

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dioxidobis{2-[(E)-p-tolyliminomethyl]phenolato}molybdenum(VI)

Mehdi Hatefi,^a Iran Sheikhshoaie,^a* Valiollah Mirkhani,^b Majid Moghadam^b and Reza Kia^{c,d}‡

^aChemistry Department, Shahid Bahonar University, Kerman, Iran, ^bDepartment of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, CDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and ^dX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran Correspondence e-mail: i_shoaie@yahoo.com

Received 28 July 2010; accepted 16 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.019 Å; R factor = 0.079; wR factor = 0.168; data-to-parameter ratio = 16.2.

The asymmetric unit of the title compound, $[Mo(C_{14}H_{12}NO)_2O_2]$, comprises half of the complex with the full molecule generated by the application of twofold symmetry. The Mo^{VI} atom is surrounded by two oxide O atoms and the two sets of N,O-donor atoms of the bidentate Schiff base ligands. The resulting N₂O₄ donor set defines a distorted octahedral coordination geometry. Intermolecular $C-H \cdots O$ contacts link molecules into chains along the b axis. The crystal structure is further stabilized by intermolecular π - π interactions [ring centroid–centroid distance = 3.724 (6) Å].

Related literature

For related structures with MoO₂ units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal & Maurya (1989).

Experimental

Crystal data

$[Mo(C_{14}H_{12}NO)_2O_2]$	$V = 2505.4 (18) \text{ Å}^3$
$M_r = 548.43$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 26.375 (8) Å	$\mu = 0.56 \text{ mm}^{-1}$
b = 6.8095 (8) Å	T = 296 K
c = 15.648 (10) Å	$0.21 \times 0.11 \times 0.08 \text{ mm}$
$\beta = 116.94 \ (2)^{\circ}$	

Data collection

Stoe IPDS II diffractometer Absorption correction: multi-scan [MULABS in PLATON (Spek, 2009; Blessing, 1995)] $T_{\min} = 0.892, \ T_{\max} = 0.957$

Refinement

ł

V S

2

D-

C9-

$R[F^2 > 2\sigma(F^2)] = 0.079$	124 parameters
$vR(F^2) = 0.168$	H-atom parameters constrained
V = 0.83	$\Delta \rho_{\rm max} = 0.55 \text{ e} \text{ Å}^{-3}$
006 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C9-H9A\cdots O2^{i}\\ C13-H13A\cdots O2^{ii} \end{array}$	0.93	2.34	3.237 (18)	163
	0.93	2.42	3.164 (17)	136

Symmetry codes: (i) $-x, y + 1, -z + \frac{1}{2}$; (ii) $-x, y, -z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

This work was supported by grants from the University of Kerman and the University of Tehran. RK thanks the Islamic Azad University for the X-ray diffractometer facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2696).

References

Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141-2147.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.

Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.

4305 measured reflections

 $R_{\rm int} = 0.144$

2006 independent reflections

761 reflections with $I > 2\sigma(I)$

[‡] Additional corresponding author, e-mail: zsrkk@yahoo.com, rkia@srbiau.ac.ir.

supporting information

Acta Cryst. (2010). E66, m1137 [https://doi.org/10.1107/S1600536810032836] Dioxidobis{2-[(*E*)-*p*-tolyliminomethyl]phenolato}molybdenum(VI) Mehdi Hatefi, Iran Sheikhshoaie, Valiollah Mirkhani, Majid Moghadam and Reza Kia

S1. Comment

Numerous chemical reactions are catalyzed by complexes containing the dioxomolybdenum(VI) unit, MoO₂ (Arnaiz *et al.* 2000). Moreover, Schiff base compounds containing molybdenum play a significant role in the chemistry of molybdoenzymes (Holm *et al.* 1996; Syamal & Maurya, 1989).

The asymmetric unit of the title compound, Fig. 1, comprises half of the complex. The Mo atom is located on a crystallographic 2-fold axis. The Mo^{VI} atom is surrounded by two oxo-O atoms and the N₂O₂ donor atoms of two bidentate Schiff base ligands to define a distorted octahedral coordination geometry. Intermolecular C—H···O contacts link molecules into chains along the *b* axis, Table 1 and Fig. 2. The crystal structure is further stabilized by intermolecular π - π interactions with the ring centroid(C1–C6) to centroid(C8–C13)ⁱ distance being 3.724 (6) Å for *i*: -*x*, *y*, 1/2-*z*.

