/0.11 (10)
02^{m} K1 04^{x}	1/2./5 (9)	$03-K3-02^{\text{vis}}$	4/.34 (8)
$04^{11} - K1 - 04^{12}$	6/.45 (12)	04^{vii} K3 -02^{vi}	118.45 (9)
05^{m} K1 -06^{v}	94.64 (9)	$O4^{v_1}$ —K3— $O2^{v_1}$	99.24 (8)
$O2^{\text{vm}}$ —K1— $O6^{\text{v}}$	119.72 (11)	$P2-K3-O2^{v_1}$	95.98 (7)
02^{in} —K1— 06^{v}	66.06 (10)	$O2-K3-O2^{v_1}$	45.82 (11)
$O4^{ix}$ —K1— $O6^{v}$	53.27 (10)	P1—O1—Gd1 ^{xiv}	98.6 (2)
$O4^{x}$ —K1— $O6^{v}$	120.53 (11)	$P1-O1-K3^{XV}$	162.0 (3)
$O5^{iii}$ —K1— $O6^{xi}$	94.64 (9)	$Gd1^{xiv}$ —O1—K 3^{xiv}	99.39 (14)
$O2^{viii}$ —K1— $O6^{xi}$	66.06 (10)	P1—O2—Gd1 ⁱⁱⁱ	116.36 (16)
$O2^{iii}$ —K1— $O6^{xi}$	119.72 (11)	P1—O2—K1 ⁱⁱⁱ	93.68 (14)
$O4^{ix}$ —K1— $O6^{xi}$	120.53 (11)	$Gd1^{iii}$ — $O2$ — $K1^{iii}$	92.46 (10)
$O4^{x}$ —K1— $O6^{xi}$	53.27 (10)	P1—O2—K2 ⁱⁱⁱ	151.02 (17)
$O6^{v}-K1-O6^{xi}$	169.79 (18)	Gd1 ⁱⁱⁱ —O2—K2 ⁱⁱⁱ	92.56 (9)
$O5^{iii}$ —K1—O4 ⁱⁱ	148.85 (8)	K1 ⁱⁱⁱ —O2—K2 ⁱⁱⁱ	82.58 (8)
$O2^{viii}$ —K1—O4 ⁱⁱ	92.65 (9)	P1—O2—K3 ⁱⁱⁱ	95.46 (13)
O2 ⁱⁱⁱ —K1—O4 ⁱⁱ	70.83 (9)	Gd1 ⁱⁱⁱ —O2—K3 ⁱⁱⁱ	92.00 (9)
O4 ^{ix} —K1—O4 ⁱⁱ	82.21 (9)	K1 ⁱⁱⁱ —O2—K3 ⁱⁱⁱ	166.79 (12)
O4 ^x —K1—O4 ⁱⁱ	108.90 (7)	K2 ⁱⁱⁱ —O2—K3 ⁱⁱⁱ	84.80 (9)
O6 ^v —K1—O4 ⁱⁱ	61.97 (10)	P1—O2—K3	79.54 (13)
$O6^{xi}$ —K1— $O4^{ii}$	110.76 (11)	Gd1 ⁱⁱⁱ —O2—K3	162.12 (12)
O5 ⁱⁱⁱ —K1—O4 ^{xii}	148.85 (8)	K1 ⁱⁱⁱ —O2—K3	94.66 (9)
O2 ^{viii} —K1—O4 ^{xii}	70.83 (9)	K2 ⁱⁱⁱ —O2—K3	72.18 (7)

O2 ⁱⁱⁱ —K1—O4 ^{xii}	92.65 (9)	K3 ⁱⁱⁱ —O2—K3	77.70 (8)
O4 ^{ix} —K1—O4 ^{xii}	108.90 (7)	P1—O3—Gd1 ^{xiv}	95.21 (19)
O4 ^x —K1—O4 ^{xii}	82.21 (9)	P1—O3—K2	170.6 (2)
O6 ^v —K1—O4 ^{xii}	110.76 (11)	Gd1 ^{xiv} —O3—K2	94.17 (13)
O6 ^{xi} —K1—O4 ^{xii}	61.97 (10)	P1—O3—K3 ^{vii}	98.18 (9)
O4 ⁱⁱ —K1—O4 ^{xii}	48.89 (11)	Gd1 ^{xiv} —O3—K3 ^{vii}	98.59 (8)
O5 ⁱⁱⁱ —K1—O6 ^{xiii}	156.91 (13)	K2—O3—K3 ^{vii}	80.39 (9)
