

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Arborinol methyl ether from Areca catechu L.

Xixin He,^a Yajun Li,^a Cuixian Zhang^a and Xiaopeng Hu^b*

^aCollege of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China, and ^bSchool of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, People's Republic of China Correspondence e-mail: huxpeng@mail.sysu.edu.cn

Received 26 July 2010; accepted 2 August 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.096; data-to-parameter ratio = 14.8.

The title compound isolated from Areca catechu L. (common name: arborinol methyl ether; a member of the arborane family) was established as 3α -methoxyarbor-9(11)-ene, $C_{31}H_{52}O$. Rings A/B/C/D assume a chair conformation, while ring E has an envelope conformation. The absolute configuration was determined to be (3R,5R,8S,10S,13R,14S,17S,18S, 21S) by analysis of Bijvoet pairs based on resonant scattering of light atoms, yielding a Hooft parameter y of -0.03 (3).

Related literature

For the biological activity of Areca catechu L. compounds, see: Dar et al. (1997); Hocart & Fankhauser (1996); Iwamoto et al. (1988); Kusumoto et al. (1995); Norton (1998); Lee & Choi (1999); Ohmoto & Natori (1969); Chan et al. (2008); Pithayanukul et al. (2009); Zhang et al. (2010). For related structures, see: Corrêa et al. (2009); Khera et al. (2003); Takahashi & Iitaka (1972). Analysis of the absolute configuration was performed by using likelihood methods (Hooft et al., 2008) using PLATON (Spek, 2009).

organic compounds

Experimental

Crystal data

α β

C ₃₁ H ₅₂ O	$\gamma = 114.397 \ (4)^{\circ}$
$M_r = 440.73$	V = 646.86 (4) Å ³
Triclinic, P1	Z = 1
a = 6.2684 (2) Å	Cu Ka radiation
b = 7.1162 (3) Å	$\mu = 0.48 \text{ mm}^{-1}$
c = 16.0814 (5) Å	$T = 120 { m K}$
$\alpha = 96.812 \ (3)^{\circ}$	$0.60 \times 0.50 \times 0.40 \text{ mm}$
$\beta = 91.079 \ (3)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur Eos
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2010)
$T_{\min} = 0.658, T_{\max} = 1.0$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.096$ S = 1.044415 reflections 298 parameters 3 restraints

10247 measured reflections 4415 independent reflections 4408 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.011$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1952 Friedel pairs Flack parameter: 0.02 (22)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrvsAlis PRO: data reduction: CrvsAlis PRO: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The authors gratefully thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (XXH), the National Natural Science Foundation of China, 30800169 (XPH) and the Research Fund for the Doctoral Program of Higher Education of China, 200805581146 (XPH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2282).

References

Chan, S. W., Li, S., Kwok, C. Y., Benzie, I. F. F., Szeto, Y. T., Guo, D. J., He, X. P. & Yu, P. H. F. (2008). Pharm. Biol. 46, 587-595.

Corrêa, R. S., Coelho, C. P., dos Santos, M. H., Ellena, J. & Doriguetto, A. C. (2009). Acta Cryst. C65, 097-099.

- Dar, A., Khatoon, S., Rahman, G., Atta-Ur-Rahman (1997). Phytomedicine, 4, 41-45
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hocart, C. H. & Fankhauser, B. (1996). Experientia, 52, 281-285.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.
- Iwamoto, M., Matsuo, T., Uchino, K., Tonosaki, Y. & Fukuchi, A. (1988). Planta Med. 54, 422-425.
- Khera, S., Jolad, S. D., Carducci, M. D. & Timmermann, B. N. (2003). Acta Cryst. E59, o1403-o1404.

Kusumoto, I., Nakabayashi, T., Kida, H., Miyashiro, H., Hattori, M., Namba, T. & Shimotohno, K. (1995). Phytother. Res. 9, 180-184.

Lee, K. K. & Choi, J. D. (1999). Int. J. Cosmet. Sci. 21, 275-284.

Norton, S. A. (1998). J. Am. Acad. Dermatol. 38, 81-88.

Ohmoto, T. & Natori, S. (1969). J. Chem. Soc. D Chem. Commun. p. 601.

- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Pithayanukul, P., Nithitanakool, S. & Bavovada, R. (2009). Molecules, 14, 4987-5000.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Takahashi, R. & Iitaka, Y. (1972). Acta Cryst. B28, 764–770.
- Minimin, S. P. (2010). J. Appl. Cryst. 43, 920–925.
 Zhang, X., Wu, J., Han, Z., Mei, W. L. & Dai, H. F. (2010). Chem. Res. Chin. Univ. 26, 161–164.

supporting information

Acta Cryst. (2010). E66, o2273–o2274 [https://doi.org/10.1107/S1600536810030758]

Arborinol methyl ether from Areca catechu L.

