

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Poly[[bis[ $\mu_2$ -N,N'-bis(2-pyridylmethyl)oxalamide- $\kappa^4 N$ ,O:N',O'][ $\mu_2$ -N,N'-bis(2pyridylmethyl)oxalamide- $\kappa^2 N$ :N']disilver(I)] bis(trifluoromethanesulfonate)]

# Hadi D. Arman,<sup>a</sup> Tyler Miller,<sup>a</sup> Pavel Poplaukhin<sup>b</sup> and Edward R. T. Tiekink<sup>c</sup>\*

<sup>a</sup>Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, <sup>b</sup>Chemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

correspondence e mail: cuward.tickink@ginali.com

Received 18 August 2010; accepted 20 August 2010

Key indicators: single-crystal X-ray study; T = 98 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.079; data-to-parameter ratio = 16.2.

The asymmetric unit of the title salt,  $[Ag(C_{14}H_{14}N_4O_2)_{1.5}]$ -(CF<sub>3</sub>SO<sub>3</sub>), comprises a Ag<sup>+</sup> cation, three half-molecules of N,N'-bis(2-pyridylmethyl)oxalamide (each of which is disposed about a centre of inversion) and a trifluoromethanesulfonate anion. Distinct coordination modes are found for the bridging ligands, *i.e.*, a  $\mu_2,\kappa^2$ -bridging mode involving pyridine N atoms for one ligand, and a  $\mu_2,\kappa^4$ -bridging mode, employing both pyridine N and amide O atoms for the remaining ligands. The Ag<sup>+</sup> cations, which are in a distorted square-pyramidal coordination, and the ligands combine to form a two-dimensional array parallel to (101); these arrays are connected into a three-dimensional structure by trifluoromethane-sulfonate anions *via* N-H···O, C-H···O, and C-F···O interactions.

#### **Related literature**

For structural diversity in the structures of silver salts, see: Kundu *et al.* (2010). For crystal engineering studies on isomeric N,N'-bis(3-pyridylmethyl)oxalamides, see: Poplaukhin & Tiekink (2010). For the structure of the BF<sub>4</sub><sup>-</sup> salt, see: Schauer *et al.* (1998). For additional structural analysis, see: Addison *et al.* (1984).



#### **Experimental**

#### Crystal data

 $\begin{array}{ll} \left[ \mathrm{Ag}(\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{O}_{2})_{1.5} \right] (\mathrm{CF}_{3}\mathrm{SO}_{3}) & \gamma = 107.017 \ (3)^{\circ} \\ M_{r} = 662.38 & V = 1247.9 \ (3) \ \text{\AA}^{3} \\ \mathrm{Triclinic}, \ P\overline{\mathrm{I}} & Z = 2 \\ a = 8.7242 \ (14) \ \text{\AA} & \mathrm{Mo} \ \kappa \alpha \ \mathrm{radiation} \\ b = 11.1762 \ (17) \ \text{\AA} & \mu = 0.97 \ \mathrm{mm}^{-1} \\ c = 14.210 \ (2) \ \text{\AA} & T = 98 \ \mathrm{K} \\ \alpha = 95.977 \ (1)^{\circ} & 0.36 \times 0.32 \times 0.18 \ \mathrm{mm} \\ \beta = 105.948 \ (2)^{\circ} \end{array}$ 

#### Data collection

Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995)  $T_{\rm min} = 0.868, T_{\rm max} = 1.000$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.034 & 352 \text{ parameters} \\ wR(F^2) &= 0.079 & \text{H-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} &= 0.67 \text{ e } \text{\AA}^{-3} \\ 5688 \text{ reflections} & \Delta\rho_{\text{min}} &= -1.05 \text{ e } \text{\AA}^{-3} \end{split}$$

10177 measured reflections

 $R_{\rm int} = 0.029$ 

5688 independent reflections

5438 reflections with  $I > 2\sigma(I)$ 

#### Table 1

| Sel | ected | bond | l lengtl | 15 (A) |  |
|-----|-------|------|----------|--------|--|
|-----|-------|------|----------|--------|--|

| Ag-N1 | 2.378 (2) | Ag-O1 | 2.9665 (19) |
|-------|-----------|-------|-------------|
| Ag-N3 | 2.210 (2) | Ag-O2 | 2.7299 (17) |
| Ag-N5 | 2.250 (2) |       |             |

| Table 2       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$           | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------|------|--------------|--------------|--------------------------------------|
| $N2-H2n\cdots O4^i$        | 0.88 | 2.17         | 2.992 (4)    | 156                                  |
| N4-H4n···O3 <sup>ii</sup>  | 0.88 | 2.19         | 2.980 (3)    | 149                                  |
| N6-H6n···O6 <sup>iii</sup> | 0.88 | 2.22         | 2.936 (3)    | 139                                  |
| $C1-H1\cdots O5^{iv}$      | 0.95 | 2.36         | 3.197 (3)    | 146                                  |
| C17-H17···O4               | 0.95 | 2.43         | 3.334 (4)    | 158                                  |
| C18-H18···F1               | 0.95 | 2.45         | 3.261 (4)    | 144                                  |
| $N2-H2n\cdots O1^{v}$      | 0.88 | 2.32         | 2.697 (3)    | 106                                  |
| $N4-H4n \cdots O2^{ii}$    | 0.88 | 2.32         | 2.692 (3)    | 105                                  |
| $N6-H6n\cdots O3^{vi}$     | 0.88 | 2.34         | 2.709 (3)    | 106                                  |
|                            |      |              |              |                                      |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) x, y + 1, z; (v) -x, -y + 1, -z; (vi) -x + 1, -y + 1, -z + 1.

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2322).

