## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2-Fluoro-4-(methoxycarbonyl)benzoic acid

Carl E. Wagner ${ }^{\text {a* }}$ and Thomas L. Groy ${ }^{\text {b }}$

${ }^{\text {a }}$ Division of Mathematics and Natural Sciences, Arizona State University, West Campus, Glendale, AZ 85306, USA, and ${ }^{\text {b }}$ Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA Correspondence e-mail: carl.wagner@asu.edu

Received 4 July 2010; accepted 11 August 2010
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.066 ; w R$ factor $=0.190$; data-to-parameter ratio $=12.0$.

In the crystal of the title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FO}_{4}$, classical carboxylate inversion dimers are linked by pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The packing is consolidated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The benzene ring and the methoxycarbonyl group are nearly coplanar, with a dihedral angle of 1.5 (3) ${ }^{\circ}$ between them, whereas the carboxyl group has a dihedral angle of $20.2(4)^{\circ}$ with respect to the benzene ring.

## Related literature

For background to the applications of the title compound, see: Jiang et al. (2008); Sakaki et al. (2007). For related structures, see: Wagner et al. (2009).


## Experimental

| Crystal data |  |
| :--- | :--- |
| $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FO}_{4}$ | Triclinic, $P \overline{1}$ |
| $M_{r}=198.15$ | $a=7.536(7) \AA$ |

$$
\begin{aligned}
& b=7.591(7) \AA \\
& c=8.523(8) \AA \\
& \alpha=99.480(14)^{\circ} \\
& \beta=108.748(13)^{\circ} \\
& \gamma=99.240(14)^{\circ} \\
& V=443.3(7) \AA^{\circ}
\end{aligned}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.25 \times 0.19 \times 0.08 \mathrm{~mm}$

## Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.969, T_{\text {max }}=0.990$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066 \quad 128$ parameters
$w R\left(F^{2}\right)=0.190$
H -atom parameters constrained
$S=1.02$
1535 reflections

2526 measured reflections
1535 independent reflections
1025 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$

Table 1
Hydrogen-bond geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{Fl}^{\mathrm{i}}$ | 0.96 | 2.54 | $3.278(5)$ | $134(1)$ |
| O2 $^{\mathrm{ii}}-\mathrm{H} 2 A^{\mathrm{ii}} \cdots \mathrm{O} 1$ | 0.82 | 1.86 | $2.672(4)$ | $170(1)$ |
| C3-H3A $\cdots \mathrm{O}^{\mathrm{iii}}$ | 0.93 | 2.53 | $3.325(4)$ | $144(1)$ |
| Symmetry codes: | (i) | $x-1, y-1, z-1 ;$ | (ii) | $-x+2,-y+3,-z+1 ; \quad$ (iii) |
| $-x,-y+2,-z+1$. |  |  |  |  |

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2004); software used to prepare material for publication: APEX2.

We thank the Chemistry Division of the National Science Foundation for financial support of this work (Grant CHE0741978).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2036).

## References

Bruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA
Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Jiang, X., Lee, G. T., Prasad, K. \& Repic, O. (2008). Org. Process Res. Dev. 12, 1137-1141.
Sakaki, J., Kishida, M., Konishi, K., Gunji, H., Toyao, A., Matsumoto, Y., Kanazawa, T., Uchiyama, H., Fukaya, H., Mitani, H., Arai, Y. \& Kimura, M. (2007). Bioorg. Med. Chem. Lett. 17, 4804-4807.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wagner, C. E. et al. (2009). J. Med. Chem. 52, 5950-5966.

## supporting information

Acta Cryst. (2010). E66, o2340 [https://doi.org/10.1107/S1600536810032253]

## 2-Fluoro-4-(methoxycarbonyl)benzoic acid

## Carl E. Wagner and Thomas L. Groy

## S1. Comment

The title compound, 4-(methoxycarbonyl)-2-fluorobenzoic acid, has recently been used to prepare novel diazepinylbenzoic acid retinoid-X-receptor antagonists (Jiang et al., 2008; Sakaki et al., 2007) as potential oral anti-obesity and anti-diabetic treatments as well as novel retinoid-X-receptor agonists with potential to treat various human cancers. Thus, the X-ray diffraction data of the present study confirms the fluorine locus for 4-(methoxycarbonyl)-2-fluorobenzoic acid.