Xixin He, Yajun Li, Cuixian Zhang and Xiaopeng Hu

S1. Comment

Areca catechu L. is an important economical plant in tropical and subtropical areas. Its ripe fruit is widely used in traditional Chinese medicine for treatment of constipation, oedema, beriberi and dyspepsia. Pharmacological research have shown areca nut possesses psychoactive (Hocart & Fankhauser, 1996, Norton, 1998), anti-depressant (Dar *et al.* 1997), anti-HIV-1 (Kusumoto *et al.*, 1995), anti-melanogenesis (Lee & Choi, 1999), anti-inflammatory (Pithayanukul *et al.*, 2009), anti-oxidant (Chan *et al.*, 2008), anti-tumor (Iwamoto *et al.*, 1988) and cytotoxic activities (Zhang *et al.* 2010). During our investigation of the anti-depressant activity of *Areca catechu L.*, the title compound (I) was isolated from chloroform extract of areca nut.

The structure of (I) was analysed by spectroscopic and spectrometric analysis and proved to be arborinol methyl ether. The same compound has previously been found in species of Gramineous (Ohmoto & Natori 1969) and the structures of related compounds have been previously reported (Takahashi & Iitaka, 1972, Khera *et al.*, 2003, Corrêa *et al.*, 2009), their stereochemistry were specified by biosynthesis. In this study, X-ray crystallographic analysis of (I) was undertaken to establish the structure and to assign the absolute stereochemistry. The Flack parameter (Flack, 1983) x = 0.02 (22) is slightly ambiguous based on resonant scattering of the light atoms (the heaviest atom in this compound is oxygen). Thus analysis of the absolute configuration was further performed by using likelihood methods (Hooft *et al.*, 2008) with *PLATON* (Spek, 2009). The resulting value is y = -0.03 (3), corresponding to a probability P2(true) = 1.000 for this structure, confirming the absolute configuration. This value also agrees with the CD spectroscopic measurement result (Fig. 1). As shown in Fig. 2, rings A, B, C and D assume a chair conformation, while ring E adopts a envelope conformation. The A/B, C/D, and D/E ring junctions are *trans* fused about the C5DC10, C13DC14 and C17DC18 bonds, respectively. The absolute configuration at all chiral centers of lupeol methyl ether is 3*S*, 5*R*, 8*R*, 9*S*, 10*R*, 13*R*, 14*R*, 17*R*, 19*R*, while Fernane is 3*R*, 5*S*, 9*R*, 10*S*, 13*S*, 14*S*, 17*R*, 18*R*, 21*R*, agreeing well with the original results (Corrêa, *et al.*, 2009).

S2. Experimental

The chloroform extract of dried areca nut was chromatographed on a silica gel (200–300 mesh) column with increasing concentrations of EtOAc in petroleum ether. The fractions eluting with petroleum ether were collected to afford crude compound. The pure title compound was obtained by recrystallization with chloroform. Single crystals were obtained by slow evaporation of chloroform at room temperature.

Regarding to the ambiguous Flack parameter x = 0.02 (22), TWIN/BASF instructions were tested in a *parallel* refinement and resulted a BASF parameter of 0.02271, thus the single crystal used in data collection is barely a racemic mixture.

The title compound was a colorless crystal with mp 284~296 °C, $[\alpha]^{20}_{D}$ = +9.1° (c 0.01, CHCl3). 1H NMR (400 MHz, CDCl3) δ 5.22 (1*H*, d, J= 6.2 Hz, H-11), 2.79 (1*H*, m, H-3 β), 1.03 (3*H*, s, H-25), 0.91(3*H*, s, H-23), 0.87 (3*H*, d, J= 6.5 Hz, H-29), 0.85 (3*H*, s, H-24), 0.81 (3*H*, d, J= 6.5 Hz, H-30), 0.79 (3*H*, s, H-26), 0.75 (3*H*, s, H-27), 0.74 (3*H*, s, H-28); 13 C NMR (100 MHz, CDCl3) δ 36.1(C-1), 21.5(C-2), 86.1(C-3), 38.5(C-4), 47.4(C-5), 20.6(C-6), 26.7(C-7), 41.3(C-8), 149.3(C-9), 39.8(C-10), 114.0(C-11), 36.2(C-12), 36.9(C-13), 38.3(C-14), 29.8(C-15), 36.2(C-16), 43.1(C-17), 52.3(C-18), 20.4(C-19), 28.6(C-20), 59.9(C-21), 31.0(C-22), 28.5(C-23), 22.3(C-24), 22.2(C-25), 17.3(C-26), 15.5(C-27), 14.2(C-28), 23.2(C-29), 22.1(C-30), 57.5(-OCH3). CD CH3CN); λ max/nm($\Delta \varepsilon$): 186(-0.70), 199(1.76), 215(0.58), 228(-0.14), 256(0.18), 299(-0.20).

