

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Oxido{N-[(2-oxido-1-naphthyl- κO)methylidene]asparaginato- $\kappa^2 O^1, N^2$ }-(1.10-phenanthroline- $\kappa^2 N.N'$)vanadium(IV) N,N-dimethylformamide monosolvate

Lin Bian, Lianzhi Li,* Qingfu Zhang and Dagi Wang

School of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: lilianzhi1963@yahoo.com.cn

Received 20 July 2010; accepted 28 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.075; wR factor = 0.216; data-toparameter ratio = 11.9.

The tridentate Schiff base ligand of the title complex. $[V(C_{15}H_{12}N_2O_4)O(C_{12}H_8N_2)]\cdot C_3H_7NO$, was derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-asparagine. The central V^{IV} atom is six-coordinated by one oxide O atom, two N atoms from 1,10-phenanthroline and one N atom and two O atoms from the Schiff base ligand in a distorted octahedral geometry. In the crystal structure, intermolecular N-H···O hydrogen bonds connect molecules into centrosymmetric dimers. The C atoms of the dimethylformamide solvent molecule are disordered over two sites with siteoccupancy factors of 0.732 (13) and 0.268 (13).

Related literature

For the insulin-mimetic properties of vanadium compounds, see: Diego et al. (2003); Kenji et al. (2000); Thompson & Orvig (2006). For related structures, see: Hoshina et al. (1998); Otieno et al. (1996).

7387 measured reflections

 $R_{\rm int} = 0.063$

4892 independent reflections

3123 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $[V(C_{15}H_{12}N_2O_4)O(C_{12}H_8N_2)]$ -- $\beta = 104.196 \ (2)^{\circ}$ C₃H₇NO $\gamma = 91.010 \ (1)^{\circ}$ $M_r = 604.51$ V = 1407.5 (3) Å³ Triclinic, P1 Z = 2a = 10.357 (1) ÅMo $K\alpha$ radiation b = 11.1021 (12) Å $\mu = 0.41 \text{ mm}^{-1}$ c = 12.9119 (14) Å T = 298 K $\alpha = 101.396(2)^{\circ}$ $0.36 \times 0.31 \times 0.25 \text{ mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.868, T_{\max} = 0.905$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.075$	411 parameters
$wR(F^2) = 0.216$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
4892 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O3^{i}$	0.86	2.05	2.909 (5)	175
$N1 - H1B \cdots O6^{ii}$	0.86	2.00	2.852 (6)	169

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1.

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2309).

References

- Bruker (1996). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813-1820.
- Hoshina, G., Tsuchimoto, M., Ohba, S., Nakajima, K., Uekusa, H., Ohashi, Y., Ishida, H. & Kojima, M. (1998). Inorg. Chem. 37, 142-145.
- Kenji, K., Makoto, T., Ken, H., Naohisa, Y. & Yoshitane, K. (2000). Inorg. Chim. Acta, 305, 172-183.
- Otieno, T., Bond, M. R., Mokry, L. M., Walter, R. B. & Carrano, C. J. (1996). J. Chem. Soc. Chem. Commun. pp. 37-38.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Thompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761-764.

supporting information

Acta Cryst. (2010). E66, m1051 [https://doi.org/10.1107/S1600536810030126]

Oxido{N-[(2-oxido-1-naphthyl- κO)methylidene]asparaginato- $\kappa^2 O^1$, N^2 }(1,10-phenanthroline- $\kappa^2 N$,N')vanadium(IV) N,N-dimethylformamide monosolvate

Lin Bian, Lianzhi Li, Qingfu Zhang and Daqi Wang

S1. Comment

Vanadium is a biologically essential trace element, encountered in metalloenzymes such as haloperoxidases or nitrogenases. The coordination chemistry of oxovanadium (IV) has gained a great interest due to the fact that vanadium compounds in various oxidation states have insulin-mimetic properties (Kenji, *et al.*, 2000; Diego *et al.*, 2003; Thompson & Orvig, 2006). We report here the synthesis and crystal structure of the title complex.

In the molecular structure of the title compound (Fig. 1), the tridentate Schiff base ligand is derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-asparagine. The central V^{IV} atom is six-coordinated by one oxide O atom, two N atoms from 1,10-phenanthroline and one N atom and two O atoms from the schiff base ligand in a distorted octahedral geometry. The V=O bond distance is 1.587 (3)Å which is typical for oxovandium complexes (Hoshina *et al.*, 1998; Otieno *et al.*, 1996). The Schiff base with the vanadium atom has formed a five-member ring (O1/C1–2/N2/V1) and a six-member ring (N2/C5–7/O4/V1], and the two rings have the dihedral angle 20.89 (17)°, which increases the stability of the complex. Furthermore, the 1,10–phenanthroline ligand is almost perpendicular to the equatorial plane [dihedral angle 84.98 (8)°].