S2. Experimental

The title complex was prepared by adding $MoO_2(acac)_2$ and the ligand (molar ratio 1:1) to dry methanol (30 ml), followed by refluxing for 1 h. Small, light-yellow crystals were filtered off and recrystallized from acetonitrile. The quality of the crystal was not optimal and it was weakly diffracting. Although recrystallization was attempted repeatedly, better crystals were not obtained.

S3. Refinement

All H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and constrained to refine with the parent atoms with U_{iso} (H) = 1.2–1.5 U_{eq} (C).

Figure 1

The molecular structure of the title complex showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Symmetry code for the unlabeled atoms: -x, y, 1/2 - z.

Figure 2

A view of the crystal packing of the title compound down the *a* axis showing connections of molecules through C—H···O interactions (shown as dashed lines) along the *b* axis.

Dioxidobis{2-[(*E*)-*p*-tolyliminomethyl]phenolato}molybdenum(VI)

Crystal data
$[Mo(C_{14}H_{12}NO)_2O_2]$
$M_r = 548.43$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
<i>a</i> = 26.375 (8) Å
<i>b</i> = 6.8095 (8) Å
c = 15.648 (10) Å
$\beta = 116.94 \ (2)^{\circ}$
$V = 2505.4 (18) \text{ Å}^3$
Z = 4

F(000) = 1120 $D_x = 1.454 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2560 reflections $\theta = 1.7-29.6^{\circ}$ $\mu = 0.56 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.21 \times 0.11 \times 0.08 \text{ mm}$ Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.15 mm pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>MULABS</i> in <i>PLATON</i> ; Blessing, 1995) $T_{\min} = 0.892, T_{\max} = 0.957$	4305 measured reflections 2006 independent reflections 761 reflections with $I > 2\sigma(I)$ $R_{int} = 0.144$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -31 \rightarrow 22$ $k = -7 \rightarrow 8$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.079$ wR(F ²) = 0.168	Hydrogen site location: inferred from neighbouring sites
S = 0.83	H-atom parameters constrained
2006 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0476P)^2]$
124 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Mo1	0.0000	-0.2892 (2)	0.2500	0.0502 (7)	
01	-0.0423 (3)	-0.2223 (11)	0.3209 (4)	0.053 (2)	
O2	-0.0486 (4)	-0.4409 (11)	0.1680 (6)	0.079 (3)	
N1	0.0559 (5)	-0.0212 (13)	0.3428 (5)	0.037 (3)	
C1	-0.0533 (6)	-0.061 (2)	0.3573 (8)	0.0479 (18)	
C2	-0.1029 (5)	-0.0625 (17)	0.3693 (7)	0.0479 (18)	
H2A	-0.1260	-0.1733	0.3541	0.057*	
C3	-0.1165 (5)	0.1058 (16)	0.4047 (7)	0.0479 (18)	
H3A	-0.1493	0.1052	0.4127	0.057*	
C4	-0.0846 (5)	0.2697 (19)	0.4278 (6)	0.0479 (18)	
H4A	-0.0957	0.3798	0.4503	0.057*	
C5	-0.0345 (5)	0.2726 (19)	0.4176 (6)	0.054 (4)	
H5A	-0.0118	0.3845	0.4333	0.065*	
C6	-0.0187 (5)	0.1007 (18)	0.3827 (6)	0.037 (3)	
C7	0.0360 (5)	0.1081 (16)	0.3804 (6)	0.041 (3)	
H7A	0.0589	0.2167	0.4087	0.049*	

