Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

5-(Hydroxymethyl)furan-2-carbaldehyde

Tamila Shalumova and Joseph M. Tanski*

Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
Correspondence e-mail: jotanski@vassar.edu
Received 26 July 2010; accepted 3 August 2010
Key indicators: single-crystal X-ray study; $T=125 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.089$; data-to-parameter ratio $=17.4$.

The title compound (HMF), $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$, is one of the products of acid-catalyzed dehydration of high-fructose corn syrup, and has been shown to be toxic to honey bees. The compound was crystallized at 276 K , and it was found that the two independent molecules in the asymmetric unit form an infinite $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding chain that is linked into a threedimensional network structure by weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ contacts.

Related literature

For the formation of HMF from high-fructose corn syrup, see: Le Blanc et al. (2009), and the story subsequently reported in Chemical \& Engineering News by Kemsley (2009). The effect of HMF on honey bees was studied by Bailey (1966); for the mechanism of HMF formation from sugars, see: Antal et al. (1990); Haworth \& Jones (1944); Ermolaeva \& Sapronova (1982). For the effect of HMF on DNA, see: Durling et al. (2009).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$
$M_{r}=126.11$
Monoclinic, $P 2_{1} / c$
$a=15.9126$ (17) A
$b=5.6166$ (6) \AA
$c=13.1722(14) \AA$
$\beta=90.770(2)^{\circ}$
$V=1177.2(2) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
$0.22 \times 0.19 \times 0.14 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.975, T_{\text {max }}=0.984$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.089$
$S=1.04$
2933 reflections
169 parameters
2 restraints
15720 measured reflections 2933 independent reflections 2246 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$ independent and constrained refinement
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{O} \cdots \mathrm{O} 23^{\text {i }}$	0.85 (1)	1.89 (1)	2.7341 (13)	175 (2)
$\mathrm{O} 23-\mathrm{H} 23 \mathrm{O} \cdots \mathrm{O} 11^{\text {ii }}$	0.84 (1)	1.87 (1)	2.7006 (14)	173 (2)
C14-H14A \cdots O13 ${ }^{\text {iii }}$	0.95	2.41	3.3029 (17)	156
$\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{O} 2{ }^{\text {iv }}$	0.95	2.56	3.4726 (15)	160
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{O} 21^{\text {iii }}$	0.95	2.38	3.3258 (16)	175
$\mathrm{C} 24-\mathrm{H} 24 A \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.95	2.46	3.3734 (16)	160
C26-H26A \cdots O21 ${ }^{\text {v }}$	0.99	2.53	3.4639 (16)	158

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;$ (ii) $x-1, y, z$; (iii) $x, y+1, z$; (iv)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (v) $x,-y-\frac{1}{2}, z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2283).

References

Antal, M. J. Jr, Mok, W. S. \& Richards, G. N. (1990). Carbohydr. Res. 199, 91109.

Bailey, L. (1966). J. Apic. Res. 5, 127-136.
Bruker (2007). APEX2, SADABS and SAINT. BrukerAXS Inc., Madison, Wisconsin, USA.
Durling, L. J. K., Busk, L. \& Hellman, B. E. (2009). Food Chem. Toxicol. 47, 880-884.
Ermolaeva, G. A. \& Sapronova, L. A. (1982). Sakh. Prom-st. pp. 31-32.
Haworth, W. N. \& Jones, W. G. M. (1944). J. Chem. Soc. pp. 667-670.
Kemsley, J. N. (2009). Chem. Eng. News, 87, 37.
Le Blanc, B. W., Eggleston, G., Sammataro, D., Cornett, C., Dufault, R., Deeby, T. \& St Cyr, E. (2009). J. Agric. Food Chem. 57, 7369-7376.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2266 [https://doi.org/10.1107/S1600536810031119]