S3. Refinement

H atoms were treated as riding in idealized positions, with C—H distances in the range 0.95–1.00 Å, depending on the atom type. Displacement parameters for H atoms were assigned as $U_{iso} = 1.2$ Ueq of the attached atom (1.5 for methyl groups).

Figure 1

Circular Dichroism Spectroscopy of (I), measured on Chirascan Circular Dichroism Spectrometer, Applied PhotoPhysics (UK).

Figure 2

A view of the molecular structure of compound (I). The displacement ellipsoids are at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

3a-methoxyarbor-9(11)-ene

Crystal data

C₃₁H₅₂O $M_r = 440.73$ Triclinic, P1 Hall symbol: P1 a = 6.2684 (2) Å b = 7.1162 (3) Å c = 16.0814 (5) Å $\alpha = 96.812$ (3)° $\beta = 91.079$ (3)° $\gamma = 114.397$ (4)° V = 646.86 (4) Å³

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.0356 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\min} = 0.658, T_{\max} = 1.0$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.096$ S = 1.044415 reflections 298 parameters 3 restraints Z = 1 F(000) = 246 $D_x = 1.131 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 11404 reflections $\theta = 2.8-69.9^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 120 KBlock, colourless $0.60 \times 0.50 \times 0.40 \text{ mm}$

10247 measured reflections 4415 independent reflections 4408 reflections with $I > 2\sigma(I)$ $R_{int} = 0.011$ $\theta_{max} = 70.1^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -19 \rightarrow 19$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0685P)^2 + 0.1188P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$	Absolute structure: Flack (1983), 1952 Friedel
$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$	pairs
$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$	Absolute structure parameter: 0.02 (22)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5138 (3)	-0.3358 (2)	0.40741 (9)	0.0184 (3)	
H1B	0.5050	-0.4577	0.4335	0.022*	
H1A	0.3552	-0.3370	0.4057	0.022*	
C2	0.5864 (3)	-0.3558 (2)	0.31749 (9)	0.0198 (3)	
H2B	0.7412	-0.3622	0.3188	0.024*	
H2A	0.4706	-0.4871	0.2852	0.024*	
C3	0.6011 (3)	-0.1728 (2)	0.27380 (9)	0.0192 (3)	
H3	0.6561	-0.1893	0.2165	0.023*	
C4	0.7721 (3)	0.0390 (2)	0.32172 (8)	0.0179 (3)	
C5	0.7148 (2)	0.0538 (2)	0.41576 (8)	0.0152 (3)	
H5	0.5571	0.0575	0.4149	0.018*	
C6	0.8804 (3)	0.2588 (2)	0.46836 (9)	0.0197 (3)	
H6B	1.0362	0.2578	0.4785	0.024*	
H6A	0.9012	0.3767	0.4374	0.024*	
C7	0.7799 (3)	0.2871 (2)	0.55207 (9)	0.0200 (3)	
H7A	0.6303	0.2993	0.5415	0.024*	
H7B	0.8907	0.4186	0.5857	0.024*	
C8	0.7348 (2)	0.1057 (2)	0.60306 (8)	0.0153 (3)	
H8	0.8920	0.1098	0.6188	0.018*	
C9	0.5957 (2)	-0.1040 (2)	0.54887 (8)	0.0150 (3)	
C10	0.6864 (2)	-0.1349 (2)	0.46198 (8)	0.0154 (3)	
C11	0.4202 (3)	-0.2573 (2)	0.57888 (9)	0.0197 (3)	
H11	0.3307	-0.3797	0.5410	0.024*	
C12	0.3540 (3)	-0.2501 (2)	0.66850 (9)	0.0199 (3)	
H12B	0.3205	-0.3859	0.6878	0.024*	
H12A	0.2094	-0.2262	0.6713	0.024*	
C13	0.5521 (2)	-0.0759 (2)	0.72699 (8)	0.0154 (3)	
C14	0.6215 (2)	0.1294 (2)	0.68650 (8)	0.0145 (3)	
C15	0.7946 (3)	0.3152 (2)	0.74854 (8)	0.0179 (3)	
H15B	0.9407	0.2963	0.7576	0.021*	
H15A	0.8356	0.4446	0.7231	0.021*	
C16	0.6969 (3)	0.3411 (2)	0.83427 (9)	0.0191 (3)	

