Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aquachlorido(2,2':6', $\mathbf{2}^{\prime \prime}$-terpyridyl)copper(II) chloride monohydrate

Laurette Schmitt, Gaël Labat and Helen Stoeckli-Evans*

Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland

Correspondence e-mail: helen.stoeckli-evans@unine.ch

Received 17 August 2010; accepted 23 August 2010

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in solvent or counterion; R factor $=0.030 ; w R$ factor $=0.079$; data-toparameter ratio $=17.3$.

The title complex, $\quad\left[\mathrm{CuCl}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$, is composed of a monocation that possesses mirror symmetry. The $\mathrm{Cu}^{\text {II }}$ atom has a distorted square-pyramidal geometry, being coordinated by the three N atoms of the terpyridine ligand and a Cl atom in the equatorial plane, and by a water molecule O atom in the axial position. The charges are balanced by a chloride anion positionally disorded over two positions related by the mirror symmetry. The compound crystallizes as a monohydrate, with the water molecule also being positionally disordered over two positions related by the mirror symmetry. In the crystal, the various components of the complex are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming a two-dimensional network in the $a b$ plane. There are also a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions which stabilize the crystal structure.

Related literature

For details of the Cambridge Structural Database, see: Allen (2002). For the structure of a related compound, see: Koo et al. (2003). For the τ descriptor for 5-coordination, see: Addison et al. (1984); Spek (2009).

Experimental

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$
$V=1606.0(2) \AA^{3}$
$M_{r}=403.74$
$Z=4$
Monoclinic, $\mathrm{C}_{2} / \mathrm{m}$
Mo $K \alpha$ radiation
$a=9.7155$ (8) A
$b=13.6929$ (8) A
$c=12.6599(10) \AA$
$\beta=107.532(6)^{\circ}$

Data collection

Stoe IPDS 2 diffractometer Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009)
$T_{\text {min }}=0.688, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.079$
$S=1.09$
2267 reflections
131 parameters
4 restraints

14960 measured reflections 2267 independent reflections 2027 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.70 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.80(2)$	$2.34(2)$	$3.143(2)$	$175(2)$
$\mathrm{O}^{\mathrm{i}} W-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.80(2)$	$1.99(2)$	$2.787(8)$	$170(2)$
$\mathrm{O}^{\mathrm{i}} W-\mathrm{H} 2 A \cdots \mathrm{O} 2 W^{\mathrm{ii}}$	$0.84(2)$	$2.13(3)$	$2.922(15)$	$159(6)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.95	2.69	$3.635(2)$	172
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cl} 2^{\text {iv }}$	0.95	2.65	$3.593(3)$	172
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2 W^{\text {iv }}$	0.95	2.50	$3.429(8)$	166
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cl}^{v}$	0.95	2.82	$3.765(2)$	175

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x, y,-z+1$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+1$; (iv) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (v) $-x+\frac{3}{2}, y+\frac{1}{2},-z$.

Data collection: X-AREA (Stoe \& Cie, 2006); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

This work was partially supported by the Swiss National Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2357).

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Conor, C. J. \& Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2006). X-AREA and X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany.

supporting information

Acta Cryst. (2010). E66, m1169 [https://doi.org/10.1107/S160053681003391X]

Aquachlorido(2,2':6',2"-terpyridyl)copper(II) chloride monohydrate

Laurette Schmitt, Gaël Labat and Helen Stoeckli-Evans

S1. Comment

The title compound, (I), was prepared as a by-product of the reaction of $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (= terpy) with CuCl_{2} in the presence of sodium sulphite. A search of the Cambridge Structural Database (CSD, Version 5.1, last update May 2010; Allen et al., 2002) for copper(II) terpyridine complexes with a water molecule coordinated to the copper(II) atom revealed 22 hits. With a chloride atom coordinated to the copper(II) atom 33 hits were obtained. Surprisingly, only one compound, involving bisterpy ($=2,2^{\prime}: 4^{\prime}, 4^{\prime \prime}: 2^{\prime \prime}, 2^{\prime \prime \prime}$-quarterpyridyl, $6^{\prime}, 6^{\prime \prime}$-di-2-pyridine) was located with both a chloride and a water molecule coordinated to the copper(II) atom, namely $\left[\mathrm{Cu}_{2}\right.$ (bisterpy) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$ (II) [Koo et al., 2003].