#### References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kundu, N., Audhya, A., Towsif Abtab, Sk Md, Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des. 10, 1269–1282.

Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Poplaukhin, P. & Tiekink, E. R. T. (2010). CrystEngComm, 12, 1302-1306.

Schauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1998). Cryst. Eng. 1, 213–223.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, m1167-m1168 [https://doi.org/10.1107/S1600536810033611]

Poly[[bis[ $\mu_2$ -N,N'-bis(2-pyridylmethyl)oxalamide- $\kappa^4N,O$ :N',O'][ $\mu_2$ -N,N'-bis(2-pyridylmethyl)oxalamide- $\kappa^2N$ :N']disilver(I)] bis(trifluoromethanesulfonate)]

### Hadi D. Arman, Tyler Miller, Pavel Poplaukhin and Edward R. T. Tiekink

#### S1. Comment

For silver salts, the dependence of crystal structure upon counter anions and the presence of solvent is notorious and has ramifications for photoluminescence (Kundu *et al.*, 2010). In connection with crystal engineering studies on the isomeric N,N'-bis(n-pyridylmethyl)oxalamides (Poplaukhin & Tiekink, 2010), the 3:2 reaction between Ag(trifluoromethane-sulfonate) and N,N'-bis(2-pyridylmethyl)oxalamide in an ethanol/chloroform solution was investigated, which led to the characterization of the title compound, (I).

The asymmetric unit of (I) comprises a Ag cation, three half molecules of *N*,*N*'-bis(2-pyridylmethyl)oxalamide (each of which is disposed about a centre of inversion) and a trifluoromethanesulfonate anion. Each of the ligands coordinates to a Ag atom, one employing the pyridine-N atoms exclusively while the others are  $\mu_2$ , $\kappa^4$ -bridging, employing both pyridine-N and amide-O atoms, leading to non-planar seven-membered chelate rings, Fig. 2. It is noted that the Ag–O bond distances are significantly longer than the Ag–N bond distances, Table 1. The resulting N<sub>3</sub>O<sub>2</sub> coordination geometry is distorted square pyramidal based on the value for  $\tau$  in (I) of 0.02 compared to the ideal values for  $\tau$  of 0.0 and 1.0 for ideal square pyramidal and trigonal bi-pyramidal geometries, respectively (Addison *et al.*, 1984). In this description, the Ag atoms lies 0.7272 (10) Å out of the plane defined by the O1,O2,N3 and N5 atoms (r.m.s. deviation = 0.0805 Å) in the direction of the N1 atom.

The 2-D structure observed for (I) contrasts the helical coordination polymer observed in the structure of the silver tetrafluoroborate salt containing the same ligand, isolated as a hydrate (Schauer *et al.*, 1998). The N,N'-bis(2-pyridyl-methyl)oxalamide ligand acts as a bidentate donor employing both pyridine-N atoms in coordination (Schauer *et al.*, 1998).

The crystal packing in (I) can be envisaged as chains of Ag atoms bridged by the  $\mu_2, \kappa^4$ -ligands linked by the  $\mu_2, \kappa^2$ ligands leading to 2-D arrays parallel to (1 0 1), Fig. 3. The layers are connected by contacts involving the trifluoromethanesulfonate anions. Thus, the trifluoromethanesulfonate anions participate in N–H…O hydrogen bonds formed to one layer, and C–H…O and C–H…F interactions to the other, Fig. 4 and Table 2. In addition to the intermolecular interactions, intramolecular N–H…O hydrogen bonds are also noted, Table 2.

#### **S2. Experimental**

Colourless crystals of (I) were isolated from the 3:2 reaction of Ag(trifluoromethanesulfonate) (Sigma-Aldrich, 0.06 mmol) and N,N'-bis(2-pyridylmethyl)oxalamide (0.04 mmol) in a warm ethanol/chloroform solution (8 ml).

### **S3. Refinement**

C-bound H-atoms were placed in calculated positions (N–H = 0.88 Å and C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with  $U_{iso}$ (H) set to  $1.2U_{eq}$ (C). The maximum and minimum residual

electron density peaks of 0.67 and -1.05 e Å<sup>-3</sup>, respectively, were located 0.85 Å and 0.79 Å from the S1 and Ag atoms, respectively.



### Figure 1

An asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Each of the N,N'-bis(2-pyridylmethyl)oxalamide molecules is situated about a centre of inversion.



### Figure 2

A part of the 2-D grid in (I) showing the  $\mu_2$  and  $\mu_4$ - (twice) modes of coordination of the *N*,*N*'-bis(2-pyridylmethyl)oxalamide ligands. The N–H···O hydrogen bonds are shown as orange dashed lines. The trifluoromethanesulfonate anions and the C-bound hydrogen atoms have been omitted for clarity.



### Figure 3

A view in projection down the *a* axis of the 2-D grid in (I). The trifluoromethanesulfonate anions have been omitted for clarity.



Figure 4

A view in projection down the *b* axis of the crystal packing in (I). The layers shown in Fig. 3 are interspersed by the trifluoromethanesulfonate anions which are connected by  $N-H\cdots O$  hydrogen bonds (orange dashed lines) to one layer, and  $C-H\cdots O$  and  $C-H\cdots F$  interactions (shown as purple and blue dashed lines, respectively) to the other.