In the crystal structure, the intermolecular N—H···O hydrogen bonds (Table 1) connect molecules into centrosymmetric dimers (Fig. 2). The solvate molecules are also hydrogen bonded to the Schiff base ligand. The structure is stablilized by inter- and intra-molecular hydrogen bonds of the type C—H···O.

S2. Experimental

L-Asparagine (1 mmol, 150.1 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (5 ml) with stirring and added successively to a methanol solution (5 ml) of 2-hydroxy-1-naphthaldehyde (1 mmol, 172.2 mg). The mixture was stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of vanadyl sulfate hydrate (1 mmol, 225.4 mg) was added dropwise and stirred for 2 h continuously. 1,10-Phenanthroline (1 mmol, 198.2 mg) was then added to the stirring mixture and further refluxed for 4 h and then filtered. The precipitate was dissolved in *N*,*N*-dimethyl-formamide (10 ml) and held at room temperature for several days, whereupon brown blocky crystals suitable for X-ray diffraction were obtained.

S3. Refinement

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.98 Å, and allowed to ride on their respective parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The C-atoms of the *N*,*N*-dimethylformamide solvate were disordered over two sites with site occupancy factors 0.732 (13) and 0.268 (13).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The smaller fraction of the disordered C-atoms of the solvate have been joined by hollow bonds.

Figure 2

Hydrogen bonding interactions in the title compound shown as dashed lines.

Oxido{*N*-[(2-oxido-1-naphthyl- κO)methylidene]asparaginato- $\kappa^2 O^1$, N^2 }(1,10-phenanthroline- $\kappa^2 N$, N')vanadium(IV) N, N-dimethylformamide monosolvate

Crystal data

$[V(C_{15}H_{12}N_2O_4)O(C_{12}H_8N_2)] \cdot C_3H_7NO$	Z = 2
$M_r = 604.51$	F(000) = 626
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.426 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.357 (1) Å	Cell parameters from 1024 reflections
b = 11.1021 (12) Å	$\theta = 2.2 - 24.7^{\circ}$
c = 12.9119 (14) Å	$\mu=0.41~\mathrm{mm^{-1}}$
$\alpha = 101.396 \ (2)^{\circ}$	T = 298 K
$\beta = 104.196 \ (2)^{\circ}$	Block, brown
$\gamma = 91.010 \ (1)^{\circ}$	$0.36 \times 0.31 \times 0.25 \text{ mm}$
V = 1407.5 (3) Å ³	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.868, T_{\max} = 0.905$ <i>Refinement</i>	7387 measured reflections 4892 independent reflections 3123 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -9 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 15$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix. Tun $P(E^2 > 2 - (E^2)) = 0.075$	IIIap
$\frac{R[F^2 > 2\sigma(F^2)] = 0.075}{wR(F^2) = 0.216}$	neighbouring sites
S = 1.00	H-atom parameters constrained
4892 reflections	$w = 1/[\sigma^2(F_r^2) + (0.13P)^2]$
411 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
V1	0.21794 (8)	0.72939 (7)	0.12980 (6)	0.0417 (3)	
N1	-0.0395 (4)	0.8528 (4)	0.4060 (3)	0.0547 (11)	
H1A	-0.0235	0.8842	0.4747	0.066*	
H1B	-0.0620	0.7755	0.3824	0.066*	
N2	0.1611 (3)	0.9001 (3)	0.1906 (3)	0.0381 (8)	
N3	0.2777 (3)	0.5734 (3)	0.0261 (3)	0.0402 (9)	
N4	0.2988 (4)	0.8051 (3)	-0.0030 (3)	0.0435 (9)	
N5	0.0667 (5)	0.5958 (5)	0.6803 (4)	0.0717 (13)	
01	0.0481 (3)	0.7362 (3)	0.0169 (3)	0.0495 (8)	
O2	-0.1224 (3)	0.8505 (3)	-0.0363 (3)	0.0579 (9)	
O3	0.0023 (4)	1.0347 (3)	0.3643 (3)	0.0595 (10)	
O4	0.4011 (3)	0.7907 (3)	0.2145 (2)	0.0446 (8)	
05	0.1758 (3)	0.6444 (3)	0.2031 (3)	0.0547 (9)	
O6	0.1289 (5)	0.4015 (4)	0.6468 (5)	0.1162 (19)	
C1	-0.0249 (5)	0.8286 (4)	0.0315 (4)	0.0453 (11)	
C2	0.0166 (4)	0.9110 (4)	0.1475 (3)	0.0392 (10)	

