

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4-(4-Chloro-5-methyl-3-trifluoromethyl-1H-pyrazol-1-yl)-6-(prop-2-ynyloxy)pyrimidine

#### Ru-Liang Xie, Tao Zhang, Ao-Cheng Cao and Xiang-Dong Mei\*

State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China

Correspondence e-mail: meixiangdong@gmail.com

Received 6 January 2010; accepted 7 August 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.106; data-to-parameter ratio = 10.7

The molecule of the title compound, C<sub>12</sub>H<sub>8</sub>ClF<sub>3</sub>N<sub>4</sub>O, is twisted as indicated by the C–O–C–C torsion angle of 76.9 (3)°. Moreover, the trifluoromethyl group shows rotational disorder of the F atoms, with site-occupancy factors of 0.653 (6) and 0.347 (6). The dihedral angle between the rings is 1.88 (12) Å.

#### **Related literature**

For the applications of pyrazole derivatives, see: Hirai et al. (2002); Krishnaiah et al. (2002); Ohno et al. (2004); Li et al. (2008); Shiga et al. (2003); Vicentini et al. (2007).



## **Experimental**

#### Crystal data

| C <sub>12</sub> H <sub>8</sub> ClF <sub>3</sub> N <sub>4</sub> O |
|------------------------------------------------------------------|
| $M_r = 316.67$                                                   |
| Monoclinic, $P2_1/n$                                             |
| a = 7.8331 (13)  Å                                               |
| b = 7.7258 (12)  Å                                               |
| c = 21.757 (4) Å                                                 |
| $\beta = 99.270 \ (11)^{\circ}$                                  |

#### Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995)  $T_{\min} = 0.583, \ \tilde{T}_{\max} = 0.752$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.106$ S = 1.072361 reflections 220 parameters

V = 1299.5 (4) Å<sup>3</sup> Z = 4Cu Ka radiation  $\mu = 3.02 \text{ mm}^-$ T = 173 K $0.20 \times 0.20 \times 0.10 \ \mathrm{mm}$ 

8543 measured reflections 2361 independent reflections 2009 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.043$ 

69 restraints H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.22$  e Å<sup>-3</sup>

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXL97.

This work was supported by the Agricultural Public Sector Research and Special Funds (200803021) and the Major State Basic Reasearch Development Program of China (No. 2006CB101907 and No. 2010CB126106).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2068).

#### References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Hirai, K., Uchida, A. & Ohno, R. (2002). Herbicide Classes in Development, edited by P. Boger, K. Hirai & K. Wakabyashi, pp. 279-289. Heidelberg: Springer-Verlag.
- Krishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem. 115, 9-11.
- Li, H. B., Zhu, Y. Q., Song, X. W., Hu, F. Z., Liu, B., Li, Y. H., Niu, Z. X., Liu, P., Wang, Z. H., Song, H. B., Zou, X. M. & Yang, H. Z. (2008). J. Agric. Food Chem. 56, 9535-9542.
- Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci. 29, 15-26.
- Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiga, Y., Okada, I., Ikeda, Y., Takizawa, E. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 313-314.
- Siemens (1998). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Vicentini, C. B., Romagnoli, C., Andreotti, E. & Mares, D. (2007). J. Agric. Food. Chem. 55, 10331-10338.

# supporting information

*Acta Cryst.* (2010). E66, o2307 [https://doi.org/10.1107/S1600536810031740] 4-(4-Chloro-5-methyl-3-trifluoromethyl-1*H*-pyrazol-1-yl)-6-(prop-2-ynyl-oxy)pyrimidine