O2 ^{viii} —K1—O6 ^{xiii}	119.07 (9)	P1—O3—K3 ⁱⁱⁱ	98.18 (9)
O2 ⁱⁱⁱ —K1—O6 ^{xiii}	119.07 (9)	Gd1 ^{xiv} —O3—K3 ⁱⁱⁱ	98.59 (8)
O4 ^{ix} —K1—O6 ^{xiii}	60.83 (9)	K2—O3—K3 ⁱⁱⁱ	80.39 (9)
O4 ^x —K1—O6 ^{xiii}	60.83 (9)	K3 ^{vii} —O3—K3 ⁱⁱⁱ	155.01 (17)
O6 ^v —K1—O6 ^{xiii}	84.90 (9)	Р1—О3—К3	85.20 (16)
O6 ^{xi} —K1—O6 ^{xiii}	84.90 (9)	Gd1 ^{xiv} —O3—K3	179.59 (17)
O4 ⁱⁱ —K1—O6 ^{xiii}	48.27 (9)	K2—O3—K3	85.42 (12)
O4 ^{xii} —K1—O6 ^{xiii}	48.27 (9)	K3 ^{vii} —O3—K3	81.34 (8)
O6 ^v —K2—O3	150.53 (13)	K3 ⁱⁱⁱ —O3—K3	81.34 (8)
O6 ^v —K2—O5 ^v	54.35 (12)	P2 ^{vii} —O4—Gd1 ^{xiv}	168.2 (2)
O3—K2—O5 ^v	155.12 (13)	$P2^{vii}$ —O4—K1 ^x	91.81 (14)
$O6^{v}$ —K2— $O2^{iv}$	66.32 (9)	Gd1 ^{xiv} —O4—K1 ^x	96.97 (10)
O3—K2—O2 ^{iv}	89.20 (10)	P2 ^{vii} —O4—K2	98.57 (15)
$O5^{v}$ —K2— $O2^{iv}$	111.49 (10)	Gd1 ^{xiv} —O4—K2	91.67 (10)
O6 ^v —K2—O2 ⁱⁱⁱ	66.32 (9)	K1 ^x —O4—K2	71.34 (8)
O3—K2—O2 ⁱⁱⁱ	89.20 (10)	P2 ^{vii} —O4—K1 ^{xv}	82.80 (13)
O5 ^v —K2—O2 ⁱⁱⁱ	111.49 (10)	$Gd1^{xiv}$ —O4— $K1^{xv}$	88.25 (10)
O2 ^{iv} —K2—O2 ⁱⁱⁱ	65.51 (12)	K1 ^x	97.79 (9)
O6 ^v —K2—O5 ^{vii}	90.93 (9)	K2—O4—K1 ^{xv}	169.05 (11)
O3—K2—O5 ^{vii}	98.48 (9)	P2 ^{vii} —O4—K3 ^{vii}	79.62 (13)
O5 ^v —K2—O5 ^{vii}	75.07 (9)	Gd1 ^{xiv} —O4—K3 ^{vii}	98.11 (10)
O2 ^{iv} —K2—O5 ^{vii}	74.84 (10)	K1 ^x	141.08 (12)
O2 ⁱⁱⁱ —K2—O5 ^{vii}	139.49 (10)	K2—O4—K3 ^{vii}	72.55 (7)
O6 ^v —K2—O5 ⁱⁱⁱ	90.93 (9)	K1 ^{xv} —O4—K3 ^{vii}	118.30 (10)
O3—K2—O5 ⁱⁱⁱ	98.48 (9)	P2—O5—K1 ⁱⁱⁱ	171.6 (3)
O5 ^v —K2—O5 ⁱⁱⁱ	75.07 (9)	P2—O5—K2 ^{xvi}	95.6 (2)
O2 ^{iv} —K2—O5 ⁱⁱⁱ	139.49 (10)	K1 ⁱⁱⁱ —O5—K2 ^{xvi}	76.00 (12)
O2 ⁱⁱⁱ —K2—O5 ⁱⁱⁱ	74.84 (10)	P2—O5—K3	85.06 (19)
O5 ^{vii} —K2—O5 ⁱⁱⁱ	141.57 (16)	K1 ⁱⁱⁱ —O5—K3	103.34 (14)
O6 ^v —K2—O4 ^{vi}	136.55 (9)	K2 ^{xvi} —O5—K3	179.34 (17)
O3—K2—O4 ^{vi}	65.80 (10)	P2—O5—K2 ^{vii}	100.29 (10)
O5 ^v —K2—O4 ^{vi}	93.23 (10)	K1 ⁱⁱⁱ —O5—K2 ^{vii}	82.16 (9)