Poly[[bis[ $\mu_2$ -N,N'-bis(2-pyridylmethyl)oxalamide-  $\kappa^4 N$ ,O:N',O'][ $\mu_2$ -N,N'- bis(2-pyridylmethyl)oxalamide-  $\kappa^2 N$ :N']disilver(I)] bis(trifluoromethanesulfonate)]

Crystal data

Z = 2 F(000) = 666  $D_x = 1.763 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71069 \text{ Å}$ Cell parameters from 5470 reflections  $\theta = 2.7-40.5^{\circ}$   $\mu = 0.97 \text{ mm}^{-1}$ T = 98 K Plate, colourless  $0.36 \times 0.32 \times 0.18 \text{ mm}$  Data collection

| Rigaku AFC12K/SATURN724                         | 10177 measured reflections                                |
|-------------------------------------------------|-----------------------------------------------------------|
| diffractometer                                  | 5688 independent reflections                              |
| Radiation source: fine-focus sealed tube        | 5438 reflections with $I > 2\sigma(I)$                    |
| Graphite monochromator                          | $R_{int} = 0.029$                                         |
| $\omega$ scans                                  | $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.0^{\circ}$ |
| Absorption correction: multi-scan               | $h = -11 \rightarrow 11$                                  |
| ( <i>ABSCOR</i> ; Higashi, 1995)                | $k = -14 \rightarrow 14$                                  |
| $T_{\min} = 0.868, T_{\max} = 1.000$            | $l = -18 \rightarrow 10$                                  |
| Refinement                                      |                                                           |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.034$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.079$                               | neighbouring sites                                        |
| S = 1.05                                        | H-atom parameters constrained                             |
| 5688 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0295P)^2 + 1.3977P]$         |
| 352 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{max} = 0.001$                           |
| Primary atom site location: structure-invariant | $\Delta\rho_{max} = 0.67$ e Å <sup>-3</sup>               |
| direct methods                                  | $\Delta\rho_{min} = -1.05$ e Å <sup>-3</sup>              |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x           | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|-------------|---------------|---------------|-----------------------------|--|
| Ag         | 0.18992 (2) | 0.789941 (17) | 0.198313 (13) | 0.01680 (6)                 |  |
| <b>S</b> 1 | 0.83484 (8) | 0.26442 (7)   | 0.26813 (5)   | 0.02348 (14)                |  |
| F1         | 0.6446 (3)  | 0.3310 (3)    | 0.36252 (17)  | 0.0586 (6)                  |  |
| F2         | 0.8906 (4)  | 0.4736 (2)    | 0.39309 (18)  | 0.0663 (7)                  |  |
| F3         | 0.8647 (3)  | 0.3038 (2)    | 0.45763 (14)  | 0.0527 (6)                  |  |
| 01         | -0.1034 (2) | 0.56970 (17)  | 0.06781 (14)  | 0.0230 (4)                  |  |
| O2         | 0.4189 (2)  | 0.89384 (17)  | 0.38477 (13)  | 0.0210 (4)                  |  |
| 03         | 0.5809(2)   | 0.65495 (16)  | 0.47965 (13)  | 0.0180 (3)                  |  |
| O4         | 0.7817 (3)  | 0.3298 (2)    | 0.18909 (16)  | 0.0330 (5)                  |  |
| 05         | 0.7255 (2)  | 0.1362 (2)    | 0.25641 (17)  | 0.0346 (5)                  |  |
| O6         | 1.0141 (2)  | 0.28246 (18)  | 0.29925 (16)  | 0.0284 (4)                  |  |
| N1         | 0.2257 (3)  | 0.8994 (2)    | 0.06692 (15)  | 0.0171 (4)                  |  |
| N2         | 0.0110 (3)  | 0.63965 (19)  | -0.05116 (15) | 0.0183 (4)                  |  |
| H2N        | 0.0695      | 0.6247        | -0.0898       | 0.022*                      |  |
| N3         | 0.0373 (3)  | 0.8513 (2)    | 0.28181 (15)  | 0.0178 (4)                  |  |
| N4         | 0.3734 (3)  | 1.07931 (19)  | 0.42923 (15)  | 0.0162 (4)                  |  |