The structure consists of sheets parallel to (212) stabilized by six intermolecular hydrogen interactions per molecule as shown in Table 1. The benzene ring and the methoxycarbonyl group are essentially coplanar as shown by the $1.51(25)^{\circ}$ dihedral angle between the two planes. However, the carboxylic acid is not coplanar with the benzene ring, as shown by the $20.18(36)^{\circ}$ dihedral angle between those two planes.

## S2. Experimental

The method of Sakaki and co-workers (Sakaki et al., 2007) was followed to synthesize (1). To a flask containing 3-fluoro-4-formylmethylbenzoate (Wagner et al., 2009) ( $9.22 \mathrm{~g}, 50.5 \mathrm{mmol}$ ) and sulfamic acid ( $5.40 \mathrm{~g}, 55.6 \mathrm{mmol}$ ) in water $(21 \mathrm{ml})$ and $\mathrm{ACN}(42 \mathrm{ml})$ was slowly added a solution of $80 \% \mathrm{NaClO}_{2}(4.92 \mathrm{~g}, 53.8 \mathrm{mmol})$ in water $(21 \mathrm{ml})$ at room temperature. After being stirred for 1 h , the reaction solution was added to a saturated, aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(75$ $\mathrm{ml})$ and $1 \mathrm{~N} \mathrm{HCl}(150 \mathrm{ml})$, and the resulting solution was extracted with ethyl acetate ( 75 ml ) three times. The combined organic extracts were washed with brine, dried over sodium sulfate, and the solvents were removed in vacuo to give crude (1) $(7.56 \mathrm{~g}, 75 \%)$ as a white solid. A small sample was crystallized from hot ethyl acetate to give pure (1) as white crystals, m.p. $154-155^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.5(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{t}, J=7.8,1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2,1 \mathrm{H}), 7.82$ $(\mathrm{d}, J=11.0,1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.6,168.5,165.0,164.9,163.4,160.8,136.7,136.6$, $132.8,124.9,124.8,121.3,121.2,118,4,118.1,52.8$; LC-APCI-MS ( $M+$ ) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4} \mathrm{~F}$ 198.0328, found 198.0331.

## S3. Refinement

H atoms were placed geometrically and allowed to refine as atoms riding on their bonding partners. The hydrogen was placed on the carboxylic acid based on the longer of the carboxylic acid carbon-oxygen bonds.


Figure 1
Labeled thermal ellipsoid plot of (1) shown at the 50\% probability level for all non-H atoms.


Figure 2
Molecular pair of (1) shown at the 50\% probability level for all non-H atoms illustrating classical intermolecular centrosymmetric carboxylic acid hydrogen bonding interactions.


Figure 3
Packing diagram of (1) shown at the $50 \%$ probability level for all non-H atoms showing the alternating molecular orientations in two adjacent layers.

## 2-Fluoro-4-(methoxycarbonyl)benzoic acid

## Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FO}_{4}$
$M_{r}=198.15$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.536$ (7) $\AA$
$b=7.591$ (7) $\AA$
$c=8.523(8) \AA$
$\alpha=99.480(14)^{\circ}$
$\beta=108.748(13)^{\circ}$
$\gamma=99.240(14)^{\circ}$
$V=443.3(7) \AA^{3}$

## Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
$\omega$ and $\varphi$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.969, T_{\max }=0.990$
$Z=2$
$F(000)=204$
$D_{\mathrm{x}}=1.484 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 427 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 51 reflections
$\theta=4.5-11.9^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, colourless
$0.25 \times 0.19 \times 0.08 \mathrm{~mm}$