## Ru-Liang Xie, Tao Zhang, Ao-Cheng Cao and Xiang-Dong Mei

## S1. Comment

There is much agrochemical interest in pyrazole derivatives because of their excellent bioactivity (Krishnaiah *et al.*, 2002; Ohno *et al.*, 2004; Li *et al.*, 2008 Shiga *et al.*, 2003; Vicentini *et al.*, 2007). Numerous herbicides such as pyrazolate, pyrazoyyfen, benzofenap, pyraflufen-ethyl, fluazolate and pyrazosulfuron-ethyl with pyrazole moieties were commercialized (Hirai *et al.*, 2002). Recently, a novel pyrazole derivative (I) with a trifluoromethyl group was synthesized. The trifluoromethyl group shows rotational disorder of the F atoms, with site occupancy factors of 0.653 (6) and 0.347 (6). This molecule is twisted, prop-2-ynyloxy is out of the pyrimidine ring plane, as indicated by the C(8)—O(1)—C(10)—C(11) torsion angle of 76.9 (3)°. The crystal structure of the title compound is shown in Fig. 1.

## **S2. Experimental**

The title compound (0.15 g) was dissolved in the mixed solvent of ethanol and acetone (25 mL) at room temperature. Colorless single crystals of compound (I) were obtained through slow evaporation after two weeks.

## S3. Refinement

The trifluoromethyl group shows rotational disorder of the F atoms, with site occupancy factors of 0.653 (6) and 0.347 (6). All the hydrogen atoms were placed at their geometrical position with C—H = 0.93-0.98Å and  $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ .



#### Figure 1

The structure of the title compound with labeling scheme; displacement ellipsoids are shown at the 30% probability level and atoms F1', F2' and F3' representing the smaller fraction of the disordered trifluoromethyl group have been excluded.

4-(4-Chloro-5-methyl-3-trifluoromethyl-1H-pyrazol-1-yl)-6-(prop-2- ynyloxy)pyrimidine

### Crystal data

C<sub>12</sub>H<sub>8</sub>ClF<sub>3</sub>N<sub>4</sub>O  $M_r = 316.67$ Monoclinic,  $P2_1/n$  a = 7.8331 (13) Å b = 7.7258 (12) Å c = 21.757 (4) Å  $\beta = 99.270$  (11)° V = 1299.5 (4) Å<sup>3</sup> Z = 4

### Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer Radiation source: rotating anode Graphite monochromator  $\omega$  scans at fixed  $\chi = 45^{\circ}$ Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995)  $T_{\min} = 0.583, T_{\max} = 0.752$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.106$ S = 1.072361 reflections F(000) = 640  $D_x = 1.619 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54186 \text{ Å}$ Cell parameters from 564 reflections  $\theta = 2.2-68.3^{\circ}$   $\mu = 3.02 \text{ mm}^{-1}$  T = 173 KPlatelet, colorless  $0.20 \times 0.20 \times 0.10 \text{ mm}$ 

8543 measured reflections 2361 independent reflections 2009 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.043$  $\theta_{max} = 68.3^{\circ}, \theta_{min} = 4.1^{\circ}$  $h = -9 \rightarrow 9$  $k = -9 \rightarrow 6$  $l = -26 \rightarrow 22$ 

220 parameters69 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0399P)^2 + 0.8523P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.016$ 

### Special details

$$\begin{split} &\Delta\rho_{\rm max}=0.31~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.22~{\rm e}~{\rm \AA}^{-3}\\ &{\rm Extinction~correction:~SHELXL97~(Sheldrick,\\ &2008),~{\rm Fc}^*{=}{\rm kFc}[1{+}0.001{\rm xFc}^2\lambda^3/{\rm sin}(2\theta)]^{-1/4}\\ &{\rm Extinction~coefficient:~0.0054~(5)} \end{split}$$