H2	-0.0025	0.9968	0.1456	0.047*	
C3	-0.0627 (5)	0.8583 (4)	0.2161 (4)	0.0459 (11)	
H3A	-0.1572	0.8630	0.1844	0.055*	
H3B	-0.0462	0.7720	0.2120	0.055*	
C4	-0.0294 (4)	0.9237 (4)	0.3364 (4)	0.0438 (11)	
C5	0.2340 (4)	0.9935 (4)	0.2540 (4)	0.0384 (10)	
H5	0.1917	1.0660	0.2675	0.046*	
C6	0.3739 (4)	0.9979(4)	0.3061 (3)	0.0393 (10)	
C7	0.4499 (4)	0.8934 (4)	0.2841(3)	0.0390 (10)	
C8	0.5882(5)	0.9024(4)	0.2011(0) 0.3411(4)	0.0466 (11)	
H8	0.6386	0.8353	0.3277	0.056*	
C9	0.6580	1.0049(5)	0.3277 0.4137(4)	0.030	
Н9	0.7383	1.0060	0.4487	0.059*	
C10	0.5767 (5)	1 1125 (4)	0.4385(4)	0.039 0.0447 (11)	
C10	0.4386 (5)	1.1123(4) 1 1087(4)	0.4303(4) 0.3848(4)	0.0431(11)	
C11 C12	0.4380(5)	1.1087(4) 1.2158(4)	0.3848(4) 0.4134(4)	0.0431(11) 0.0540(13)	
U12 U12	0.3700 (3)	1.2138 (4)	0.4134 (4)	0.0549 (15)	
П12 С12	0.2802	1.21/3	0.3804	0.000^{-1}	
U13	0.4364 (6)	1.3109 (3)	0.4890 (4)	0.0013 (14)	
HI3	0.3892	1.3854	0.5061	0.074*	
C14	0.5722 (6)	1.3197 (5)	0.5408 (4)	0.0623 (14)	
HI4	0.6152	1.3894	0.5910	0.075*	
C15	0.6402 (5)	1.2186 (5)	0.5165 (4)	0.0546 (13)	
H15	0.7301	1.2190	0.5517	0.065*	
C16	0.2636 (5)	0.4573 (4)	0.0400 (4)	0.0464 (11)	
H16	0.2234	0.4435	0.0940	0.056*	
C17	0.3071 (5)	0.3567 (4)	-0.0233 (4)	0.0538 (13)	
H17	0.2967	0.2778	-0.0109	0.065*	
C18	0.3653 (5)	0.3757 (5)	-0.1039 (4)	0.0540 (13)	
H18	0.3962	0.3096	-0.1453	0.065*	
C19	0.3785 (4)	0.4939 (4)	-0.1242 (4)	0.0472 (12)	
C20	0.3325 (4)	0.5912 (4)	-0.0556 (4)	0.0416 (11)	
C21	0.3453 (4)	0.7150 (4)	-0.0716 (4)	0.0424 (11)	
C22	0.4021 (5)	0.7404 (5)	-0.1544 (4)	0.0532 (12)	
C23	0.4084 (5)	0.8629 (5)	-0.1670 (4)	0.0618 (14)	
H23	0.4442	0.8831	-0.2212	0.074*	
C24	0.3612 (5)	0.9528 (5)	-0.0986 (4)	0.0632 (14)	
H24	0.3659	1.0345	-0.1055	0.076*	
C25	0.3058 (5)	0.9198 (4)	-0.0182 (4)	0.0516 (12)	
H25	0.2725	0.9811	0.0264	0.062*	
C26	0.4361 (5)	0.5229 (5)	-0.2071(4)	0.0609 (14)	
H26	0.4671	0.4599	-0.2518	0.073*	
C27	0.4466 (5)	0.6385 (6)	-0.2220(4)	0.0629 (15)	
H27	0.4836	0.6534	-0.2775	0.076*	
C28	0.0719 (10)	0.4856 (9)	0.7005(9)	0.078 (3)	0.732(13)
H28	0.0342	0.4672	0 7543	0.094*	0.732(13)
C29	0.1211 (12)	0.6333(11)	0 5983 (8)	0.102(4)	0.732(13)
H29A	0 1869	0 5782	0 5812	0.152	0.732(13)
H20R	0.1620	0.7155	0.6253	0.153*	0.732(13)
112/10	0.1020	0.7155	0.0200	0.100	0.752(15)