2526 measured reflections
1535 independent reflections
1025 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 8$
$l=-10 \rightarrow 10$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.190$
$S=1.02$
1535 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.
H atoms were placed geometrically and allowed to refine as atoms riding on their bonding partners. The hydrogen was placed on the carboxylic acid based on the longer of the carboxylic acid carbon-oxygen bonds.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| F1 | $0.4739(2)$ | $1.3542(2)$ | $0.6014(2)$ | $0.0629(5)$ |
| O1 | $0.8299(2)$ | $1.4232(4)$ | $0.5841(2)$ | $0.0672(7)$ |
| O2 | $0.8296(2)$ | $1.3413(2)$ | $0.3192(2)$ | $0.0716(8)$ |
| H2A | 0.9326 | 1.4171 | 0.3603 | $0.107^{*}$ |
| O3 | $-0.1230(4)$ | $0.8633(4)$ | $0.2593(2)$ | $0.0798(9)$ |
| O4 | $-0.0485(2)$ | $0.7256(2)$ | $0.0437(2)$ | $0.0582(7)$ |
| C1 | $0.5568(4)$ | $1.2070(4)$ | $0.3734(2)$ | $0.0453(7)$ |
| C2 | $0.4248(4)$ | $1.2212(4)$ | $0.4562(2)$ | $0.0464(7)$ |
| C3 | $0.2443(4)$ | $1.1083(4)$ | $0.3967(2)$ | $0.0479(8)$ |
| H3A | 0.1607 | 1.1227 | 0.4553 | $0.057^{*}$ |
| C4 | $0.1871(4)$ | $0.9720(4)$ | $0.2478(2)$ | $0.0437(7)$ |
| C5 | $0.3166(4)$ | $0.9507(4)$ | $0.1625(2)$ | $0.0495(8)$ |
| H5A | 0.2807 | 0.8584 | 0.0642 | $0.059^{*}$ |
| C6 | $0.4976(5)$ | $1.0670(4)$ | $0.2248(4)$ | $0.0527(8)$ |
| H6A | 0.5819 | 1.0523 | 0.1669 | $0.063^{*}$ |
| C7 | $0.7527(4)$ | $1.3333(4)$ | $0.4321(4)$ | $0.0503(8)$ |
| C8 | $-0.0112(4)$ | $0.8498(4)$ | $0.1877(4)$ | $0.0491(8)$ |
| C9 | $-0.2360(5)$ | $0.5972(5)$ | $-0.0216(4)$ | $0.0692(10)$ |
| H9A | -0.2482 | 0.5131 | -0.1238 | $0.104^{*}$ |
| H9B | -0.3359 | 0.6639 | -0.0462 | $0.104^{*}$ |
| H9C | -0.2474 | 0.5303 | 0.0623 | $0.104^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F1 | $0.0579(11)$ | $0.0628(13)$ | $0.0540(10)$ | $-0.0020(9)$ | $0.0211(9)$ | $-0.0111(8)$ |
| O1 | $0.0526(15)$ | $0.0782(17)$ | $0.0532(13)$ | $-0.0072(11)$ | $0.0119(10)$ | $0.0038(11)$ |
| O2 | $0.0590(16)$ | $0.0765(18)$ | $0.0690(15)$ | $-0.0133(11)$ | $0.0303(11)$ | $0.0019(11)$ |
| O3 | $0.0532(16)$ | $0.088(2)$ | $0.0828(17)$ | $-0.0110(13)$ | $0.0346(13)$ | $-0.0154(14)$ |
| O4 | $0.0485(14)$ | $0.0591(14)$ | $0.0525(11)$ | $-0.0015(10)$ | $0.0137(10)$ | $-0.0038(10)$ |
| C1 | $0.0435(17)$ | $0.0453(17)$ | $0.0477(15)$ | $0.0102(14)$ | $0.0161(13)$ | $0.0123(13)$ |
| C2 | $0.0485(18)$ | $0.0445(17)$ | $0.0414(14)$ | $0.0071(13)$ | $0.0153(13)$ | $0.0026(11)$ |
| C3 | $0.0447(18)$ | $0.051(2)$ | $0.0470(15)$ | $0.0086(14)$ | $0.0202(13)$ | $0.0045(13)$ |