| U/N        | 0.4058                 | 1 1475                     | 0 4765                     | 0.010*          |
|------------|------------------------|----------------------------|----------------------------|-----------------|
| П41N<br>N5 | 0.4038<br>0.3388 (2)   | 0.65010 (18)               | 0.4703<br>0.18415 (15)     | $0.019^{\circ}$ |
| NG         | 0.3388(2)<br>0.3201(3) | 0.03910(18)<br>0.40840(10) | 0.10413(15)<br>0.20500(15) | 0.0148(4)       |
| HEN        | 0.3291 (3)             | 0.49849 (19)               | 0.39399 (13)               | 0.0100(4)       |
| C1         | 0.2027<br>0.2585 (2)   | 0.4214                     | 0.3942<br>0.00336 (10)     | $0.020^{\circ}$ |
|            | 0.5585 (5)             | 1.0079 (2)                 | 0.09550 (19)               | 0.0203 (3)      |
|            | 0.4419                 | 1.0240                     | 0.1308                     | 0.024*          |
| C2         | 0.3804 (3)             | 1.0972 (2)                 | 0.0528 (2)                 | 0.0229 (3)      |
| H2<br>C2   | 0.4/5/                 | 1.1/33                     | 0.0545                     | $0.028^{*}$     |
|            | 0.2398 (4)             | 1.0/21 (5)                 | -0.0399 (2)                | 0.0237(0)       |
| H3         | 0.2707                 | 1.1308                     | -0.1035                    | $0.031^{\circ}$ |
|            | 0.1235 (3)             | 0.9603 (2)                 | -0.08807 (19)              | 0.0219(5)       |
| H4         | 0.0394                 | 0.9414                     | -0.1516                    | 0.026*          |
|            | 0.1091(3)              | 0.8/56 (2)                 | -0.02376(18)               | 0.0177(5)       |
|            | -0.0395 (3)            | 0.7529 (2)                 | -0.0529 (2)                | 0.0210 (5)      |
| H6A        | -0.1056                | 0.7548                     | -0.0066                    | 0.025*          |
| H6B        | -0.1140                | 0.7473                     | -0.1210                    | 0.025*          |
| C/         | -0.0292 (3)            | 0.5578 (2)                 | 0.00759 (18)               | 0.0168 (5)      |
| C8         | -0.1050 (3)            | 0.7645 (3)                 | 0.2844 (2)                 | 0.0240 (5)      |
| H8         | -0.1325                | 0.6781                     | 0.2532                     | 0.029*          |
| C9         | -0.2128 (3)            | 0.7952 (3)                 | 0.3302 (2)                 | 0.0292 (6)      |
| H9         | -0.3111                | 0.7310                     | 0.3314                     | 0.035*          |
| C10        | -0.1752 (3)            | 0.9210 (3)                 | 0.3744 (2)                 | 0.0286 (6)      |
| H10        | -0.2494                | 0.9452                     | 0.4042                     | 0.034*          |
| C11        | -0.0268 (3)            | 1.0114 (3)                 | 0.37424 (19)               | 0.0224 (5)      |
| H11        | 0.0028                 | 1.0983                     | 0.4049                     | 0.027*          |
| C12        | 0.0774 (3)             | 0.9732 (2)                 | 0.32879 (17)               | 0.0159 (4)      |
| C13        | 0.2458 (3)             | 1.0686 (2)                 | 0.33435 (17)               | 0.0173 (5)      |
| H13A       | 0.2820                 | 1.0402                     | 0.2783                     | 0.021*          |
| H13B       | 0.2335                 | 1.1531                     | 0.3286                     | 0.021*          |
| C14        | 0.4416 (3)             | 0.9886 (2)                 | 0.44598 (17)               | 0.0155 (4)      |
| C15        | 0.4180 (3)             | 0.6709 (2)                 | 0.11494 (17)               | 0.0180 (5)      |
| H15        | 0.4053                 | 0.7318                     | 0.0741                     | 0.022*          |
| C16        | 0.5166 (3)             | 0.5990 (2)                 | 0.10053 (18)               | 0.0203 (5)      |
| H16        | 0.5752                 | 0.6132                     | 0.0532                     | 0.024*          |
| C17        | 0.5288 (3)             | 0.5057 (3)                 | 0.15634 (19)               | 0.0237 (5)      |
| H17        | 0.5921                 | 0.4522                     | 0.1462                     | 0.028*          |
| C18        | 0.4466 (3)             | 0.4921 (2)                 | 0.22738 (19)               | 0.0207 (5)      |
| H18        | 0.4524                 | 0.4284                     | 0.2663                     | 0.025*          |