H16B	0.8175	0.4612	0.8710	0.023*
H16A	0.5581	0.3716	0.8261	0.023*
C17	0.6263 (2)	0.1459 (2)	0.87773 (8)	0.0173 (3)
C18	0.4636 (2)	-0.0441 (2)	0.81386 (8)	0.0166 (3)
H18	0.3244	-0.0145	0.8016	0.020*
C19	0.3707 (3)	-0.2239(2)	0.86612 (10)	0.0259 (3)
H19B	0.4854	-0.2846	0.8728	0.031*
H19A	0.2198	-0.3348	0.8404	0.031*
C20	0.3376 (3)	-0.1160 (3)	0.95141 (10)	0.0285 (4)
H20B	0.4129	-0.1513	0.9982	0.034*
H20A	0.1684	-0.1626	0.9600	0.034*
C21	0.4542 (3)	0.1223 (2)	0.94855 (9)	0.0192 (3)
H21	0.3286	0.1607	0.9274	0.023*
C22	0.5449 (3)	0.2481 (3)	1.03637 (9)	0.0248 (3)
H22	0.6626	0.2042	1.0605	0.030*
C23	0.7374 (3)	0.2111 (2)	0.28168 (9)	0.0264 (3)
H23A	0.7427	0.1863	0.2206	0.040*
H23C	0.8627	0.3469	0.3041	0.040*
H23B	0.5848	0.2097	0.2947	0.040*
C24	1.0260 (3)	0.0673 (2)	0.30911 (10)	0.0243 (3)
H24C	1.0491	-0.0499	0.3275	0.036*
H24B	1.1358	0.1977	0.3423	0.036*
H24A	1.0547	0.0721	0.2495	0.036*
C25	0.9183 (3)	-0.1575 (2)	0.47981 (9)	0.0200 (3)
H25C	0.8942	-0.2552	0.5205	0.030*
H25B	1.0420	-0.0212	0.5027	0.030*
H25A	0.9650	-0.2102	0.4274	0.030*
C26	0.7569 (3)	-0.1429 (2)	0.73227 (9)	0.0205 (3)
H26C	0.7243	-0.2442	0.7719	0.031*
H26B	0.9031	-0.0205	0.7516	0.031*
H26A	0.7732	-0.2064	0.6766	0.031*
C27	0.4046 (3)	0.1723 (2)	0.66699 (9)	0.0192 (3)
H27B	0.4565	0.3150	0.6540	0.029*
H27C	0.3109	0.1553	0.7159	0.029*
H27A	0.3091	0.0738	0.6187	0.029*
C28	0.8488 (3)	0.1317 (3)	0.91300 (10)	0.0259 (3)
H28B	0.8048	-0.0020	0.9342	0.039*
H28C	0.9271	0.2459	0.9589	0.039*
H28A	0.9557	0.1421	0.8683	0.039*
C29	0.3424 (3)	0.1982 (3)	1.09390 (10)	0.0299 (4)
H29A	0.2243	0.2392	1.0712	0.045*
H29C	0.4025	0.2751	1.1502	0.045*
H29B	0.2708	0.0483	1.0971	0.045*
C30	0.6642 (4)	0.4834 (3)	1.03546 (11)	0.0385 (4)
H30B	0.8099	0.5187	1.0070	0.058*
H30C	0.7004	0.5551	1.0933	0.058*
H30A	0.5587	0.5273	1.0055	0.058*
C31	0.2276 (3)	-0.3154 (3)	0.19751 (10)	0.0283(4)