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|-------------|---------------|-----------------------------|-----------|
| C11  | 0.05485 (8) | 0.66461 (9) | 0.12912 (3)   | 0.0419 (2)                  |           |
| F1   | 0.0581 (14) | 1.0026 (19) | 0.2067 (6)    | 0.068 (3)                   | 0.65 (3)  |
| F2   | 0.1586 (17) | 1.2382 (8)  | 0.1787 (5)    | 0.066 (2)                   | 0.65 (3)  |
| F3   | 0.3301 (10) | 1.040 (2)   | 0.2184 (4)    | 0.080 (3)                   | 0.65 (3)  |
| F1′  | 0.038 (2)   | 1.038 (4)   | 0.2018 (12)   | 0.062 (4)                   | 0.35 (3)  |
| F2′  | 0.229 (4)   | 1.227 (2)   | 0.1908 (8)    | 0.074 (4)                   | 0.35 (3)  |
| F3′  | 0.298 (3)   | 0.977 (3)   | 0.2215 (7)    | 0.076 (4)                   | 0.35 (3)  |
| O1   | 0.4744 (2)  | 1.4528 (2)  | -0.08155 (7)  | 0.0328 (4)                  |           |
| N1   | 0.2473 (2)  | 1.0968 (3)  | 0.07612 (9)   | 0.0307 (5)                  |           |
| N2   | 0.2397 (2)  | 0.9953 (2)  | 0.02454 (9)   | 0.0273 (4)                  |           |
| N3   | 0.2814 (3)  | 0.9661 (3)  | -0.07855 (9)  | 0.0339 (5)                  |           |
| N4   | 0.4008 (2)  | 1.1943 (3)  | -0.13275 (9)  | 0.0300 (5)                  |           |
| C1   | 0.1864 (3)  | 0.9977 (3)  | 0.11729 (11)  | 0.0298 (5)                  |           |
| C2   | 0.1401 (3)  | 0.8333 (3)  | 0.09272 (11)  | 0.0292 (5)                  |           |
| C3   | 0.1757 (3)  | 0.8320 (3)  | 0.03301 (11)  | 0.0280 (5)                  |           |
| C4   | 0.1845 (3)  | 1.0661 (4)  | 0.18093 (13)  | 0.0407 (6)                  |           |
| C5   | 0.1542 (3)  | 0.6869 (3)  | -0.01239 (12) | 0.0369 (6)                  |           |
| H5A  | 0.2630      | 0.6681      | -0.0282       | 0.055*                      |           |
| H5B  | 0.0626      | 0.7155      | -0.0471       | 0.055*                      |           |
| H5C  | 0.1228      | 0.5814      | 0.0082        | 0.055*                      |           |
| C6   | 0.2966 (3)  | 1.0682 (3)  | -0.02856 (10) | 0.0261 (5)                  |           |
| C7   | 0.3362 (3)  | 1.0361 (3)  | -0.12775 (12) | 0.0349 (6)                  |           |
| H7A  | 0.3284      | 0.9648      | -0.1637       | 0.042*                      |           |
| C8   | 0.4111 (3)  | 1.2901 (3)  | -0.08172 (11) | 0.0271 (5)                  |           |
| C9   | 0.3614 (3)  | 1.2338 (3)  | -0.02663 (10) | 0.0275 (5)                  |           |
| H9A  | 0.3714      | 1.3042      | 0.0096        | 0.033*                      |           |
| C10  | 0.5077 (3)  | 1.5223 (3)  | -0.14053 (11) | 0.0350 (6)                  |           |
| H10A | 0.5662      | 1.4332      | -0.1624       | 0.042*                      |           |