| C19        | 0.3555 (3)             | 0.5721 (2)                 | 0.24127 (17)               | 0.0147 (4)      |
| C20        | 0.2721 (3)             | 0.5694 (2)                 | 0.32159 (17)               | 0.0167 (5)      |
| H20A       | 0.2964                 | 0.6582                     | 0.3552                     | 0.020*          |
| H20B       | 0.1480                 | 0.5304                     | 0.2900                     | 0.020*          |
| C21        | 0.4798 (3)             | 0.5475 (2)                 | 0.46690 (17)               | 0.0152 (4)      |
| C22        | 0.8089 (5)             | 0.3483 (3)                 | 0.3762 (2)                 | 0.0387 (7)      |
|            |                        |                            |                            |                 |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|--------------|--------------|--------------|-------------|-------------|--------------|
| Ag  | 0.01925 (10) | 0.01673 (10) | 0.01533 (10) | 0.00778 (7) | 0.00530 (7) | 0.00263 (7)  |
| S1  | 0.0203 (3)   | 0.0251 (3)   | 0.0249 (3)   | 0.0084 (3)  | 0.0054 (3)  | 0.0072 (3)   |
| F1  | 0.0680 (15)  | 0.0967 (19)  | 0.0516 (13)  | 0.0604 (15) | 0.0387 (12) | 0.0368 (13)  |
| F2  | 0.108 (2)    | 0.0355 (12)  | 0.0527 (14)  | 0.0256 (13) | 0.0241 (14) | -0.0027 (10) |
| F3  | 0.0741 (15)  | 0.0691 (15)  | 0.0260 (9)   | 0.0405 (13) | 0.0131 (10) | 0.0164 (10)  |
| 01  | 0.0281 (9)   | 0.0181 (9)   | 0.0243 (9)   | 0.0069 (7)  | 0.0121 (8)  | 0.0028 (7)   |
| O2  | 0.0221 (9)   | 0.0180 (9)   | 0.0183 (8)   | 0.0072 (7)  | 0.0015 (7)  | -0.0030(7)   |
| O3  | 0.0194 (8)   | 0.0137 (8)   | 0.0183 (8)   | 0.0030 (7)  | 0.0046 (7)  | 0.0043 (7)   |
| O4  | 0.0376 (11)  | 0.0423 (12)  | 0.0318 (11)  | 0.0238 (10) | 0.0157 (9)  | 0.0182 (10)  |
| O5  | 0.0208 (9)   | 0.0291 (11)  | 0.0438 (12)  | 0.0022 (8)  | 0.0010 (9)  | 0.0082 (10)  |
| O6  | 0.0176 (9)   | 0.0223 (10)  | 0.0402 (11)  | 0.0034 (7)  | 0.0049 (8)  | 0.0058 (9)   |
| N1  | 0.0180 (10)  | 0.0182 (10)  | 0.0151 (9)   | 0.0065 (8)  | 0.0046 (8)  | 0.0040 (8)   |
| N2  | 0.0201 (10)  | 0.0135 (9)   | 0.0195 (10)  | 0.0045 (8)  | 0.0050 (8)  | 0.0033 (8)   |
| N3  | 0.0151 (9)   | 0.0199 (10)  | 0.0169 (10)  | 0.0047 (8)  | 0.0042 (8)  | 0.0032 (8)   |
| N4  | 0.0167 (9)   | 0.0143 (9)   | 0.0140 (9)   | 0.0046 (8)  | 0.0014 (8)  | -0.0005 (8)  |
| N5  | 0.0152 (9)   | 0.0131 (9)   | 0.0156 (9)   | 0.0043 (7)  | 0.0047 (8)  | 0.0022 (7)   |
| N6  | 0.0174 (9)   | 0.0128 (9)   | 0.0171 (9)   | 0.0024 (8)  | 0.0032 (8)  | 0.0064 (8)   |
| C1  | 0.0179 (11)  | 0.0223 (12)  | 0.0186 (11)  | 0.0054 (10) | 0.0054 (10) | 0.0008 (10)  |
| C2  | 0.0238 (13)  | 0.0166 (12)  | 0.0259 (13)  | 0.0015 (10) | 0.0108 (11) | 0.0017 (10)  |
| C3  | 0.0358 (15)  | 0.0180 (12)  | 0.0259 (13)  | 0.0079 (11) | 0.0132 (12) | 0.0100 (10)  |
| C4  | 0.0273 (13)  | 0.0203 (12)  | 0.0176 (12)  | 0.0095 (10) | 0.0040 (10) | 0.0058 (10)  |
| C5  | 0.0193 (11)  | 0.0152 (11)  | 0.0183 (11)  | 0.0063 (9)  | 0.0053 (9)  | 0.0025 (9)   |
| C6  | 0.0193 (12)  | 0.0157 (12)  | 0.0244 (12)  | 0.0062 (10) | 0.0014 (10) | 0.0039 (10)  |
| C7  | 0.0148 (10)  | 0.0133 (11)  | 0.0160 (11)  | 0.0020 (9)  | -0.0005 (9) | -0.0006 (9)  |
| C8  | 0.0180 (12)  | 0.0254 (13)  | 0.0216 (12)  | 0.0010 (10) | 0.0031 (10) | 0.0031 (10)  |
| C9  | 0.0160 (12)  | 0.0426 (17)  | 0.0222 (13)  | 0.0006 (11) | 0.0061 (10) | 0.0052 (12)  |
| C10 | 0.0214 (13)  | 0.0506 (18)  | 0.0181 (12)  | 0.0169 (13) | 0.0080 (11) | 0.0062 (12)  |
| C11 | 0.0231 (12)  | 0.0309 (14)  | 0.0174 (11)  | 0.0156 (11) | 0.0059 (10) | 0.0050 (10)  |
| C12 | 0.0168 (11)  | 0.0197 (12)  | 0.0108 (10)  | 0.0079 (9)  | 0.0015 (9)  | 0.0038 (9)   |
| C13 | 0.0194 (11)  | 0.0176 (11)  | 0.0156 (11)  | 0.0078 (9)  | 0.0043 (9)  | 0.0054 (9)   |
| C14 | 0.0127 (10)  | 0.0153 (11)  | 0.0166 (11)  | 0.0025 (8)  | 0.0048 (9)  | 0.0013 (9)   |
| C15 | 0.0203 (11)  | 0.0176 (11)  | 0.0131 (10)  | 0.0041 (9)  | 0.0034 (9)  | 0.0025 (9)   |
| C16 | 0.0195 (11)  | 0.0222 (12)  | 0.0162 (11)  | 0.0056 (10) | 0.0053 (9)  | -0.0027 (9)  |
| C17 | 0.0256 (13)  | 0.0245 (13)  | 0.0201 (12)  | 0.0127 (11) | 0.0039 (10) | -0.0025 (10) |
| C18 | 0.0249 (12)  | 0.0183 (12)  | 0.0191 (12)  | 0.0119 (10) | 0.0027 (10) | 0.0035 (10)  |
| C19 | 0.0129 (10)  | 0.0132 (10)  | 0.0133 (10)  | 0.0020 (8)  | 0.0000 (8)  | 0.0010 (8)   |
| C20 | 0.0176 (11)  | 0.0164 (11)  | 0.0153 (11)  | 0.0061 (9)  | 0.0031 (9)  | 0.0052 (9)   |
| C21 | 0.0190 (11)  | 0.0151 (11)  | 0.0135 (10)  | 0.0071 (9)  | 0.0065 (9)  | 0.0038 (9)   |
| C22 | 0.0490 (19)  | 0.0446 (19)  | 0.0307 (16)  | 0.0252 (16) | 0.0144 (15) | 0.0101 (14)  |