| C4 | $0.0431(17)$ | $0.0430(16)$ | $0.0434(15)$ | $0.0074(13)$ | $0.0149(13)$ | $0.0091(11)$ |
| C5 | $0.050(2)$ | $0.0467(18)$ | $0.0490(16)$ | $0.0076(14)$ | $0.0208(14)$ | $0.0017(13)$ |
| C6 | $0.050(2)$ | $0.056(2)$ | $0.0535(17)$ | $0.0099(15)$ | $0.0243(14)$ | $0.0063(14)$ |
| C7 | $0.049(2)$ | $0.0493(18)$ | $0.0510(17)$ | $0.0095(14)$ | $0.0168(15)$ | $0.0105(14)$ |
| C8 | $0.0432(18)$ | $0.0511(18)$ | $0.0490(16)$ | $0.0079(14)$ | $0.0156(14)$ | $0.0055(13)$ |
| C9 | $0.052(2)$ | $0.062(2)$ | $0.069(2)$ | $-0.0055(17)$ | $0.0060(16)$ | $-0.0018(17)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| F1-C2 | 1.364 (3) | C3-C4 | 1.393 (4) |
| :---: | :---: | :---: | :---: |
| O1-C7 | 1.257 (3) | $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 0.93 |
| O2-C7 | 1.278 (4) | C4-C5 | 1.405 (4) |
| $\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$ | 0.82 | C4-C8 | 1.504 (4) |
| O3-C8 | 1.197 (4) | C5-C6 | 1.384 (4) |
| O4-C8 | 1.336 (4) | C5-H5A | 0.93 |
| O4-C9 | 1.460 (4) | C6-H6A | 0.93 |
| C1-C2 | 1.400 (4) | C9—H9A | 0.96 |
| C1-C6 | 1.405 (4) | C9-H9B | 0.96 |
| C1-C7 | 1.504 (4) | C9-H9C | 0.96 |
| C2-C3 | 1.372 (4) |  |  |
| $\mathrm{C} 7-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.5 | C4-C5-H5A | 120.0 |
| C8-O4-C9 | 115.8 (2) | C5-C6-C1 | 121.4 (3) |
| C2- $21-\mathrm{C} 6$ | 116.8 (3) | C5-C6-H6A | 119.3 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$ | 124.1 (3) | C1-C6-H6A | 119.3 |
| C6-C1-C7 | 119.2 (2) | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$ | 124.2 (3) |
| F1-C2-C3 | 117.5 (2) | O1-C7-C1 | 119.9 (3) |
| F1-C2-C1 | 119.5 (3) | O2-C7-C1 | 115.9 (3) |
| C3-C2-C1 | 122.9 (3) | O3-C8-O4 | 124.0 (3) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 119.5 (3) | O3-C8-C4 | 124.0 (3) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 120.2 | O4-C8-C4 | 112.0 (2) |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$ | 120.2 | O4-C9-H9A | 109.5 |
| C3-C4-C5 | 119.4 (3) | O4-C9-H9B | 109.5 |
| C3-C4-C8 | 117.9 (2) | H9A-C9-H9B | 109.5 |
| C5-C4-C8 | 122.7 (3) | O4-C9-H9C | 109.5 |
| C6-C5-C4 | 120.0 (3) | H9A-C9-H9C | 109.5 |
| C6-C5-H5A | 120.0 | H9B-C9-H9C | 109.5 |

## supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D — \mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{~F} 1^{\mathrm{i}}$ | 0.96 | 2.54 | $3.278(5)$ | $134(1)$ |
| $\mathrm{O}^{2 i} — \mathrm{H} 2 A^{\mathrm{ii} \cdots} \mathrm{O} 1$ | 0.82 | 1.86 | $2.672(4)$ | $170(1)$ |
| C3—H3A $\cdots \mathrm{O}^{\mathrm{iii}}$ | 0.93 | 2.53 | $3.325(4)$ | $144(1)$ |

Symmetry codes: (i) $x-1, y-1, z-1$; (ii) $-x+2,-y+3,-z+1$; (iii) $-x,-y+2,-z+1$.