| H10B | 0.5861      | 1.6231      | -0.1325       | 0.042*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| C11 | 0.3481 (3) | 1.5756 (3) | -0.18034 (11) | 0.0355 (6) |
|-----|------------|------------|---------------|------------|
| C12 | 0.2244 (4) | 1.6239 (4) | -0.21331 (13) | 0.0516 (8) |
| H12 | 0.1240     | 1.6632     | -0.2401       | 0.062*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| Cl1 | 0.0394 (4)  | 0.0400 (4)  | 0.0474 (4)  | -0.0066 (3)  | 0.0100 (3)   | 0.0144 (3)      |
| F1  | 0.087 (5)   | 0.079 (5)   | 0.049 (3)   | -0.028 (4)   | 0.042 (4)    | -0.006 (3)      |
| F2  | 0.111 (5)   | 0.046 (2)   | 0.048 (3)   | 0.007 (3)    | 0.035 (3)    | -0.0082 (17)    |
| F3  | 0.055 (2)   | 0.137 (6)   | 0.046 (3)   | 0.014 (3)    | -0.0046 (18) | -0.036 (3)      |
| F1′ | 0.040 (5)   | 0.092 (9)   | 0.058 (6)   | 0.002 (5)    | 0.021 (4)    | -0.015 (6)      |
| F2′ | 0.128 (9)   | 0.058 (5)   | 0.044 (5)   | -0.048 (6)   | 0.034 (6)    | -0.014 (4)      |
| F3′ | 0.089 (7)   | 0.092 (8)   | 0.038 (4)   | 0.028 (5)    | -0.015 (4)   | 0.006 (5)       |
| 01  | 0.0436 (10) | 0.0302 (9)  | 0.0243 (9)  | -0.0109 (8)  | 0.0043 (7)   | 0.0016 (7)      |
| N1  | 0.0350 (11) | 0.0304 (11) | 0.0280 (11) | -0.0009 (9)  | 0.0088 (8)   | -0.0017 (8)     |
| N2  | 0.0286 (10) | 0.0263 (10) | 0.0275 (10) | -0.0011 (8)  | 0.0057 (8)   | 0.0002 (8)      |
| N3  | 0.0423 (12) | 0.0294 (11) | 0.0307 (11) | -0.0047 (9)  | 0.0079 (9)   | -0.0037 (9)     |
| N4  | 0.0310 (10) | 0.0307 (11) | 0.0288 (11) | -0.0015 (9)  | 0.0064 (8)   | -0.0027 (8)     |
| C1  | 0.0274 (12) | 0.0326 (13) | 0.0302 (13) | 0.0023 (10)  | 0.0070 (9)   | 0.0035 (10)     |
| C2  | 0.0239 (11) | 0.0312 (13) | 0.0329 (13) | -0.0002 (10) | 0.0058 (9)   | 0.0075 (10)     |
| C3  | 0.0220 (11) | 0.0263 (12) | 0.0350 (13) | 0.0006 (9)   | 0.0023 (9)   | 0.0026 (10)     |
| C4  | 0.0404 (14) | 0.0476 (17) | 0.0370 (15) | -0.0060 (13) | 0.0149 (12)  | 0.0012 (12)     |
| C5  | 0.0393 (13) | 0.0305 (13) | 0.0405 (15) | -0.0069 (11) | 0.0053 (11)  | -0.0012 (11)    |
| C6  | 0.0237 (11) | 0.0276 (12) | 0.0269 (12) | 0.0016 (9)   | 0.0040 (9)   | 0.0013 (9)      |
| C7  | 0.0447 (14) | 0.0318 (14) | 0.0292 (13) | -0.0044 (11) | 0.0095 (11)  | -0.0075 (10)    |
| C8  | 0.0243 (11) | 0.0260 (12) | 0.0305 (13) | -0.0012 (9)  | 0.0032 (9)   | 0.0005 (10)     |
| C9  | 0.0320 (12) | 0.0254 (12) | 0.0248 (12) | -0.0024 (10) | 0.0035 (9)   | -0.0017 (9)     |
| C10 | 0.0406 (14) | 0.0362 (14) | 0.0290 (13) | -0.0099 (11) | 0.0078 (10)  | 0.0053 (11)     |
| C11 | 0.0497 (15) | 0.0310 (14) | 0.0269 (13) | 0.0004 (12)  | 0.0093 (11)  | -0.0015 (10)    |
| C12 | 0.0613 (19) | 0.0503 (18) | 0.0402 (16) | 0.0150 (15)  | -0.0008 (14) | -0.0051 (14)    |