### Geometric parameters (Å, °)

| Ag—N1 | 2.378 (2) | С2—Н2 | 0.9500    |
|-------|-----------|-------|-----------|
| Ag—N3 | 2.210 (2) | C3—C4 | 1.378 (4) |
| Ag—N5 | 2.250 (2) | С3—Н3 | 0.9500    |

| Ag—O1                   | 2.9665 (19)            | C4—C5                      | 1.386 (3) |
|-------------------------|------------------------|----------------------------|-----------|
| Ag—O2                   | 2.7299 (17)            | C4—H4                      | 0.9500    |
| S1—O5                   | 1.433 (2)              | C5—C6                      | 1.510(3)  |
| S1—O4                   | 1.447 (2)              | С6—Н6А                     | 0.9900    |
| S1-06                   | 1 4487 (19)            | С6—Н6В                     | 0 9900    |
| S1-C22                  | 1 818 (3)              | $C7 - C7^{i}$              | 1.537(5)  |
| F1 C22                  | 1.010(3)               | $C_{1}^{2}$                | 1.337(3)  |
| F2 C22                  | 1.377(7)               | $C_{0}$                    | 1.381(4)  |
| F2-C22                  | 1.333 (4)              |                            | 0.9300    |
| F3-C22                  | 1.333 (4)              | C9                         | 1.382 (4) |
| 01-07                   | 1.225 (3)              | С9—Н9                      | 0.9500    |
| O2—C14                  | 1.228 (3)              | C10—C11                    | 1.391 (4) |
| O3—C21                  | 1.225 (3)              | C10—H10                    | 0.9500    |
| N1—C1                   | 1.341 (3)              | C11—C12                    | 1.385 (3) |
| N1—C5                   | 1.347 (3)              | C11—H11                    | 0.9500    |
| N2—C7                   | 1.337 (3)              | C12—C13                    | 1.518 (3) |
| N2—C6                   | 1.457 (3)              | С13—Н13А                   | 0.9900    |
| N2—H2N                  | 0.8800                 | C13—H13B                   | 0.9900    |
| N3—C8                   | 1.346 (3)              | C14—C14 <sup>ii</sup>      | 1.538 (5) |
| N3—C12                  | 1.352 (3)              | C15—C16                    | 1.376 (4) |
| N4—C14                  | 1 329 (3)              | C15—H15                    | 0.9500    |
| N4—C13                  | 1.529(3)<br>1.461(3)   | C16-C17                    | 1 386 (4) |
| NA HAN                  | 0.8800                 | C16 H16                    | 0.9500    |
| N5 C10                  | 1.344(3)               | $C_{10} = 110$             | 1.387(4)  |
| N5 C15                  | 1.344(3)               | C17_U17                    | 1.367 (4) |
|                         | 1.345 (5)              |                            | 0.9500    |
| N6-C21                  | 1.334 (3)              | C18—C19                    | 1.392 (3) |
| N6—C20                  | 1.452 (3)              | C18—H18                    | 0.9500    |
| N6—H6N                  | 0.8800                 | C19—C20                    | 1.511 (3) |
| C1—C2                   | 1.390 (4)              | C20—H20A                   | 0.9900    |
| C1—H1                   | 0.9500                 | C20—H20B                   | 0.9900    |
| C2—C3                   | 1.382 (4)              | C21—C21 <sup>iii</sup>     | 1.543 (4) |
| N3—Ag—N5                | 145.64 (8)             | 01—C7—N2                   | 125.9 (2) |
| N3—Ag—N1                | 114.52 (7)             | O1—C7—C7 <sup>i</sup>      | 121.7 (3) |
| N5—Ag—N1                | 99.84 (7)              | $N2-C7-C7^{i}$             | 112.3 (3) |
| N3—Ag—O2                | 77.39(7)               | N3—C8—C9                   | 123.0 (3) |
| N5 - Ag - O2            | 86 55 (6)              | N3—C8—H8                   | 118.5     |
| N1 - Ag - O2            | 117 91 (6)             | C9-C8-H8                   | 118.5     |
| $N_3 \Delta q = 01$     | 92.93 (6)              | $C_{8}$ $C_{9}$ $C_{10}$   | 118.9(3)  |
| N5 Ag O1                | 92.99 (0)<br>84.19 (6) | $C_8 C_9 H_9$              | 120.5     |
| $N_{1} = A_{2} = O_{1}$ | 04.19(0)               | $C_{0} = C_{0} = H_{0}$    | 120.5     |
| NI = Ag = OI            | 94.90 (0)              | $C_{10}$ $C_{10}$ $C_{11}$ | 120.3     |
| 02—Ag—01                | 146.99 (5)             |                            | 118.8 (2) |
| 05-51-04                | 115.07 (13)            | C9—C10—H10                 | 120.6     |
| U5—S1—U6                | 115.22 (12)            | С11—С10—Н10                | 120.6     |
| O4—S1—O6                | 114.01 (13)            | C12—C11—C10                | 119.1 (3) |
| O5—S1—C22               | 102.86 (16)            | C12—C11—H11                | 120.4     |
| O4—S1—C22               | 104.09 (14)            | C10—C11—H11                | 120.4     |
| O6—S1—C22               | 103.39 (15)            | N3—C12—C11                 | 122.2 (2) |
| C7—O1—Ag                | 91.70 (14)             | N3—C12—C13                 | 118.0 (2) |