H29C	0.0508	0.6313	0.5336	0.153*	0.732 (13)
C30	0.0016 (13)	0.6932 (11)	0.7444 (10)	0.116 (5)	0.732 (13)
H30A	-0.0315	0.6592	0.7965	0.174*	0.732 (13)
H30B	-0.0711	0.7220	0.6956	0.174*	0.732 (13)
H30C	0.0659	0.7608	0.7822	0.174*	0.732 (13)
C28′	0.140 (3)	0.508 (2)	0.619 (2)	0.085 (9)	0.268 (13)
H28′	0.1863	0.5244	0.5694	0.102*	0.268 (13)
C29′	-0.006 (3)	0.544 (3)	0.737 (3)	0.103 (11)	0.268 (13)
H29D	-0.0919	0.5131	0.6904	0.155*	0.268 (13)
H29E	-0.0175	0.6058	0.7977	0.155*	0.268 (13)
H29F	0.0401	0.4783	0.7646	0.155*	0.268 (13)
C30′	0.058 (3)	0.710 (3)	0.657 (3)	0.107 (11)	0.268 (13)
H30D	0.0192	0.7028	0.5802	0.161*	0.268 (13)
H30E	0.1457	0.7508	0.6764	0.161*	0.268 (13)
H30F	0.0031	0.7568	0.6977	0.161*	0.268 (13)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U^{23}
V1	0.0477 (5)	0.0351 (5)	0.0436 (5)	0.0085 (3)	0.0187 (4)	0.0015 (3)
N1	0.077 (3)	0.040(2)	0.047 (2)	0.008 (2)	0.021 (2)	0.002 (2)
N2	0.037 (2)	0.040 (2)	0.0375 (19)	0.0059 (16)	0.0129 (16)	0.0021 (17)
N3	0.038 (2)	0.037 (2)	0.046 (2)	0.0058 (15)	0.0151 (17)	0.0051 (17)
N4	0.046 (2)	0.040(2)	0.046 (2)	0.0086 (16)	0.0131 (18)	0.0085 (18)
N5	0.083 (4)	0.059 (3)	0.072 (3)	0.007 (3)	0.015 (3)	0.017 (3)
01	0.046 (2)	0.0448 (18)	0.0514 (18)	0.0068 (14)	0.0150 (15)	-0.0074 (16)
O2	0.051 (2)	0.066 (2)	0.0485 (19)	0.0130 (17)	0.0027 (17)	0.0049 (18)
O3	0.085 (3)	0.042 (2)	0.054 (2)	0.0017 (17)	0.0326 (19)	-0.0018 (17)
O4	0.0460 (19)	0.0415 (18)	0.0442 (17)	0.0115 (14)	0.0158 (15)	-0.0021 (15)
O5	0.066 (2)	0.0460 (19)	0.056 (2)	0.0083 (15)	0.0253 (18)	0.0080 (16)
O6	0.129 (5)	0.050 (3)	0.145 (5)	0.005 (3)	-0.002 (4)	0.009 (3)
C1	0.050 (3)	0.042 (3)	0.046 (3)	0.002 (2)	0.018 (2)	0.006 (2)
C2	0.037 (3)	0.038 (2)	0.043 (2)	0.0082 (18)	0.013 (2)	0.004 (2)
C3	0.047 (3)	0.046 (3)	0.046 (3)	0.006 (2)	0.019 (2)	0.003 (2)
C4	0.044 (3)	0.045 (3)	0.042 (3)	0.010(2)	0.018 (2)	0.000(2)
C5	0.044 (3)	0.033 (2)	0.045 (2)	0.0075 (19)	0.022 (2)	0.009 (2)
C6	0.042 (3)	0.040 (2)	0.039 (2)	0.0059 (19)	0.015 (2)	0.011 (2)
C7	0.042 (3)	0.044 (3)	0.036 (2)	0.0063 (19)	0.017 (2)	0.010(2)
C8	0.046 (3)	0.051 (3)	0.045 (3)	0.012 (2)	0.016 (2)	0.009 (2)
C9	0.045 (3)	0.057 (3)	0.048 (3)	0.010 (2)	0.015 (2)	0.014 (3)
C10	0.046 (3)	0.049 (3)	0.042 (2)	-0.002(2)	0.016 (2)	0.011 (2)
C11	0.048 (3)	0.041 (3)	0.043 (2)	0.003 (2)	0.018 (2)	0.006 (2)
C12	0.058 (3)	0.045 (3)	0.054 (3)	0.004 (2)	0.009 (3)	-0.002 (2)
C13	0.074 (4)	0.039 (3)	0.065 (3)	0.001 (2)	0.017 (3)	-0.002 (3)
C14	0.071 (4)	0.051 (3)	0.057 (3)	-0.013 (3)	0.013 (3)	-0.004 (3)
C15	0.054 (3)	0.055 (3)	0.051 (3)	-0.009 (2)	0.012 (2)	0.005 (3)
C16	0.046 (3)	0.034 (2)	0.058 (3)	0.0005 (19)	0.015 (2)	0.003 (2)
C17	0.048 (3)	0.038 (3)	0.065 (3)	0.001 (2)	0.007 (3)	-0.004 (2)