O2 ^{iv} —K2—O4 ^{vi}	154.93 (10)	K2 ^{xvi} —O5—K2 ^{vii}	104.93 (9)
$O2^{iii}$ —K2—O4 ^{vi}	110.14 (8)	K3—O5—K2 ^{vii}	74.93 (9)
$O5^{vii}$ —K2— $O4^{vi}$	109.26 (11)	P2—O5—K2 ⁱⁱⁱ	100.29 (10)
O5 ⁱⁱⁱ —K2—O4 ^{vi}	49.45 (10)	K1 ⁱⁱⁱ —O5—K2 ⁱⁱⁱ	82.16 (9)
O6 ^v —K2—O4	136.55 (9)	K2 ^{xvi} —O5—K2 ⁱⁱⁱ	104.93 (9)
O3—K2—O4	65.80 (9)	K3—O5—K2 ⁱⁱⁱ	74.93 (9)
O5 ^v —K2—O4	93.23 (10)	K2 ^{vii} —O5—K2 ⁱⁱⁱ	141.57 (16)
O2 ^{iv} —K2—O4	110.14 (8)	P2—O6—Gd1 ^{xvi}	165.0 (3)
O2 ⁱⁱⁱ —K2—O4	154.93 (10)	P2—O6—K2 ^{xvi}	99.3 (2)

O5 ^{vii} —K2—O4	49.45 (10)	Gd1 ^{xvi} —O6—K2 ^{xvi}	95.71 (14)
O5 ⁱⁱⁱ —K2—O4	109.26 (11)	P2	91.08 (8)
O4 ^{vi} —K2—O4	62.52 (12)	Gd1 ^{xvi} —O6—K1 ^{xvi}	90.24 (8)
O1 ⁱ —K3—O3 ^{vii}	77.59 (8)	$K2^{xvi}$ —O6— $K1^{xvi}$	84.90 (9)
O1 ⁱ —K3—O3 ⁱⁱⁱ	77.59 (8)	P2—O6—K1 ^{xvii}	91.08 (8)
O3 ^{vii} —K3—O3 ⁱⁱⁱ	155.01 (17)	Gd1 ^{xvi} —O6—K1 ^{xvii}	90.24 (8)
$O1^{i}$ —K3— $O2^{iv}$	65.64 (10)	K2 ^{xvi} —O6—K1 ^{xvii}	84.90 (9)
O3 ^{vii} —K3—O2 ^{iv}	51.52 (10)	K1 ^{xvi} —O6—K1 ^{xvii}	169.79 (18)
O3 ⁱⁱⁱ —K3—O2 ^{iv}	114.09 (11)	P2	79.26 (17)
O1 ⁱ —K3—O2 ⁱⁱⁱ	65.64 (10)	Gd1 ^{xvi} —O6—K1 ^{xiii}	85.73 (12)
O3 ^{vii} —K3—O2 ⁱⁱⁱ	114.09 (11)	K2 ^{xvi} —O6—K1 ^{xiii}	178.56 (15)
O3 ⁱⁱⁱ —K3—O2 ⁱⁱⁱ	51.52 (10)	K1 ^{xvi} —O6—K1 ^{xiii}	95.10 (9)
O2 ^{iv} —K3—O2 ⁱⁱⁱ	63.70 (12)	K1 ^{xvii} —O6—K1 ^{xiii}	95.10 (9)
O1 ⁱ —K3—O5	108.39 (13)		

Symmetry codes: (i) x-1, y, z; (ii) x-1, -y+1/2, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, y-1/2, -z+1; (v) x, y, z-1; (vi) x, -y+1/2, z; (vii) -x+1, -y, -z+1; (viii) -x+1, y+1/2, -z+1; (iv) -x+1, y+1/2, -z+1; (iv) -x+1, y+1/2, -z+1; (iv) -x+1, -y+1, -z+1; (iv) x, y-1, z; (vi) x-1, y+1, z; (vii) -x, -y+1, -z+1; (vii) x+1, y, z; (vi) x+1, y-1, z; (vi) x, y, z+1; (vii) x, y-1, z+1; (vii) x, y-1, z+1; (viii) x, y-1, z+1.