supporting information

C8	0.1129 (6)	0.013 (2)	0.3551 (7)	0.044 (3)
C9	0.1308 (6)	0.198 (2)	0.3415 (7)	0.063 (2)
H9A	0.1063	0.3049	0.3253	0.075*
C10	0.1856 (6)	0.219 (2)	0.3524 (7)	0.067 (4)
H10A	0.1972	0.3429	0.3429	0.081*
C11	0.2243 (6)	0.063 (2)	0.3771 (8)	0.063 (2)
C12	0.2048 (6)	-0.115 (2)	0.3891 (7)	0.063 (2)
H12A	0.2294	-0.2217	0.4054	0.075*
C13	0.1500 (5)	-0.144 (2)	0.3781 (7)	0.063 (2)
H13A	0.1384	-0.2690	0.3861	0.075*
C14	0.2838 (6)	0.095 (3)	0.3862 (11)	0.120 (6)
H14A	0.3085	-0.0083	0.4239	0.181*
H14B	0.2984	0.2193	0.4169	0.181*
H14C	0.2821	0.0955	0.3236	0.181*

Atomic displacement parameters (A^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0830 (15)	0.0203 (8)	0.0809 (12)	0.000	0.0666 (11)	0.000
0.056 (6)	0.046 (5)	0.080 (5)	0.015 (5)	0.050 (5)	0.018 (5)
0.110 (10)	0.039 (5)	0.138 (8)	-0.036 (6)	0.099 (7)	-0.043 (5)
0.045 (9)	0.033 (6)	0.037 (6)	0.027 (6)	0.022 (6)	0.014 (4)
0.043 (5)	0.055 (4)	0.049 (4)	0.005 (4)	0.024 (4)	0.007 (3)
0.043 (5)	0.055 (4)	0.049 (4)	0.005 (4)	0.024 (4)	0.007 (3)
0.043 (5)	0.055 (4)	0.049 (4)	0.005 (4)	0.024 (4)	0.007 (3)
0.043 (5)	0.055 (4)	0.049 (4)	0.005 (4)	0.024 (4)	0.007 (3)
0.064 (10)	0.060 (9)	0.034 (6)	0.006 (9)	0.018 (6)	-0.006 (6)
0.031 (9)	0.064 (9)	0.017 (6)	0.010 (7)	0.012 (6)	0.002 (6)
0.053 (11)	0.037 (7)	0.029 (6)	0.010 (7)	0.015 (7)	0.018 (5)
0.029 (9)	0.075 (10)	0.034 (7)	0.010 (8)	0.020 (6)	0.004 (6)
0.053 (6)	0.079 (5)	0.062 (4)	0.031 (6)	0.031 (4)	0.015 (4)
0.072 (11)	0.063 (9)	0.073 (8)	-0.010 (10)	0.038 (8)	-0.020 (8)
0.053 (6)	0.079 (5)	0.062 (4)	0.031 (6)	0.031 (4)	0.015 (4)
0.053 (6)	0.079 (5)	0.062 (4)	0.031 (6)	0.031 (4)	0.015 (4)
0.053 (6)	0.079 (5)	0.062 (4)	0.031 (6)	0.031 (4)	0.015 (4)
0.070 (14)	0.165 (18)	0.150 (14)	-0.014 (12)	0.071 (11)	-0.031 (12)
	$\begin{array}{c} 0.0830 (15) \\ 0.0830 (15) \\ 0.056 (6) \\ 0.110 (10) \\ 0.045 (9) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.043 (5) \\ 0.053 (11) \\ 0.029 (9) \\ 0.053 (6) \\ 0.053 (6) \\ 0.053 (6) \\ 0.053 (6) \\ 0.070 (14) \end{array}$	0.1 0.22 $0.0830 (15)$ $0.0203 (8)$ $0.056 (6)$ $0.046 (5)$ $0.110 (10)$ $0.039 (5)$ $0.045 (9)$ $0.033 (6)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.043 (5)$ $0.055 (4)$ $0.064 (10)$ $0.060 (9)$ $0.031 (9)$ $0.064 (9)$ $0.053 (11)$ $0.037 (7)$ $0.029 (9)$ $0.075 (10)$ $0.053 (6)$ $0.079 (5)$ $0.053 (6)$ $0.079 (5)$ $0.053 (6)$ $0.079 (5)$ $0.053 (6)$ $0.079 (5)$ $0.053 (6)$ $0.079 (5)$ $0.070 (14)$ $0.165 (18)$	0.1 0.20 0.20 $0.0830 (15)$ $0.0203 (8)$ $0.0809 (12)$ $0.056 (6)$ $0.046 (5)$ $0.080 (5)$ $0.110 (10)$ $0.039 (5)$ $0.138 (8)$ $0.045 (9)$ $0.033 (6)$ $0.037 (6)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.053 (10)$ $0.064 (9)$ $0.017 (6)$ $0.053 (11)$ $0.037 (7)$ $0.029 (6)$ $0.029 (9)$ $0.075 (10)$ $0.034 (7)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.070 (14)$ $0.165 (18)$ $0.150 (14)$	O^{11} O^{12} O^{12} O^{12} 0.0830 (15) 0.0203 (8) 0.0809 (12) 0.000 0.056 (6) 0.046 (5) 0.080 (5) 0.015 (5) 0.110 (10) 0.039 (5) 0.138 (8) -0.036 (6) 0.045 (9) 0.033 (6) 0.037 (6) 0.027 (6) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.043 (5) 0.055 (4) 0.049 (4) 0.005 (4) 0.053 (10) 0.034 (6) 0.010 (7) 0.029 (9) 0.075 (10) 0.034 (7) 0.010 (8) 0.053 (6) 0.079 (5) 0.062 (4) 0.031 (6) 0.053 (6) 0.079 (5) 0.062 (4) 0.031 (6) 0.053 (6) 0.079 (5) 0.062 (4) 0.031 (6) 0.053 (6) 0.079 (5) 0.062 (4) 0.031 (6) 0.070 (14) 0.165 (18) 0.150 (14) -0.014 (12) <td>$0.1^{-1}$$0.2^{-1}$$0.2^{-1}$$0.1^{-1}$$0.1^{-1}$$0.0830 (15)$$0.0203 (8)$$0.0809 (12)$$0.000$$0.0666 (11)$$0.056 (6)$$0.046 (5)$$0.080 (5)$$0.015 (5)$$0.050 (5)$$0.110 (10)$$0.039 (5)$$0.138 (8)$$-0.036 (6)$$0.099 (7)$$0.045 (9)$$0.033 (6)$$0.037 (6)$$0.027 (6)$$0.022 (6)$$0.043 (5)$$0.055 (4)$$0.049 (4)$$0.005 (4)$$0.024 (4)$$0.043 (5)$$0.055 (4)$$0.049 (4)$$0.005 (4)$$0.024 (4)$$0.053 (10)$$0.034 (6)$$0.010 (7)$$0.012 (6)$$0.053 (6)$$0.079 (5)$$0.062 (4)$$0.031 (6)$$0.031 (4)$$0.053 (6)$$0.079 (5)$$0.062 (4)$$0.031 (6)$$0.031 (4)$$0.053 (6)$$0.079 (5)$$0.062 (4)$$0.031 (6)$$0.031 (4)$$0.053 (6)$$0.079 (5)$$0.062 (4)$$0.031 (6)$$0.031$</td>	0.1^{-1} 0.2^{-1} 0.2^{-1} 0.1^{-1} 0.1^{-1} $0.0830 (15)$ $0.0203 (8)$ $0.0809 (12)$ 0.000 $0.0666 (11)$ $0.056 (6)$ $0.046 (5)$ $0.080 (5)$ $0.015 (5)$ $0.050 (5)$ $0.110 (10)$ $0.039 (5)$ $0.138 (8)$ $-0.036 (6)$ $0.099 (7)$ $0.045 (9)$ $0.033 (6)$ $0.037 (6)$ $0.027 (6)$ $0.022 (6)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.043 (5)$ $0.055 (4)$ $0.049 (4)$ $0.005 (4)$ $0.024 (4)$ $0.053 (10)$ $0.034 (6)$ $0.010 (7)$ $0.012 (6)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.031 (6)$ $0.031 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.031 (6)$ $0.031 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.031 (6)$ $0.031 (4)$ $0.053 (6)$ $0.079 (5)$ $0.062 (4)$ $0.031 (6)$ 0.031

Geometric parameters (Å, °)