supporting information

H31B	0.3059	-0.2873	0.1453	0.043*
H31A	0.0790	-0.3013	0.1929	0.043*
H31C	0.1965	-0.4573	0.2075	0.043*
O1	0.37357 (19)	-0.17199 (17)	0.26493 (7)	0.0247 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0232 (8)	0.0137 (7)	0.0171 (7)	0.0071 (6)	0.0013 (6)	0.0005 (5)
C2	0.0255 (8)	0.0165 (7)	0.0180 (7)	0.0104 (6)	0.0000 (6)	-0.0020 (5)
C3	0.0238 (8)	0.0222 (7)	0.0143 (6)	0.0132 (6)	0.0022 (5)	-0.0010 (5)
C4	0.0239 (8)	0.0176 (7)	0.0139 (6)	0.0100 (6)	0.0027 (5)	0.0027 (5)
C5	0.0163 (7)	0.0152 (6)	0.0149 (6)	0.0074 (6)	0.0032 (5)	0.0016 (5)
C6	0.0249 (8)	0.0139 (7)	0.0173 (7)	0.0047 (6)	0.0042 (6)	0.0031 (5)
C7	0.0280 (8)	0.0116 (6)	0.0167 (6)	0.0048 (6)	0.0048 (6)	0.0012 (5)
C8	0.0167 (7)	0.0137 (6)	0.0143 (6)	0.0053 (5)	0.0009 (5)	0.0023 (5)
C9	0.0170 (7)	0.0135 (6)	0.0149 (6)	0.0071 (6)	0.0000 (5)	0.0010 (5)
C10	0.0156 (7)	0.0140 (6)	0.0167 (6)	0.0066 (6)	0.0008 (5)	0.0011 (5)
C11	0.0210 (7)	0.0151 (7)	0.0174 (6)	0.0031 (6)	0.0015 (6)	-0.0021 (5)
C12	0.0193 (7)	0.0153 (6)	0.0196 (7)	0.0019 (6)	0.0041 (6)	0.0010 (5)
C13	0.0143 (7)	0.0143 (6)	0.0166 (6)	0.0048 (6)	0.0019 (5)	0.0025 (5)
C14	0.0141 (7)	0.0129 (6)	0.0151 (6)	0.0043 (5)	0.0013 (5)	0.0013 (5)
C15	0.0179 (7)	0.0147 (7)	0.0164 (7)	0.0028 (6)	0.0030 (5)	0.0001 (5)
C16	0.0183 (7)	0.0186 (7)	0.0163 (6)	0.0047 (6)	0.0012 (5)	-0.0019 (5)
C17	0.0151 (7)	0.0225 (7)	0.0139 (6)	0.0082 (6)	0.0002 (5)	0.0000 (5)
C18	0.0151 (7)	0.0181 (7)	0.0165 (7)	0.0067 (6)	0.0022 (5)	0.0023 (5)
C19	0.0324 (9)	0.0232 (7)	0.0217 (7)	0.0101 (7)	0.0095 (6)	0.0054 (6)
C20	0.0356 (9)	0.0290 (8)	0.0215 (7)	0.0128 (7)	0.0106 (7)	0.0067 (6)
C21	0.0181 (7)	0.0262 (8)	0.0145 (6)	0.0106 (6)	0.0008 (5)	0.0021 (5)
C22	0.0242 (8)	0.0374 (9)	0.0151 (6)	0.0163 (7)	-0.0018 (6)	-0.0004 (6)
C23	0.0421 (10)	0.0224 (7)	0.0180 (7)	0.0163 (7)	0.0038 (6)	0.0044 (6)
C24	0.0250 (8)	0.0253 (7)	0.0216 (7)	0.0095 (6)	0.0091 (6)	0.0026 (6)
C25	0.0231 (7)	0.0236 (7)	0.0179 (6)	0.0146 (6)	0.0004 (5)	0.0024 (5)
C26	0.0258 (8)	0.0215 (7)	0.0191 (6)	0.0139 (6)	0.0050 (6)	0.0056 (5)
C27	0.0205 (7)	0.0231 (7)	0.0173 (6)	0.0120 (6)	0.0024 (5)	0.0034 (5)
C28	0.0208 (8)	0.0415 (9)	0.0191 (7)	0.0172 (7)	-0.0007 (6)	0.0021 (6)
C29	0.0354 (9)	0.0415 (9)	0.0166 (7)	0.0205 (8)	0.0048 (6)	0.0015 (6)
C30	0.0439 (11)	0.0391 (10)	0.0198 (8)	0.0078 (8)	0.0042 (7)	-0.0077 (7)
C31	0.0282 (9)	0.0290 (8)	0.0236 (7)	0.0094 (7)	-0.0047 (6)	-0.0015 (6)
01	0.0263 (6)	0.0291 (6)	0.0206 (5)	0.0161 (5)	-0.0056 (4)	-0.0052 (4)

Geometric parameters (Å, °)

C1—C2	1.5324 (19)	C7—H7A	0.9900	
C1-C10	1.5405 (18)	С7—Н7В	0.9900	
C2—C3	1.522 (2)	C8—H8	1.0000	
C3—01	1.4333 (17)	C11—H11	0.9500	
C3—C4	1.541 (2)	C12—H12B	0.9900	