| C14—O2—Ag                                               | 131.58 (16)            | C11—C12—C13                       | 119.8 (2)            |
|---------------------------------------------------------|------------------------|-----------------------------------|----------------------|
| C1—N1—C5                                                | 117.9 (2)              | N4—C13—C12                        | 109.80 (19)          |
| C1—N1—Ag                                                | 115.41 (16)            | N4—C13—H13A                       | 109.7                |
| C5—N1—Ag                                                | 125.33 (16)            | C12—C13—H13A                      | 109.7                |
| C7—N2—C6                                                | 121.8 (2)              | N4—C13—H13B                       | 109.7                |
| C7—N2—H2N                                               | 119.1                  | C12—C13—H13B                      | 109.7                |
| C6—N2—H2N                                               | 119.1                  | H13A—C13—H13B                     | 108.2                |
| C8—N3—C12                                               | 117.9 (2)              | O2—C14—N4                         | 126.2 (2)            |
| C8—N3—Ag                                                | 118.87 (18)            | O2—C14—C14 <sup>ii</sup>          | 120.5 (3)            |
| C12—N3—Ag                                               | 123.19 (16)            | N4—C14—C14 <sup>ii</sup>          | 113.3 (3)            |
| C14—N4—C13                                              | 121.6 (2)              | N5—C15—C16                        | 123.1 (2)            |
| C14—N4—H4N                                              | 119.2                  | N5—C15—H15                        | 118.5                |
| C13—N4—H4N                                              | 119.2                  | С16—С15—Н15                       | 118.5                |
| C19—N5—C15                                              | 118.4 (2)              | C15—C16—C17                       | 118.8 (2)            |
| C19—N5—Ag                                               | 124.21 (15)            | С15—С16—Н16                       | 120.6                |
| C15—N5—Ag                                               | 117.34 (16)            | C17—C16—H16                       | 120.6                |
| C21—N6—C20                                              | 121.6 (2)              | C16—C17—C18                       | 118.5 (2)            |
| $C_{21}$ —N6—H6N                                        | 119.2                  | С16—С17—Н17                       | 120.7                |
| C20—N6—H6N                                              | 119.2                  | С18—С17—Н17                       | 120.7                |
| N1-C1-C2                                                | 123.4 (2)              | C17—C18—C19                       | 119.6 (2)            |
| N1-C1-H1                                                | 118.3                  | C17—C18—H18                       | 120.2                |
| C2-C1-H1                                                | 118.3                  | C19—C18—H18                       | 120.2                |
| C3—C2—C1                                                | 118.2 (2)              | N5—C19—C18                        | 121.4 (2)            |
| C3—C2—H2                                                | 120.9                  | N5-C19-C20                        | 115.7(2)             |
| C1-C2-H2                                                | 120.9                  | C18 - C19 - C20                   | 122.9(2)             |
| C4-C3-C2                                                | 118.8 (2)              | N6-C20-C19                        | 112.9(2)<br>113.0(2) |
| C4—C3—H3                                                | 120.6                  | N6-C20-H20A                       | 109.0                |
| C2—C3—H3                                                | 120.6                  | C19 - C20 - H20A                  | 109.0                |
| $C_{3}$ $C_{4}$ $C_{5}$                                 | 120.0(2)               | N6-C20-H20B                       | 109.0                |
| C3—C4—H4                                                | 120.0                  | C19—C20—H20B                      | 109.0                |
| $C_5 - C_4 - H_4$                                       | 120.0                  | $H_{20}A = C_{20} = H_{20}B$      | 107.8                |
| N1-C5-C4                                                | 120.0<br>121.7(2)      | 03-C21-N6                         | 125.6(2)             |
| N1-C5-C6                                                | 1175(2)                | $03-C21-C21^{iii}$                | 123.0(2)<br>121.4(3) |
| C4-C5-C6                                                | 120.9(2)               | $N6-C21-C21^{iii}$                | 121.1(3)<br>113.0(2) |
| $N_{2}$ C6 C5                                           | 1130(2)                | $F_3 = C_2^2 = F_2^2$             | 1091(3)              |
| N2-C6-H6A                                               | 109.0                  | $F_{3}$ $C_{22}$ $F_{12}$         | 105.1(3)             |
| C5-C6-H6A                                               | 109.0                  | $F_{2}$ $C_{22}$ $F_{1}$          | 100.0(3)<br>107.8(3) |
| N2_C6_H6B                                               | 109.0                  | $F_{2} = C_{22} = F_{1}$          | 107.8(3)             |
| C5-C6-H6B                                               | 109.0                  | $F_{2}$ $C_{22}$ $S_{1}$          | 111.0(2)<br>111.4(2) |
| нба <u>С</u> б <u>Н</u> бВ                              | 107.8                  | $F_{1}$ $C_{22}$ $S_{1}$          | 110.8(2)             |
| Hox Co Hob                                              | 107.0                  | 11 022 51                         | 110.0 (2)            |
| N3 - 4 q - 01 - C7                                      | 163 63 (15)            | $\Delta q = 01 = C7 = C7^{i}$     | 111.3 (3)            |
| N5 Ag $O1 C7$                                           | -50.71(15)             | $C_{6}$ N2 C7 O1                  | -3.3(4)              |
| N1 - Ag - O1 - C7                                       | 48 71 (15)             | $C6-N2-C7-C7^{i}$                 | 176.9(2)             |
| $\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ | -125 18 (15)           | C12 N3 C8 C9                      | 1,0.5(2)<br>18(4)    |
| $N_3 = A_7 = 0^2 = C_1^4$                               | -39.2(2)               | $A_{g}$ N3 (8 (0)                 | -176.6(2)            |
| $N_{5} - A_{6} - O_{2} - C_{14}$                        | 171.4(2)               | $N_3 - C_8 - C_9 - C_{10}$        | 10.0(2)              |
| $N1  \Delta \sigma  O2  C14$                            | 1, 1.7 (2)<br>72 1 (2) | $C_{8} = C_{9} = C_{10} = C_{11}$ | -24(4)               |
| N1—Ag—02—014                                            | 12.1 (2)               | 0-09-010-011                      | 2.4 (4)              |