supporting information

C18	0.049 (3)	0.049 (3)	0.053 (3)	0.010 (2)	0.009 (2)	-0.013 (2)
C19	0.040 (3)	0.052 (3)	0.042 (3)	0.008 (2)	0.008 (2)	-0.005 (2)
C20	0.039 (3)	0.044 (3)	0.039 (2)	0.008 (2)	0.010 (2)	0.002 (2)
C21	0.040 (3)	0.048 (3)	0.038 (2)	0.008 (2)	0.008 (2)	0.008 (2)
C22	0.051 (3)	0.066 (3)	0.045 (3)	0.009 (2)	0.015 (2)	0.012 (3)
C23	0.068 (4)	0.075 (4)	0.053 (3)	0.005 (3)	0.024 (3)	0.027 (3)
C24	0.073 (4)	0.059 (3)	0.067 (3)	0.010 (3)	0.023 (3)	0.028 (3)
C25	0.055 (3)	0.044 (3)	0.058 (3)	0.008 (2)	0.014 (3)	0.013 (2)
C26	0.056 (3)	0.073 (4)	0.048 (3)	0.015 (3)	0.017 (3)	-0.005 (3)
C27	0.064 (4)	0.083 (4)	0.045 (3)	0.011 (3)	0.025 (3)	0.006 (3)
C28	0.075 (7)	0.063 (6)	0.091 (7)	-0.004(5)	0.009 (5)	0.022 (6)
C29	0.131 (10)	0.096 (9)	0.083 (7)	0.000 (7)	0.017 (7)	0.043 (7)
C30	0.141 (10)	0.096 (8)	0.099 (8)	0.062 (7)	0.021 (7)	0.001 (7)
C28′	0.10(2)	0.065 (17)	0.095 (19)	0.000 (13)	0.022 (16)	0.020 (15)
C29′	0.11 (3)	0.10(2)	0.11 (2)	0.001 (19)	0.04 (2)	0.017 (19)
C30′	0.11 (2)	0.09 (2)	0.12 (3)	0.012 (17)	0.02 (2)	0.02 (2)

Geometric parameters (Å, °)

V1—05	1.587 (3)	C10-C11	1.424 (6)
V1—04	1.975 (3)	C11—C12	1.424 (7)
V1-01	2.004 (3)	C12—C13	1.375 (7)
V1—N2	2.057 (3)	C12—H12	0.9300
V1—N3	2.168 (3)	C13—C14	1.398 (7)
V1—N4	2.366 (4)	C13—H13	0.9300
N1-C4	1.326 (6)	C14—C15	1.361 (7)
N1—H1A	0.8600	C14—H14	0.9300
N1—H1B	0.8600	C15—H15	0.9300
N2-C5	1.284 (5)	C16—C17	1.399 (6)
N2-C2	1.480 (5)	C16—H16	0.9300
N3—C16	1.346 (5)	C17—C18	1.370 (7)
N3—C20	1.359 (5)	C17—H17	0.9300
N4—C25	1.329 (6)	C18—C19	1.398 (7)
N4—C21	1.376 (6)	C18—H18	0.9300
N5-C28	1.299 (10)	C19—C20	1.423 (6)
N5—C30′	1.36 (3)	C19—C26	1.432 (7)
N5—C29′	1.36 (3)	C20—C21	1.438 (6)
N5-C29	1.439 (11)	C21—C22	1.410 (6)
N5—C28′	1.48 (3)	C22—C23	1.403 (7)
N5-C30	1.503 (11)	C22—C27	1.443 (7)
01—C1	1.297 (5)	C23—C24	1.377 (7)
O2—C1	1.226 (6)	C23—H23	0.9300
O3—C4	1.228 (5)	C24—C25	1.406 (7)
O4—C7	1.310 (5)	C24—H24	0.9300
O6—C28	1.290 (12)	C25—H25	0.9300
O6—C28′	1.31 (3)	C26—C27	1.342 (8)
C1—C2	1.547 (6)	С26—Н26	0.9300
C2—C3	1.531 (6)	С27—Н27	0.9300