supporting information

C_{4} C_{22}	1.5274(10)	C12 1112A	0.0000
C4 - C23	1.5574(19)	C12—IIIZA	0.9900
C4—C24	1.540(2)	С15—Н15В	0.9900
C4—C5	1.5625 (18)	CIS—HISA	0.9900
C5—C6	1.5310 (18)	CI6—HI6B	0.9900
C5—C10	1.5596 (18)	C16—H16A	0.9900
C6—C7	1.5238 (19)	C18—H18	1.0000
C7—C8	1.5420 (18)	C19—H19B	0.9900
C8—C9	1.5276 (17)	C19—H19A	0.9900
C8—C14	1.5540 (18)	C20—H20B	0.9900
C9—C11	1.337 (2)	C20—H20A	0.9900
C9—C10	1.5441 (18)	C21—H21	1.0000
C10—C25	1.5518 (18)	С22—Н22	1.0000
C11—C12	1.5081 (19)	С23—Н23А	0.9800
C12—C13	1.5398 (19)	С23—Н23С	0.9800
C13—C18	1.5389 (18)	С23—Н23В	0.9800
C13—C26	1.5475 (18)	C24—H24C	0.9800
C13—C14	1.5681 (17)	C24—H24B	0.9800
C14—C15	1.5433 (18)	C24—H24A	0.9800
C14—C27	1 5459 (18)	C_{25} H25C	0.9800
C15-C16	1 5408 (18)	C25—H25B	0.9800
C_{16} C_{17}	1 532 (2)	C25—H25A	0.9800
C17 - C28	1.552(2) 1 5416(19)	C26_H26C	0.9800
C17 - C18	1.5410(19) 1.5542(18)	C26 H26B	0.9800
C17 - C18	1.559(2)	C26_H26A	0.9800
C17 - C21	1.539 (2)	C27_H20A	0.9800
C18—C19	1.550(2)	C27—H27B	0.9800
C19—C20	1.551 (2)	C27—H27C	0.9800
C20—C21	1.552 (2)	$C_2/-H_2/A$	0.9800
C21—C22	1.5389 (18)	С28—Н28В	0.9800
C22—C30	1.528 (3)	C28—H28C	0.9800
C22—C29	1.531 (2)	C28—H28A	0.9800
C31—O1	1.4081 (17)	C29—H29A	0.9800
C1—H1B	0.9900	С29—Н29С	0.9800
C1—H1A	0.9900	C29—H29B	0.9800
C2—H2B	0.9900	С30—Н30В	0.9800
C2—H2A	0.9900	С30—Н30С	0.9800
С3—Н3	1.0000	C30—H30A	0.9800
С5—Н5	1.0000	C31—H31B	0.9800
С6—Н6В	0.9900	C31—H31A	0.9800
С6—Н6А	0.9900	C31—H31C	0.9800
C2-C1-C10	112.49 (11)	C9—C11—H11	117.6
C3—C2—C1	111.47 (11)	C12—C11—H11	117.6
01-C3-C2	110.02 (12)	C11—C12—H12B	109.4
01-C3-C4	108.37 (10)	C13—C12—H12B	109.4
$C_{2}-C_{3}-C_{4}$	112 71 (11)	C11—C12—H12A	109.4
C^{23} C^{4} C^{24}	107 02 (13)	C13—C12—H12A	109.4
C^{23} C^{4} C^{3}	107.02(13) 107.93(11)	H12B $C12$ $H12A$	108.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.33(11) 108.00(11)	1112D - C12 - 1112A C16 C15 H15D	100.0
024-04-03	100.99 (11)	Сто-Сто-птов	100.0