Mo1—O2	1.694 (9)	С5—Н5А	0.9300
Mo1—O2 ⁱ	1.694 (9)	C6—C7	1.459 (14)
Mo1-O1 ⁱ	1.950 (6)	C7—H7A	0.9300
Mo1—O1	1.950 (6)	C8—C13	1.385 (15)
Mo1—N1	2.382 (9)	C8—C9	1.394 (17)
Mo1—N1 ⁱ	2.382 (9)	C9—C10	1.384 (15)
01—C1	1.330 (12)	С9—Н9А	0.9300
N1—C7	1.293 (12)	C10—C11	1.400 (16)
N1—C8	1.446 (14)	C10—H10A	0.9300

supporting information

C1—C6	1.367 (15)	C11—C12	1.363 (17)
C1—C2	1.405 (16)	C11—C14	1.528 (18)
C^2 C^3	1.388(14)	C12 C13	1 301 (16)
	0.0200	C12C13	0.0200
C2—H2A	0.9300	CI2—HIZA	0.9300
C3—C4	1.344 (14)	С13—Н13А	0.9300
С3—НЗА	0.9300	C14—H14A	0.9600
C4—C5	1.402 (14)	C14—H14B	0.9600
C4—H4A	0.9300	C14—H14C	0.9600
C5—C6	1 432 (14)		
	1.152 (11)		
	104.0 (6)		100 5
O2-Mo1-O2	104.8 (6)	С4—С5—Н5А	120.5
O2—Mo1—O1 ¹	98.2 (3)	C6—C5—H5A	120.5
O2 ⁱ —Mo1—O1 ⁱ	98.2 (4)	C1—C6—C5	119.7 (12)
O2—Mo1—O1	98.2 (4)	C1—C6—C7	123.9 (11)
O2 ⁱ —Mo1—O1	98.2 (3)	C5—C6—C7	116.3 (12)
01^{i} Mo1 - 01	153.0(4)	N1 - C7 - C6	126 5 (11)
$O_2 M_{O1} N_1$	167.6(4)	N1 C7 H7A	116.7
	107.0(4)	NI - C - H/A	110.7
O2 ⁴ —Mo1—N1	87.6(3)	С6—С/—Н/А	116./
Ol ¹ —Mol—Nl	79.2 (3)	C13—C8—C9	119.4 (13)
O1—Mo1—N1	80.2 (3)	C13—C8—N1	118.7 (12)
O2—Mo1—N1 ⁱ	87.6 (3)	C9—C8—N1	121.9 (12)
O2 ⁱ —Mo1—N1 ⁱ	167.6 (4)	C10—C9—C8	118.9 (14)
01^{i} Mo1 N1 ⁱ	80.2 (3)	C10-C9-H9A	120.5
$O1 Mo1 N1^{i}$	70.2(3)	C_{8} C_{9} H_{9}	120.5
	79.2(3)		120.5
NI-MoI-NI'	80.0 (4)	C9_C10_C11	122.9 (14)
C1—O1—Mo1	136.7 (7)	C9—C10—H10A	118.6
C7—N1—C8	116.2 (10)	C11—C10—H10A	118.6
C7—N1—Mo1	122.2 (9)	C12—C11—C10	116.2 (14)
C8—N1—Mo1	121.5 (7)	C12—C11—C14	123.3 (15)
01 - C1 - C6	122.9 (12)	C10-C11-C14	120.5 (14)
01 - C1 - C2	1165(12)	C_{11} C_{12} C_{13}	123.1(14)
$C_{1} = C_{1} = C_{2}$	110.5(12)	C_{11} C_{12} U_{12A}	123.1 (14)
$C_0 - C_1 - C_2$	120.6 (12)	CII—CI2—HI2A	118.4
C3—C2—C1	118.0 (12)	C13—C12—H12A	118.4
С3—С2—Н2А	121.0	C8—C13—C12	119.5 (13)
C1—C2—H2A	121.0	C8—C13—H13A	120.2
C4—C3—C2	123.4 (12)	C12—C13—H13A	120.2
C4—C3—H3A	118.3	C11—C14—H14A	109.5
С2—С3—Н3А	118 3	C11—C14—H14B	109 5
$C_2 C_4 C_5$	110.2(12)	H1/A $C1/A$ $H1/B$	109.5
$C_3 = C_4 = C_3$	119.2 (12)		109.5
C3—C4—H4A	120.4	CII—CI4—HI4C	109.5
С5—С4—Н4А	120.4	H14A—C14—H14C	109.5
C4—C5—C6	119.0 (12)	H14B—C14—H14C	109.5
O2—Mo1—O1—C1	-136.1 (11)	C2—C1—C6—C5	-3.0 (15)
02^{i} Mo1 - 01 - 01	1176(11)	01 - C1 - C6 - C7	-52(16)
$O1^{i}$ Mo1 O1 C1	-0.2(10)	$C_2 C_1 C_6 C_7$	174 A (0)
	9.2(10)	$C_{2} = C_{1} = C_{0} = C_{1}$	1 / 4.4 (9)
NI-MOI-OI-CI	51.5 (11)	C4—C5—C6—C1	1.9 (14)
N1 ¹ —Mo1—O1—C1	-50.1 (11)	C4—C5—C6—C7	-175.7 (8)