5-(Hydroxymethyl)furan-2-carbaldehyde

Tamila Shalumova and Joseph M. Tanski

S1. Comment

5-(Hydroxymethyl)-2-furancarboxaldehyde (Scheme 1), or, as it is more commonly referred to as 5-hydroxymethylfurfural, HMF, is formed by acid-catalyzed dehydration of sugars, most notably of D-fructose (Antal et al., 1990; Bailey, 1966; Ermolaeva \& Sapronova, 1982; Haworth \& Jones, 1944). It is present in many foods such as dried fruit, coffee, and bread, and especially in food that has been heated (Durling et al., 2009). HMF is also formed by acid-catalyzed degradation of high-fructose corn syrup that has been subject to heat. It is toxic to honey bees, which are fed highfructose corn syrup by beekeepers to promote colony growth and when nectar sources are scarce (Kemsley, 2009; Le Blanc et al., 2009). The toxicity presents itself to bees as intestinal ulcerations, which lead to dysentery and, soon after, death. One study by Durling et al., (2009) has shown that HMF may damage DNA.

The asymmetric unit contains two independent unique molecules of HMF (Figure 1) which are hydrogen bonded into an infinite one-dimensional screw-like chain along the crystallographic b axis (Figure 2, Table 1). The hydroxymethyl oxygen O 23 is both a hydrogen bond donor and acceptor. The aldehyde oxygen of one of the independent molecules, O 11 , acts as a hydrogen bond acceptor from the proton on O 23 of the second independent molecule, $D \cdots A 2.701$ (1) \AA. The proton on the hydroxylmethyl oxygen of the first independent molecule, O 13 , acts as a hydrogen bond donor to the hydroxymethyl oxygen $\mathrm{O} 23, D \cdots A 2.734$ (1) \AA. The aldehyde oxygen of the second molecule, O21, is not involved in classical hydrogen bonding, however it is involved in $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Five weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 1) link the screw-like hydrogen bonded chains into a three-dimensional network structure.

S2. Experimental

5-Hydroxymethylfurfural was purchased from Aldrich and used without further purification. The compound was placed in a 276 K cold room until crystallization occurred. A crystal suitable for diffraction was selected and mounted in a nylon loop with Paratone- N cryoprotectant oil with a microscope in the cold room before being placed immediately in a 125 K coldstream on the diffractometer.

S3. Refinement

A suitable crystal was mounted in a nylon loop with Paratone- N cryoprotectant oil and data was collected on a Bruker APEXII CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F^{2} with SHELXTL Version 6.14 (Sheldrick, 2008). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions with distances $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Hydrogen atoms on oxygen were refined semifreely with the help of a distance restraint $\mathrm{d}(\mathrm{O}-\mathrm{H})=0.84 \AA$, and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{O})$. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Figure 1
A view of the two independent moleucles of HMF, with displacement ellipsoids shown at the 50% probability level. H atoms on carbon, except for the H atoms on the aldehydes, have been omitted for clarity.

Figure 2
A view of the one-dimensional hydrogen bonding chain formed by the two independent moleucles of HMF. H atoms on carbon have been omitted for clarity.

5-(Hydroxymethyl)furan-2-carbaldehyde

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$
$M_{r}=126.11$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=15.9126$ (17) \AA
$b=5.6166$ (6) \AA
$c=13.1722(14) \AA$
$\beta=90.770(2)^{\circ}$
$V=1177.2(2) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$F(000)=528$
$D_{\mathrm{x}}=1.423 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=301-307 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5970 reflections
$\theta=2.6-28.2^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
Block, colourless
$0.22 \times 0.19 \times 0.14 \mathrm{~mm}$

φ and ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.975, T_{\text {max }}=0.984$