## Geometric parameters (Å, °)

| Cl1—C2 | 1.715 (2)  | C1—C2    | 1.403 (3) |
|--------|------------|----------|-----------|
| F1—C4  | 1.309 (7)  | C1—C4    | 1.484 (4) |
| F2—C4  | 1.344 (6)  | C2—C3    | 1.372 (3) |
| F3—C4  | 1.306 (7)  | C3—C5    | 1.486 (3) |
| F1′—C4 | 1.316 (12) | C5—H5A   | 0.9800    |
| F2′—C4 | 1.300 (11) | C5—H5B   | 0.9800    |
| F3′—C4 | 1.339 (10) | C5—H5C   | 0.9800    |
| O1—C8  | 1.352 (3)  | C6—C9    | 1.374 (3) |
| O1-C10 | 1.452 (3)  | C7—H7A   | 0.9500    |
| N1-C1  | 1.324 (3)  | C8—C9    | 1.389 (3) |
| N1—N2  | 1.362 (3)  | С9—Н9А   | 0.9500    |
| N2—C3  | 1.380 (3)  | C10—C11  | 1.461 (3) |
| N2-C6  | 1.420 (3)  | C10—H10A | 0.9900    |
| N3—C7  | 1.330 (3)  | C10—H10B | 0.9900    |
|        |            |          |           |

# supporting information

| N3—C6                           | 1.333 (3)              | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.170 (4)                 |
|---------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| N4—C8                           | 1.326 (3)              | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                    |
| N4—C7                           | 1.334 (3)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| C8—O1—C10                       | 117.33 (18)            | F3—C4—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.9 (4)                 |
| C1—N1—N2                        | 104.57 (19)            | F1—C4—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.9 (7)                 |
| N1—N2—C3                        | 112.62 (19)            | F1′—C4—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.8 (12)                |
| N1—N2—C6                        | 117.62 (18)            | F3'-C4-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.1 (8)                 |
| C3—N2—C6                        | 129.8 (2)              | F2-C4-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.0 (4)                 |
| C7—N3—C6                        | 114.7 (2)              | C3—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                     |
| C8 - N4 - C7                    | 114.6(2)               | C3-C5-H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                     |
| N1-C1-C2                        | 111.0(2)<br>111.4(2)   | H5A-C5-H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                     |
| N1 - C1 - C4                    | 111.4(2)<br>119.0(2)   | C3_C5_H5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                     |
| $C_2 = C_1 = C_4$               | 119.0(2)<br>129.5(2)   | $H_{5A} = C_5 = H_{5C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                     |
| $C_2 = C_1 = C_4$               | 129.3(2)<br>106.7(2)   | H5P C5 H5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                     |
| $C_{3} = C_{2} = C_{1}$         | 100.7(2)<br>125.8(2)   | $\frac{113D}{C} = \frac{C}{C} = \frac{C}{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                     |
| $C_{1}$ $C_{2}$ $C_{11}$        | 123.0(2)               | N3-C6-N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.0(2)                  |
| C1 = C2 = C11                   | 127.40 (19)            | $N_3 = C_0 = N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.5 (2)                 |
| $C_2 = C_3 = N_2$               | 104.7(2)               | C9 - C6 - N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.5 (2)                 |
| $C_2 - C_3 - C_5$               | 128.1 (2)              | N3-C/-N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 127.9 (2)                 |
| N2—C3—C5                        | 127.3 (2)              | N3—C7—H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.1                     |
| F2′—C4—F3                       | 81.9 (8)               | N4—C/—H/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116.1                     |
| F2′—C4—F1                       | 119.3 (10)             | N4—C8—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.6 (2)                 |
| F3—C4—F1                        | 108.6 (7)              | N4—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.1 (2)                 |
| F2'—C4—F1'                      | 109.0 (14)             | O1—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.3 (2)                 |
| F3—C4—F1′                       | 118.7 (11)             | C6—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114.7 (2)                 |
| F1—C4—F1′                       | 14.2 (15)              | С6—С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.6                     |
| F2'—C4—F3'                      | 104.4 (9)              | С8—С9—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.6                     |
| F3—C4—F3′                       | 24.2 (8)               | O1—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.7 (2)                 |
| F1—C4—F3'                       | 89.7 (10)              | O1-C10-H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.3                     |
| F1'-C4-F3'                      | 102.3 (13)             | C11—C10—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.3                     |
| F2'—C4—F2                       | 25.2 (10)              | O1-C10-H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.3                     |
| F3—C4—F2                        | 106.6 (5)              | C11—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.3                     |
| F1—C4—F2                        | 105.4 (7)              | H10A—C10—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.9                     |
| F1′—C4—F2                       | 92.4 (11)              | C12—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177.0 (3)                 |
| F3'—C4—F2                       | 127.7 (7)              | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180.0                     |
| F2′—C4—C1                       | 116.8 (7)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| C1 - N1 - N2 - C3               | -0.5(2)                | C2-C1-C4-F1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -49.2(13)                 |
| C1 - N1 - N2 - C6               | 179.62 (18)            | N1-C1-C4-F3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -112.0(12)                |
| $N_{2} = N_{1} = C_{1} = C_{2}$ | 01(2)                  | $C^{2}-C^{1}-C^{4}-F^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 2 (13)                 |
| $N_2 = N_1 = C_1 = C_4$         | 1770(2)                | N1-C1-C4-F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 325(7)                    |
| N1 - C1 - C2 - C3               | 03(3)                  | $C_{2}$ $C_{1}$ $C_{4}$ $F_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1513(7)                  |
| C4 - C1 - C2 - C3               | -1762(2)               | $C_{2} = C_{1} = C_{1} = C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06(3)                     |
| $V_{1} = 01 = 02 = 03$<br>N1=   | -170.2(2)              | $C_7 = N_3 = C_6 = N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -170 65 (10)              |
| CA = C1 = C2 = C11              | 30(A)                  | $\frac{1}{10} \frac{1}{10} \frac$                                                                                                                 | 177.00(19)<br>-177.00(10) |
| $C_1 = C_2 = C_1$               | -0.6(2)                | $\frac{1}{1} \frac{1}{1} \frac{1}$ | 2 2 (2)                   |
| $C_1 = C_2 = C_3 = IN_2$        | 0.0(2)                 | $C_{3} - N_{2} - C_{0} - N_{3}$ $N_{1} = N_{2} - C_{4} - C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3(3)                    |
| C1  C2  C2  C5                  | 1/7.31(10)<br>179.2(2) | $\frac{1}{2} \frac{1}{2} \frac{1}$ | 1.0(3)                    |
| U1-U2-U3-U3                     | 1/8.3 (2)              | $U_{3}$ — $N_{2}$ — $U_{0}$ — $U_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1/8.0(2)                 |