C23—C4—C5	109.08 (11)	C14—C15—H15B	108.8
C24—C4—C5	113.95 (11)	C16—C15—H15A	108.8
C3—C4—C5	109.68 (11)	C14—C15—H15A	108.8
C6C5C10	110.54 (10)	H15B—C15—H15A	107.7
C6—C5—C4	113.02 (11)	C17—C16—H16B	109.2
C10—C5—C4	116.75 (10)	C15—C16—H16B	109.2
C7—C6—C5	110.12 (12)	C17—C16—H16A	109.2
C6—C7—C8	112.85 (11)	C15—C16—H16A	109.2
C9—C8—C7	110.87 (10)	H16B—C16—H16A	107.9
C9—C8—C14	112.63 (11)	C19—C18—H18	104.2
C7—C8—C14	112.86 (10)	C13—C18—H18	104.2
C11—C9—C8	121.21 (12)	C17—C18—H18	104.2
C11—C9—C10	122.38 (11)	C18—C19—H19B	111.3
C8—C9—C10	116.10 (11)	C20—C19—H19B	111.3
C1—C10—C9	111.82 (11)	C18—C19—H19A	111.3
C1—C10—C25	108.20 (11)	С20—С19—Н19А	111.3
C9—C10—C25	105.67 (10)	H19B—C19—H19A	109.2
C1—C10—C5	108.28 (10)	C19—C20—H20B	110.3
C9—C10—C5	108.41 (10)	C21—C20—H20B	110.3
C25—C10—C5	114.52 (11)	C19—C20—H20A	110.3
C9—C11—C12	124.77 (12)	C21—C20—H20A	110.3
C11—C12—C13	111.37 (12)	H20B-C20-H20A	108.5
C18—C13—C12	110.26 (11)	C22—C21—H21	106.7
C18—C13—C26	111.86 (11)	C20—C21—H21	106.7
C12—C13—C26	106.74 (11)	C17—C21—H21	106.7
C18—C13—C14	108.59 (10)	C30—C22—H22	108.1
C12—C13—C14	107.04 (10)	С29—С22—Н22	108.1
C26—C13—C14	112.23 (11)	C21—C22—H22	108.1
C15—C14—C27	107.89 (10)	C4—C23—H23A	109.5
C15—C14—C8	111.00 (11)	C4—C23—H23C	109.5
C27—C14—C8	108.65 (10)	H23A—C23—H23C	109.5
C15—C14—C13	109.22 (10)	C4—C23—H23B	109.5
C27—C14—C13	111.49 (11)	H23A—C23—H23B	109.5
C8—C14—C13	108.61 (10)	H23C—C23—H23B	109.5
C16—C15—C14	113.60 (11)	C4—C24—H24C	109.5
C17—C16—C15	112.21 (11)	C4—C24—H24B	109.5
C16—C17—C28	109.54 (13)	H24C—C24—H24B	109.5
C16—C17—C18	107.77 (10)	C4—C24—H24A	109.5
C28—C17—C18	115.07 (11)	H24C—C24—H24A	109.5
C16—C17—C21	116.94 (11)	H24B—C24—H24A	109.5
C28—C17—C21	109.01 (11)	С10—С25—Н25С	109.5
C18—C17—C21	98.36 (11)	С10—С25—Н25В	109.5
C19—C18—C13	120.14 (11)	H25C—C25—H25B	109.5
C19—C18—C17	104.13 (11)	C10—C25—H25A	109.5
C13—C18—C17	117.98 (11)	H25C—C25—H25A	109.5
C18—C19—C20	102.56 (12)	H25B—C25—H25A	109.5
C19—C20—C21	107.16 (12)	C13—C26—H26C	109.5
C22—C21—C20	112.19 (12)	C13—C26—H26B	109.5

C22—C21—C17	120.19 (12)	H26C—C26—H26B	109.5
C20—C21—C17	103.53 (11)	C13—C26—H26A	109.5
C30—C22—C29	109.14 (13)	H26C—C26—H26A	109.5
C30—C22—C21	113.42 (13)	H26B—C26—H26A	109.5
C29—C22—C21	109.97 (13)	C14—C27—H27B	109.5
C31—O1—C3	113.55 (11)	C14—C27—H27C	109.5
C2—C1—H1B	109.1	H27B—C27—H27C	109.5
C10-C1-H1B	109.1	C14—C27—H27A	109.5
C2—C1—H1A	109.1	H27B—C27—H27A	109.5
C10-C1-H1A	109.1	H27C—C27—H27A	109.5
H1B—C1—H1A	107.8	C17—C28—H28B	109.5
C3—C2—H2B	109.3	C17—C28—H28C	109.5
C1—C2—H2B	109.3	H28B—C28—H28C	109.5
C3—C2—H2A	109.3	C17—C28—H28A	109.5
C1—C2—H2A	109.3	H28B—C28—H28A	109.5
H2B—C2—H2A	108.0	H28C—C28—H28A	109.5
O1—C3—H3	108.6	C22—C29—H29A	109.5
С2—С3—Н3	108.6	С22—С29—Н29С	109.5
С4—С3—Н3	108.6	H29A—C29—H29C	109.5
С6—С5—Н5	105.1	C22—C29—H29B	109.5
С10—С5—Н5	105.1	H29A—C29—H29B	109.5
С4—С5—Н5	105.1	H29C—C29—H29B	109.5
С7—С6—Н6В	109.6	С22—С30—Н30В	109.5
С5—С6—Н6В	109.6	С22—С30—Н30С	109.5
С7—С6—Н6А	109.6	H30B—C30—H30C	109.5
С5—С6—Н6А	109.6	C22—C30—H30A	109.5
Н6В—С6—Н6А	108.2	H30B-C30-H30A	109.5
С6—С7—Н7А	109.0	H30C-C30-H30A	109.5
С8—С7—Н7А	109.0	O1—C31—H31B	109.5
С6—С7—Н7В	109.0	O1—C31—H31A	109.5
С8—С7—Н7В	109.0	H31B—C31—H31A	109.5
H7A—C7—H7B	107.8	O1—C31—H31C	109.5
С9—С8—Н8	106.7	H31B—C31—H31C	109.5
С7—С8—Н8	106.7	H31A—C31—H31C	109.5
С14—С8—Н8	106.7		
C10-C1-C2-C3	-59.20 (15)	C7—C8—C14—C27	50.92 (14)
C1—C2—C3—O1	-63.96 (15)	C9—C8—C14—C13	45.87 (13)
C1—C2—C3—C4	57.11 (16)	C7—C8—C14—C13	172.36 (11)
O1—C3—C4—C23	-47.33 (15)	C18—C13—C14—C15	53.03 (13)
C2—C3—C4—C23	-169.34 (12)	C12—C13—C14—C15	172.05 (11)
O1—C3—C4—C24	-163.22 (11)	C26—C13—C14—C15	-71.16 (13)
C2—C3—C4—C24	74.77 (15)	C18—C13—C14—C27	-66.11 (13)
O1—C3—C4—C5	71.40 (13)	C12-C13-C14-C27	52.92 (13)
C2—C3—C4—C5	-50.61 (14)	C26-C13-C14-C27	169.71 (11)
C23—C4—C5—C6	-63.07 (15)	C18—C13—C14—C8	174.21 (10)
C24—C4—C5—C6	56.44 (15)	C12-C13-C14-C8	-66.76 (12)
C3—C4—C5—C6	178.92 (11)	C26—C13—C14—C8	50.03 (13)