15720 measured reflections
2933 independent reflections
2246 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.089$
$S=1.04$
2933 reflections
169 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=2.6^{\circ} \\
& h=-21 \rightarrow 21 \\
& k=-7 \rightarrow 7 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O11	$1.11183(6)$	$0.07149(19)$	$0.62286(8)$	$0.0320(2)$
O12	$0.94229(6)$	$0.19067(16)$	$0.61025(7)$	$0.0227(2)$
O13	$0.77247(6)$	$0.02624(17)$	$0.68104(8)$	$0.0268(2)$
H13O	$0.7607(10)$	$0.125(3)$	$0.7278(11)$	0.032^{*}
O21	$0.44841(6)$	$-0.14117(17)$	$0.33477(7)$	$0.0259(2)$
O22	$0.38382(5)$	$0.01084(15)$	$0.52416(6)$	$0.01771(19)$
O23	$0.25895(6)$	$-0.14054(16)$	$0.67299(7)$	$0.0229(2)$
H23O	$0.2152(9)$	$-0.064(3)$	$0.6587(12)$	0.027^{*}
C11	$1.08966(9)$	$0.2796(3)$	$0.63013(10)$	$0.0278(3)$
H11A	1.1321	0.3966	0.6401	0.033^{*}
C12	$1.00405(9)$	$0.3586(2)$	$0.62456(10)$	$0.0246(3)$
C13	$0.96973(10)$	$0.5808(3)$	$0.62951(10)$	$0.0295(3)$
H13B	0.9989	0.7269	0.6386	0.035^{*}
C14	$0.88169(10)$	$0.5496(3)$	$0.61829(10)$	$0.0290(3)$
H14A	0.8402	0.6713	0.6189	0.035^{*}
C15	$0.86787(8)$	$0.3121(2)$	$0.60650(10)$	$0.0230(3)$
C16	$0.79019(9)$	$0.1669(3)$	$0.59398(10)$	$0.0271(3)$
H16A	0.7421	0.2743	0.5801	0.032^{*}
H16B	0.7964	0.0608	0.5345	0.032^{*}
C21	$0.44388(8)$	$0.0692(2)$	$0.35668(10)$	$0.0209(3)$

H21A	0.4642	0.1803	0.3085	0.025^{*}
C22	$0.41029(7)$	$0.1641(2)$	$0.44951(9)$	$0.0187(3)$
C23	$0.39749(8)$	$0.3945(2)$	$0.47805(10)$	$0.0220(3)$
H23B	0.4111	0.5334	0.4405	0.026^{*}
C24	$0.35976(8)$	$0.3853(2)$	$0.57519(10)$	$0.0235(3)$
H24A	0.3423	0.5172	0.6149	0.028^{*}
C25	$0.35344(8)$	$0.1518(2)$	$0.60018(9)$	$0.0186(3)$
C26	$0.32435(8)$	$0.0284(2)$	$0.69336(10)$	$0.0215(3)$
H26A	0.3726	-0.0546	0.7257	0.026^{*}
H26B	0.3037	0.1486	0.7420	0.026^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O11	$0.0247(5)$	$0.0384(6)$	$0.0327(6)$	$0.0042(4)$	$-0.0022(4)$	$0.0009(5)$
O12	$0.0223(5)$	$0.0214(5)$	$0.0244(5)$	$0.0033(4)$	$-0.0016(4)$	$-0.0015(4)$
O13	$0.0294(5)$	$0.0216(5)$	$0.0294(5)$	$0.0024(4)$	$0.0051(4)$	$-0.0041(4)$
O21	$0.0299(5)$	$0.0234(5)$	$0.0244(5)$	$0.0013(4)$	$0.0036(4)$	$-0.0020(4)$
O22	$0.0193(4)$	$0.0157(4)$	$0.0182(4)$	$0.0001(3)$	$0.0023(3)$	$0.0005(3)$
O23	$0.0216(5)$	$0.0214(5)$	$0.0258(5)$	$0.0011(4)$	$0.0041(4)$	$0.0035(4)$
C11	$0.0283(7)$	$0.0353(8)$	$0.0198(7)$	$-0.0048(6)$	$-0.0006(5)$	$-0.0007(6)$
C12	$0.0294(7)$	$0.0252(7)$	$0.0191(6)$	$-0.0038(5)$	$0.0012(5)$	$-0.0004(5)$
C13	$0.0409(8)$	$0.0235(7)$	$0.0244(7)$	$-0.0023(6)$	$0.0079(6)$	$-0.0018(6)$
C14	$0.0377(8)$	$0.0245(7)$	$0.0251(7)$	$0.0083(6)$	$0.0092(6)$	$0.0022(6)$
C15	$0.0264(7)$	$0.0251(7)$	$0.0176(6)$	$0.0081(5)$	$0.0022(5)$	$0.0011(5)$
C16	$0.0254(7)$	$0.0320(8)$	$0.0238(7)$	$0.0056(6)$	$-0.0001(5)$	$-0.0014(6)$
C21	$0.0186(6)$	$0.0233(7)$	$0.0210(6)$	$0.0006(5)$	$0.0012(5)$	$0.0037(5)$
C22	$0.0162(6)$	$0.0192(6)$	$0.0206(6)$	$-0.0014(5)$	$0.0007(5)$	$0.0039(5)$
C23	$0.0221(6)$	$0.0175(6)$	$0.0263(7)$	$0.0003(5)$	$0.0008(5)$	$0.0029(5)$
C24	$0.0241(7)$	$0.0193(6)$	$0.0273(7)$	$0.0024(5)$	$0.0024(5)$	$-0.0026(5)$
C25	$0.0164(6)$	$0.0194(6)$	$0.0200(6)$	$0.0019(5)$	$0.0003(5)$	$-0.0020(5)$
C26	$0.0215(6)$	$0.0233(6)$	$0.0197(6)$	$0.0011(5)$	$0.0013(5)$	$-0.0014(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 11-\mathrm{C} 11$	$1.2249(18)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.360(2)$
$\mathrm{O} 12-\mathrm{C} 15$	$1.3670(15)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	0.9500
$\mathrm{O} 12-\mathrm{C} 12$	$1.3732(16)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.488(2)$
$\mathrm{O} 13-\mathrm{C} 16$	$1.4239(17)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9900
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{O}$	$0.850(13)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9900
$\mathrm{O} 21-\mathrm{C} 21$	$1.2188(16)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.4431(17)$
$\mathrm{O} 22-\mathrm{C} 25$	$1.3698(14)$	$\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	0.9500
$\mathrm{O} 22-\mathrm{C} 22$	$1.3769(14)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.3639(18)$
$\mathrm{O} 23-\mathrm{C} 26$	$1.4312(16)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.4217(19)$
$\mathrm{O} 23-\mathrm{H} 23 \mathrm{O}$	$0.838(13)$	$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~B}$	0.9500
$\mathrm{C} 11-\mathrm{C} 12$	$1.434(2)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.3561(18)$
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9500	$\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	0.9500
$\mathrm{C} 12-\mathrm{C} 13$	$1.364(2)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.4888(18)$