| O1—Ag—O2—C14 | -114.8(2)    | C9-C10-C11-C12                | 0.9 (4)     |
|--------------|--------------|-------------------------------|-------------|
| N3—Ag—N1—C1  | 87.98 (19)   | C8—N3—C12—C11                 | -3.3 (3)    |
| N5—Ag—N1—C1  | -91.61 (18)  | Ag—N3—C12—C11                 | 175.01 (18) |
| O2—Ag—N1—C1  | -0.3 (2)     | C8—N3—C12—C13                 | 174.4 (2)   |
| O1—Ag—N1—C1  | -176.54 (17) | Ag-N3-C12-C13                 | -7.3 (3)    |
| N3—Ag—N1—C5  | -78.4 (2)    | C10—C11—C12—N3                | 2.0 (4)     |
| N5—Ag—N1—C5  | 102.0 (2)    | C10-C11-C12-C13               | -175.7 (2)  |
| O2—Ag—N1—C5  | -166.73 (18) | C14—N4—C13—C12                | 74.8 (3)    |
| O1—Ag—N1—C5  | 17.0 (2)     | N3-C12-C13-N4                 | -95.2 (2)   |
| N5—Ag—N3—C8  | -60.0(2)     | C11—C12—C13—N4                | 82.5 (3)    |
| N1—Ag—N3—C8  | 120.70 (19)  | Ag-02-C14-N4                  | -11.8 (4)   |
| O2—Ag—N3—C8  | -124.1 (2)   | Ag-02-C14-C14 <sup>ii</sup>   | 168.21 (18) |
| O1—Ag—N3—C8  | 23.97 (19)   | C13—N4—C14—O2                 | 6.2 (4)     |
| N5—Ag—N3—C12 | 121.69 (19)  | C13—N4—C14—C14 <sup>ii</sup>  | -173.8 (2)  |
| N1—Ag—N3—C12 | -57.6 (2)    | C19—N5—C15—C16                | -0.6 (3)    |
| O2—Ag—N3—C12 | 57.57 (18)   | Ag-N5-C15-C16                 | 178.29 (18) |
| O1—Ag—N3—C12 | -154.33 (18) | N5-C15-C16-C17                | 3.2 (4)     |
| N3—Ag—N5—C19 | 2.5 (3)      | C15—C16—C17—C18               | -2.6 (4)    |
| N1—Ag—N5—C19 | -178.21 (18) | C16—C17—C18—C19               | -0.4 (4)    |
| O2—Ag—N5—C19 | 64.05 (18)   | C15—N5—C19—C18                | -2.5 (3)    |
| O1—Ag—N5—C19 | -84.22 (18)  | Ag-N5-C19-C18                 | 178.64 (17) |
| N3—Ag—N5—C15 | -176.41 (15) | C15—N5—C19—C20                | 176.4 (2)   |
| N1—Ag—N5—C15 | 2.93 (18)    | Ag-N5-C19-C20                 | -2.4 (3)    |
| O2—Ag—N5—C15 | -114.81 (17) | C17—C18—C19—N5                | 3.0 (4)     |
| O1—Ag—N5—C15 | 96.91 (17)   | C17—C18—C19—C20               | -175.8 (2)  |
| C5—N1—C1—C2  | 0.9 (4)      | C21—N6—C20—C19                | 76.1 (3)    |
| Ag—N1—C1—C2  | -166.6 (2)   | N5-C19-C20-N6                 | -165.2 (2)  |
| N1—C1—C2—C3  | -0.7 (4)     | C18—C19—C20—N6                | 13.7 (3)    |
| C1—C2—C3—C4  | 0.2 (4)      | C20—N6—C21—O3                 | 2.8 (4)     |
| C2—C3—C4—C5  | 0.1 (4)      | C20—N6—C21—C21 <sup>iii</sup> | -175.8 (2)  |
| C1—N1—C5—C4  | -0.6 (4)     | O5—S1—C22—F3                  | 64.0 (3)    |
| Ag—N1—C5—C4  | 165.49 (18)  | O4—S1—C22—F3                  | -175.7 (2)  |
| C1—N1—C5—C6  | 179.8 (2)    | O6—S1—C22—F3                  | -56.3 (3)   |
| Ag—N1—C5—C6  | -14.1 (3)    | O5—S1—C22—F2                  | -174.2 (2)  |
| C3-C4-C5-N1  | 0.2 (4)      | O4—S1—C22—F2                  | -53.9 (3)   |
| C3—C4—C5—C6  | 179.8 (2)    | O6—S1—C22—F2                  | 65.5 (3)    |
| C7—N2—C6—C5  | 120.3 (2)    | O5—S1—C22—F1                  | -54.3 (3)   |
| N1-C5-C6-N2  | -58.2 (3)    | O4—S1—C22—F1                  | 66.1 (3)    |
| C4—C5—C6—N2  | 122.2 (3)    | O6—S1—C22—F1                  | -174.5 (2)  |
| Ag-01-C7-N2  | -68.5 (2)    |                               |             |

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

## Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H  | H···A | D····A    | D—H···A |
|---------------------------|------|-------|-----------|---------|
| N2—H2n···O4 <sup>iv</sup> | 0.88 | 2.17  | 2.992 (4) | 156     |
| N4—H4n···O3 <sup>ii</sup> | 0.88 | 2.19  | 2.980 (3) | 149     |

| N6—H6n···O6 <sup>v</sup>   | 0.88 | 2.22 | 2.936 (3) | 139 |  |
|----------------------------|------|------|-----------|-----|--|
| C1—H1····O5 <sup>vi</sup>  | 0.95 | 2.36 | 3.197 (3) | 146 |  |
| С17—Н17…О4                 | 0.95 | 2.43 | 3.334 (4) | 158 |  |
| C18—H18…F1                 | 0.95 | 2.45 | 3.261 (4) | 144 |  |
| N2—H2n···O1 <sup>i</sup>   | 0.88 | 2.32 | 2.697 (3) | 106 |  |
| N4—H4n···O2 <sup>ii</sup>  | 0.88 | 2.32 | 2.692 (3) | 105 |  |
| N6—H6n···O3 <sup>iii</sup> | 0.88 | 2.34 | 2.709 (3) | 106 |  |
|                            |      |      |           |     |  |

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*; (v) *x*-1, *y*, *z*; (vi) *x*, *y*+1, *z*.