supporting information

С2—Н2	0.9800	C28—H28	0.9300
C3—C4	1.530 (6)	С29—Н29А	0.9600
С3—НЗА	0.9700	C29—H29B	0.9600
С3—Н3В	0.9700	С29—Н29С	0.9600
C5—C6	1.436 (6)	С30—Н30А	0.9600
C5—H5	0.9300	C30—H30B	0 9600
C6—C7	1 435 (6)	C_{30} H30C	0.9600
C6-C11	1 462 (6)	$C_{28'}$ H28'	0.9300
C7 - C8	1 432 (6)	C29'_H29D	0.9500
C_{1}^{2}	1.452 (6)	C20′ H20E	0.9000
$C_0 = U_0$	1.332(0)	$C_{29} = H_{29E}$	0.9000
C_{0}	0.9300	$C_{29} = H_{29F}$	0.9000
C9	1.440 (7)	C_{30} H30D	0.9000
C9—H9	0.9300	C30'—H30E	0.9600
C10—C15	1.419 (6)	C30'—H30F	0.9600
05—V1—04	101.87 (16)	C15-C10-C11	120.5 (4)
O5—V1—O1	103.57 (16)	C15—C10—C9	121.3 (5)
O4—V1—O1	153.16 (14)	C11—C10—C9	118.2 (4)
05—V1—N2	103.66 (15)	C10-C11-C12	116.6 (4)
04—V1—N2	86 43 (13)	C10-C11-C6	1198(4)
01 - V1 - N2	79 44 (13)	C12-C11-C6	123 6 (4)
05-V1-N3	91 99 (15)	C_{13} C_{12} C_{11}	123.0(1) 121.0(5)
04V1N3	95 45 (12)	C13 - C12 - H12	110 5
O1 V1 N3	92.06(12)	$C_{11} = C_{12} = H_{12}$	110.5
$V_1 = V_1 = V_2$	32.00(13)	C12 - C12 - C14	117.5
$N_2 - V_1 - N_3$	103.33(14)	C12 - C13 - C14	121.9 (5)
03 - VI - N4	104.43(13)	С12—С13—Н13	119.1
04—vI—N4	79.26 (13)	C14—C13—H13	119.1
OI—VI—N4	78.54 (13)	C15—C14—C13	118.8 (5)
N2—V1—N4	91.91 (13)	C15—C14—H14	120.6
N3—V1—N4	72.46 (13)	C13—C14—H14	120.6
C4—N1—H1A	120.0	C14—C15—C10	121.3 (5)
C4—N1—H1B	120.0	C14—C15—H15	119.4
H1A—N1—H1B	120.0	C10—C15—H15	119.4
C5—N2—C2	119.5 (4)	N3—C16—C17	122.6 (4)
C5—N2—V1	128.8 (3)	N3—C16—H16	118.7
C2—N2—V1	111.7 (2)	C17—C16—H16	118.7
C16—N3—C20	117.8 (4)	C18—C17—C16	119.3 (5)
C16—N3—V1	122.2 (3)	C18—C17—H17	120.4
C20—N3—V1	120.0 (3)	C16—C17—H17	120.4
C25—N4—C21	117.7 (4)	C17—C18—C19	120.5 (4)
C25—N4—V1	129.1 (3)	C17—C18—H18	119.8
C21—N4—V1	113.2 (3)	C19—C18—H18	119.8
C28—N5—C30′	178.4 (15)	C18—C19—C20	116.8 (4)
C28—N5—C29'	52.5 (14)	C18—C19—C26	124.7 (4)
C30′—N5—C29′	127 (2)	C20-C19-C26	1186(5)
$C_{28} = N_{5} = C_{29}$	123 9 (9)	N3-C20-C19	123 1 (4)
$C_{20}^{-10} - C_{29}^{-10}$	56.0 (15)	N3-C20-C21	1177(4)
C_{20} N5 C_{20}	166.6 (15)	C19 - C20 - C21	110 2 (4)
(2) - (3 - (2))	100.0 (10)	017 - 020 - 021	117.4 (T)

C28—N5—C28′	63.0 (11)	N4—C21—C22	122.7 (4)
C30'—N5—C28'	117.0 (19)	N4—C21—C20	116.5 (4)
C29'—N5—C28'	114.5 (18)	C22—C21—C20	120.8 (4)
C29—N5—C28′	61.0 (11)	C23—C22—C21	117.7 (5)
C28—N5—C30	120.2 (9)	C23—C22—C27	124.4 (5)
C30′—N5—C30	59.9 (16)	C21—C22—C27	117.9 (5)
C29′—N5—C30	69.4 (15)	C24—C23—C22	119.6 (5)
C29—N5—C30	115.9 (9)	C24—C23—H23	120.2
C28′—N5—C30	175.2 (12)	C22—C23—H23	120.2
C1	119.2 (3)	C23—C24—C25	119.2 (5)
C7-04-V1	132.7(3)	C23—C24—H24	120.4
C28—O6—C28′	68.3 (13)	C_{25} C_{24} H_{24}	120.4
02-C1-01	1254(4)	N4—C25—C24	123.1(5)
02-C1-C2	120.4(4)	N4—C25—H25	118.4
01 - C1 - C2	1142(4)	C_{24} C_{25} H_{25}	118.4
N_{2} C_{2} C_{3}	1101(4)	$C_{27} - C_{26} - C_{19}$	121.8(5)
$N_2 - C_2 - C_1$	107.0(3)	C_{27} C_{26} H_{26}	119.1
C_{3} C_{2} C_{1}	1066(3)	C_{19} C_{26} H_{26}	119.1
$N_2 - C_2 - H_2$	111.0	$C_{26} - C_{27} - C_{22}$	121.7(5)
C_{3} C_{2} H_{2}	111.0	$C_{20} = C_{27} = 0.22$	110.1
$C_1 - C_2 - H_2$	111.0	$C_{20} = C_{27} = H_{27}$	119.1
C4 - C3 - C2	111.0 114 5 (4)	06-028-N5	120.8 (9)
C4-C3-H3A	108.6	$06 - C_{28} + H_{28}$	119.6
$C_2 - C_3 - H_3 \Delta$	108.6	N5-C28-H28	119.6
C4-C3-H3B	108.6	N5-C29-H29A	109.5
C_{2} C_{3} $H_{3}B$	108.6	N5-C29-H29B	109.5
$H_{3}A = C_{3} = H_{3}B$	107.6	N5-C29-H29C	109.5
03-C4-N1	107.0 123 5 (4)	N5-C30-H30A	109.5
03-C4-C3	123.3(4) 121.1(4)	N5-C30-H30B	109.5
N1 - C4 - C3	121.1(4) 1154(4)	N5-C30-H30C	109.5
N_{2} C5 C6	126.9 (4)	06-C28'-N5	107.7(19)
N2-C5-H5	116.6	06-C28'-H28'	126.1
С6—С5—Н5	116.6	N5-C28'-H28'	126.1
C_{7} C_{6} C_{5}	120.7(4)	N5-C29'-H29D	109.5
C7 - C6 - C11	120.7(4) 1197(4)	N5-C29'-H29E	109.5
C_{5} C_{6} C_{11}	119.6 (4)	$H_{29}D_{}C_{29'}$ _H_{29}F	109.5
04 - C7 - C8	119.0 (4)	N5-C29'-H29F	109.5
04-07-06	124 1 (4)	H29D-C29'-H29F	109.5
$C_{8} - C_{7} - C_{6}$	1179(4)	H29F— $C29'$ — $H29F$	109.5
C9-C8-C7	117.5(1) 122 5 (4)	N5-C30'-H30D	109.5
C9-C8-H8	118.8	N5-C30'-H30E	109.5
C7-C8-H8	118.8	H30D_C30′_H30E	109.5
$C_{8} - C_{9} - C_{10}$	121 9 (5)	N5_C30'_H30E	109.5
C_{8} C_{9} H_{9}	121.9 (5)	H30D_C30′_H30F	109.5
C10_C9_H9	119.1	H30F - C30' - H30F	109.5
	117,1		107.5
05 - V1 - N2 - C5	102.7 (4)	C7—C8—C9—C10	-0.1(7)
04 - V1 - N2 - C5	1 4 (4)	C_{8} C_{9} C_{10} C_{15}	1787(4)
01 112 00	*** (')		· / U· / (¬)