| Cl1—C2—C3—C5 | -1.8 (4)    | C6—N3—C7—N4    | -1.0 (4)     |  |
|--------------|-------------|----------------|--------------|--|
| N1—N2—C3—C2  | 0.7 (2)     | C8—N4—C7—N3    | 0.4 (4)      |  |
| C6—N2—C3—C2  | -179.5 (2)  | C7—N4—C8—O1    | -179.9 (2)   |  |
| N1—N2—C3—C5  | -178.1 (2)  | C7—N4—C8—C9    | 0.6 (3)      |  |
| C6—N2—C3—C5  | 1.7 (4)     | C10-01-C8-N4   | 7.7 (3)      |  |
| N1—C1—C4—F2′ | 6.0 (16)    | C10-O1-C8-C9   | -172.72 (19) |  |
| C2—C1—C4—F2' | -177.7 (16) | N3—C6—C9—C8    | 0.2 (3)      |  |
| N1—C1—C4—F3  | -86.4 (9)   | N2             | -179.49 (19) |  |
| C2—C1—C4—F3  | 89.9 (9)    | N4-C8-C9-C6    | -0.9 (3)     |  |
| N1-C1-C4-F1  | 150.0 (8)   | O1—C8—C9—C6    | 179.58 (19)  |  |
| C2-C1-C4-F1  | -33.8 (8)   | C8-01-C10-C11  | 76.9 (3)     |  |
| N1—C1—C4—F1′ | 134.5 (13)  | O1-C10-C11-C12 | 149 (6)      |  |
|              |             |                |              |  |