C23—C4—C5—C10	167.06 (12)	C27—C14—C15—C16	63.76 (14)
C24—C4—C5—C10	-73.43 (15)	C8—C14—C15—C16	-177.30 (10)
C3—C4—C5—C10	49.05 (15)	C13—C14—C15—C16	-57.58 (14)
C10—C5—C6—C7	-61.27 (14)	C14—C15—C16—C17	57.96 (15)
C4—C5—C6—C7	165.77 (11)	C15—C16—C17—C28	74.67 (14)
C5—C6—C7—C8	57.48 (15)	C15—C16—C17—C18	-51.19 (14)
C6—C7—C8—C9	-49.90 (16)	C15—C16—C17—C21	-160.71 (12)
C6—C7—C8—C14	-177.32 (11)	C12—C13—C18—C19	59.69 (16)
C7—C8—C9—C11	-137.79 (14)	C26—C13—C18—C19	-58.92 (17)
C14—C8—C9—C11	-10.25 (17)	C14—C13—C18—C19	176.68 (12)
C7—C8—C9—C10	48.41 (15)	C12—C13—C18—C17	-171.39 (11)
C14—C8—C9—C10	175.96 (10)	C26—C13—C18—C17	69.99 (15)
C2-C1-C10-C9	173.16 (10)	C14—C13—C18—C17	-54.41 (14)
C2-C1-C10-C25	-70.88 (14)	C16—C17—C18—C19	-171.12 (12)
C2-C1-C10-C5	53.79 (14)	C28—C17—C18—C19	66.36 (15)
C11—C9—C10—C1	15.03 (17)	C21—C17—C18—C19	-49.26 (12)
C8—C9—C10—C1	-171.26 (11)	C16—C17—C18—C13	52.82 (14)
C11—C9—C10—C25	-102.47 (15)	C28—C17—C18—C13	-69.71 (16)
C8—C9—C10—C25	71.24 (13)	C21—C17—C18—C13	174.68 (11)
C11—C9—C10—C5	134.32 (14)	C13-C18-C19-C20	171.98 (12)
C8—C9—C10—C5	-51.97 (14)	C17—C18—C19—C20	37.10 (15)
C6-C5-C10-C1	178.59 (11)	C18—C19—C20—C21	-10.02 (17)
C4—C5—C10—C1	-50.38 (14)	C19—C20—C21—C22	-151.34 (13)
C6—C5—C10—C9	57.09 (14)	C19—C20—C21—C17	-20.29 (16)
C4—C5—C10—C9	-171.88 (11)	C16—C17—C21—C22	-77.55 (16)
C6—C5—C10—C25	-60.60 (14)	C28—C17—C21—C22	47.34 (17)
C4—C5—C10—C25	70.43 (15)	C18—C17—C21—C22	167.58 (12)
C8—C9—C11—C12	-5.5 (2)	C16—C17—C21—C20	156.35 (12)
C10—C9—C11—C12	167.90 (13)	C28-C17-C21-C20	-78.77 (15)
C9—C11—C12—C13	-16.42 (19)	C18—C17—C21—C20	41.47 (13)
C11—C12—C13—C18	169.17 (11)	C20-C21-C22-C30	179.12 (14)
C11—C12—C13—C26	-69.12 (14)	C17—C21—C22—C30	57.15 (18)
C11—C12—C13—C14	51.23 (14)	C20—C21—C22—C29	-58.36 (16)
C9—C8—C14—C15	165.96 (10)	C17—C21—C22—C29	179.67 (13)
C7—C8—C14—C15	-67.56 (14)	C2-C3-O1-C31	-79.35 (14)
C9—C8—C14—C27	-75.56 (13)	C4—C3—O1—C31	157.01 (12)