01—V1—N2—C5	-155.7 (4)	C8—C9—C10—C11	0.6 (7)
N3—V1—N2—C5	-95.8 (6)	C15-C10-C11-C12	0.4 (6)
N4—V1—N2—C5	-77.7 (4)	C9-C10-C11-C12	178.5 (4)
O5—V1—N2—C2	-80.4 (3)	C15—C10—C11—C6	-178.9 (4)
O4—V1—N2—C2	178.3 (3)	C9—C10—C11—C6	-0.7 (6)
O1—V1—N2—C2	21.2 (3)	C7—C6—C11—C10	0.4 (6)
N3—V1—N2—C2	81.1 (5)	C5—C6—C11—C10	178.7 (4)
N4—V1—N2—C2	99.2 (3)	C7—C6—C11—C12	-178.7(4)
O5—V1—N3—C16	2.5 (4)	C5—C6—C11—C12	-0.5 (6)
O4—V1—N3—C16	104.7 (3)	C10-C11-C12-C13	0.1 (7)
01—V1—N3—C16	-101.1(4)	C6-C11-C12-C13	179.3 (4)
N2—V1—N3—C16	-159.5 (4)	C11—C12—C13—C14	0.1 (8)
N4—V1—N3—C16	-178.4(4)	C12—C13—C14—C15	-0.8(8)
O5—V1—N3—C20	-176.8(3)	C13—C14—C15—C10	1.3 (7)
04 - V1 - N3 - C20	-74.7(3)	C11—C10—C15—C14	-1.1(7)
01 - V1 - N3 - C20	79.5 (3)	C9-C10-C15-C14	-179.2(5)
N2-V1-N3-C20	21.2 (7)	C_{20} N3 $-C_{16}$ $-C_{17}$	2.2.(7)
N4-V1-N3-C20	22(3)	V1 - N3 - C16 - C17	-177.2(3)
05-V1-N4-C25	-1782(6)	N3-C16-C17-C18	-0.7(7)
04 - V1 - N4 - C25	-825(4)	C_{16} C_{17} C_{18} C_{19}	-14(7)
01 - V1 - N4 - C25	82 3 (4)	C17 - C18 - C19 - C20	1.7(7)
N2—V1—N4—C25	35(4)	C17 - C18 - C19 - C26	-1792(4)
N_{3} V1 N_{4} C25	178 2 (4)	$C_{16} = N_{3} = C_{20} = C_{19}$	-1.8(6)
05-V1-N4-C21	1 1 (8)	$V_1 = N_3 = C_2 O = C_{19}$	177.6(3)
04 - V1 - N4 - C21	96 8 (3)	$C_{16} N_{3} C_{20} C_{21}$	1789(4)
01 - V1 - N4 - C21	-984(3)	$V_1 = N_3 = C_2 0 = C_2 1$	-1.7(5)
$N_{2}V_{1}N_{4}C_{21}$	-1772(3)	C18 - C19 - C20 - N3	-0.1(7)
N_{3} V1 N_{4} C21	-25(3)	$C_{26} - C_{19} - C_{20} - N_{3}$	-1793(4)
05-V1-01-C1	96 2 (3)	C18 - C19 - C20 - C21	179 1 (4)
04 - V1 - 01 - C1	-649(4)	$C_{26} - C_{19} - C_{20} - C_{21}$	0.0(7)
$N_{2} V_{1} O_{1} C_{1}$	-55(3)	$C_{25} = N_{4} = C_{21} = C_{22}$	1.6(6)
N_{3} V1 01 01	-1713(3)	$V_1 - N_4 - C_{21} - C_{22}$	-177.8(3)
N4-V1-01-C1	-996(3)	C_{25} N4 C_{21} C_{20}	-1780(3)
05-V1-04-C7	-97.9(4)	$V_1 - N_4 - C_{21} - C_{20}$	2.6 (5)
01 - V1 - 04 - C7	63.3 (5)	N3-C20-C21-N4	-0.8(6)
$N_{2}V_{1}O_{4}C_{7}$	53(4)	C19 - C20 - C21 - N4	1799(4)
N_{3} V1 04 C7	168 9 (4)	N_{3} C_{20} C_{21} C_{22}	179.6 (4)
N4 - V1 - O4 - C7	98.0 (4)	C19-C20-C21-C22	0.3(7)
$V_1 = O_1 = C_1 = O_2$	171 5 (4)	N4-C21-C22-C23	-11(7)
$V_1 = O_1 = O_1 = O_2$	-112(5)	C_{20} C_{21} C_{22} C_{23}	1785(4)
$C_{5}-N_{2}-C_{2}-C_{3}$	-983(4)	N4-C21-C22-C27	-179.6(4)
$V_1 - N_2 - C_2 - C_3$	84 5 (3)	C_{20} C_{21} C_{22} C_{27} C_{27}	0.0(7)
$C_{5}-N_{2}-C_{2}-C_{1}$	1462(4)	$C_{21} = C_{22} = C_{23} = C_{24}$	0.7(8)
$V_1 - N_2 - C_2 - C_1$	-31.0(4)	C_{27} C_{22} C_{23} C_{24}	179.1 (5)
02-C1-C2-N2	-155.0(4)	C_{22} C_{23} C_{24} C_{25}	-0.9(8)
01-C1-C2-N2	27.5 (5)	$C_{21} = N_{4} = C_{25} = C_{24}$	-1.7(7)
02-C1-C2-C3	87.2 (5)	V1—N4—C25—C24	177.6 (4)
O1—C1—C2—C3	-90.3 (4)	C23—C24—C25—N4	1.4 (8)
	···· 、 /		