$\begin{array}{c} 02-Mo1-N1-C7\\ 02^{i}-Mo1-N1-C7\\ 01^{i}-Mo1-N1-C7\\ 01-Mo1-N1-C7\\ 02-Mo1-N1-C7\\ 02-Mo1-N1-C8\\ 02^{i}-Mo1-N1-C8\\ 01^{i}-Mo1-N1-C8\\ 01^{i}-Mo1-N1-C8\\ 01-Mo1-N1-C8\\ N1^{i}-Mo1-N1-C8\\ N1^{i}-Mo1-N1-C8\\ Mo1-O1-C1-C2\\ 01-C1-C2-C3\\ C6-C1-C2-C3\\ C6-C1-C2-C3\\ \end{array}$	$\begin{array}{c} 62 \ (2) \\ -119.5 \ (8) \\ 141.7 \ (8) \\ -20.8 \ (7) \\ 59.9 \ (7) \\ -113.4 \ (19) \\ 64.6 \ (8) \\ -34.2 \ (7) \\ 163.4 \ (8) \\ -116.0 \ (8) \\ -25.2 \ (17) \\ 155.2 \ (7) \\ -178.3 \ (9) \\ 2.1 \ (16) \end{array}$	$\begin{array}{c} C8 & - N1 & - C7 & - C6 \\ Mo1 & - N1 & - C7 & - C6 \\ C1 & - C6 & - C7 & - N1 \\ C5 & - C6 & - C7 & - N1 \\ C7 & - N1 & - C8 & - C13 \\ Mo1 & - N1 & - C8 & - C13 \\ C7 & - N1 & - C8 & - C9 \\ Mo1 & - N1 & - C8 & - C9 \\ Mo1 & - N1 & - C8 & - C9 \\ C13 & - C8 & - C9 & - C10 \\ N1 & - C8 & - C9 & - C10 \\ N1 & - C8 & - C9 & - C10 \\ C8 & - C9 & - C10 & - C11 \\ C9 & - C10 & - C11 & - C12 \\ C9 & - C10 & - C11 & - C12 \\ C9 & - C10 & - C11 & - C14 \\ C10 & - C11 & - C12 & - C13 \end{array}$	-176.2 (9) 7.8 (13) 10.1 (16) -172.5 (9) 137.6 (10) -46.3 (11) -44.5 (13) 131.6 (9) -0.7 (15) -178.7 (8) -0.3 (16) 0.8 (16) 178.8 (10) -0.2 (17)
O1-C1-C2-C3	-178.3 (9)	C9-C10-C11-C14	178.8 (10)
C6-C1-C2-C3	2.1 (16)	C10-C11-C12-C13	-0.2 (17)
C1-C2-C3-C4	0.0 (16)	C14-C11-C12-C13	-178.1 (11)
C2-C3-C4-C5	-1.0 (15)	C9-C8-C13-C12	1.3 (15)
C3-C4-C5-C6	0.1 (14)	N1-C8-C13-C12	179.3 (9)
O1-C1-C6-C5	177.4 (9)	C11-C12-C13-C8	-0.9 (16)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
С9—Н9А…О2 ^{іі}	0.93	2.34	3.237 (18)	163
C13—H13A····O2 ⁱ	0.93	2.42	3.164 (17)	136

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) -*x*, *y*+1, -*z*+1/2.