$\left.\begin{array}{llll}\text { C13-C14 } & 1.418(2) & \begin{array}{l}\text { C26-H26A } \\ \text { C13-H13B }\end{array} & 0.9500\end{array}\right)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13 — \mathrm{H} 13 O \cdots \mathrm{O} 23^{\mathrm{i}}$	$0.85(1)$	$1.89(1)$	$2.7341(13)$	$175(2)$
$\mathrm{O} 23 — \mathrm{H} 23 O \cdots \mathrm{O} 11^{\text {ii }}$	$0.84(1)$	$1.87(1)$	$2.7006(14)$	$173(2)$
$\mathrm{C} 14 — \mathrm{H} 14 A \cdots \mathrm{O} 13^{\text {iii }}$	0.95	2.41	$3.3029(17)$	156
$\mathrm{C} 21 — \mathrm{H} 21 A \cdots \mathrm{O} 21^{\text {iv }}$	0.95	2.56	$3.4726(15)$	160
$\mathrm{C} 23 — \mathrm{H} 23 B \cdots \mathrm{O} 21^{\text {iii }}$	0.95	2.38	$3.3258(16)$	175
$\mathrm{C} 24 — \mathrm{H} 24 A \cdots \mathrm{O} 23^{\text {iii }}$	0.95	2.46	$3.3734(16)$	160
$\mathrm{C} 26 — \mathrm{H} 26 A \cdots \mathrm{O} 21^{v}$	0.99	2.53	$3.4639(16)$	158

[^0]
[^0]: Symmetry codes: (i) $-x+1, y+1 / 2,-z+3 / 2$; (ii) $x-1, y, z$; (iii) $x, y+1, z$; (iv) $-x+1, y+1 / 2,-z+1 / 2$; (v) $x,-y-1 / 2, z+1 / 2$.