N2-C2-C3-C4 C1-C2-C3-C4 C2-C3-C4-O3 C2-C3-C4-N1 C2-N2-C5-C6 V1-N2-C5-C6 N2-C5-C6-C7 N2-C5-C6-C11 V1-O4-C7-C8 V1-O4-C7-C6 C5-C6-C7-O4 C11-C6-C7-O4 C5-C6-C7-C8 C11-C6-C7-C8	61.0 (5) 176.7 (4) 33.3 (6) -147.8 (4) 177.5 (4) -5.9 (6) 4.5 (6) -173.8 (4) 172.9 (3) -7.7 (6) 2.3 (6) -179.4 (4) -178.3 (4) 0.0 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-179.6(5) -0.5(7) 0.9(8) -178.9(5) -0.6(8) 3.5(14) 165(2) 0.5(13) -3.2(13) -179.2(8) -2.8(11) 2.9(11) -175.3(18) -8(2)
C5-C6-C7-C8 C11-C6-C7-C8 O4-C7-C8-C9 C6-C7-C8-C9	-178.3 (4) 0.0 (6) 179.3 (4) -0.1 (6)	C30'—N5—C28'—O6 C29'—N5—C28'—O6 C29—N5—C28'—O6	-175.3 (18) -8 (2) -174 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H…A
N1—H1 <i>A</i> ···O3 ⁱ	0.86	2.05	2.909 (5)	175
N1—H1 <i>B</i> ····O6 ⁱⁱ	0.86	2.00	2.852 (6)	169
C16—H16…O5	0.93	2.52	2.975 (5)	111
C29—H29A…O6	0.96	2.41	2.764 (11)	102
C29—H29C····O6 ⁱⁱ	0.96	2.56	3.511 (12)	173
C25—H25…O2 ⁱⁱⁱ	0.93	2.46	3.275 (6)	147
C17—H17…O2 ^{iv}	0.93	2.54	3.288 (6)	138
C17—H17····O2 ^{iv}	0.93	2.54	3.288 (6)	138

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*+2, -*z*; (iv) -*x*, -*y*+1, -*z*.