The structure of compound (I) is illustrated in Fig. 1. It is composed of a $\left[\left(\mathrm{H}_{2} \mathrm{OClCu}(\text { terp })\right]^{+}\right.$cation that possesses mirror symmetry (with atoms $\mathrm{Cu} 1, \mathrm{Cl1}, \mathrm{~N} 1, \mathrm{O} 1 \mathrm{~W}$ and C 3 lying in the mirror plane), and a Cl^{-}anion. This anion, atom Cl 2 , is positionally disordered over two postions related by the mirror symmetry. A water molecule of crystallization, O 2 W , is also present and it too is positionally disordered over two postions related by the mirror symmetry. The bond distances and angles are similar to those in compound (II). For example, the $\mathrm{Cu}-\mathrm{Cl1}$ and $\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W}$ distances are 2.2255 (6) and $2.3372(19 \AA$, respectively, compared to 2.233 and $2.330 \AA$, respectively, in (II). The copper coordination sphere is distorted square pyramidal with a τ value of 0.17 , compared to 0.18 in (II) [idealized values are 0 for square pyramidal and 1 for trigonal bipyramidal; Addison et al., 1984; Spek, 2009].

In the crystal of (I) the cations are linked to the anions and the water molecules of crystallization by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds resulting in the formation of a two-dimensional network (Table 1 and Fig. 2). In the crystal C$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are also present (Table 1).

S2. Experimental

An aqueous solution (20 ml) of copper(II)chloride dihydrate ($0.429 \mathrm{mmol}, 75 \mathrm{mg}$) and 2, $2^{\prime}: 6^{\prime} 2^{\prime \prime}$-terpyridine (0.429 $\mathrm{mmol}, 100 \mathrm{mg}$) was heated at 353 K for 1 h . After hot filtration the green solution was cooled to RT and sodium sulfite $(1.717 \mathrm{mmol}, 216 \mathrm{mg})$ was added. The resulting solution was left in the fridge for two months and green block-like crystals were obtained together with a small quantity of greenish-blue crystals. The latter were shown by X-ray diffraction analysis to be the title compound (I).

S3. Refinement

The chlorine anion (C12) and the water molecule of crystallization (O 2 W) were found to be split over two positions related by the mirror plane; they were refined with occupancies of 0.5 each. The water molecule H -atoms were located in a difference electron-density map and were refined with distance restraints of $0.84(2) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The Cbound H -atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.95 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
A view of the molecular structure of compound (I) with the displacement ellipsoids drawn at the 50% probability level [Symmetry code: $(a)=x,-y, z$; the H -atoms of the disordered water molecule of crystallization (O 2 w), and the symmetry related Cl^{-}anion (Cl 2 a) and water molecule (O 2 wa) are not shown].

Figure 2
A view along the c axis of the crystal packing of compound (I). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are shown as dashed cyan lines (see Table 1 for details; H -atoms not involved in hydrogen bonding have been omitted for clarity).

Aquachlorido(2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridyl)copper(II) chloride monohydrate

Crystal data

$\left[\mathrm{CuCl}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=403.74$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=9.7155$ (8) \AA
$b=13.6929$ (8) \AA
$c=12.6599(10) \AA$
$\beta=107.532(6)^{\circ}$
$V=1606.0(2) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
phi $+\omega$ scans
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
$T_{\text {min }}=0.688, T_{\text {max }}=1.000$
$F(000)=820$
$D_{\mathrm{x}}=1.670 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 17467 reflections
$\theta=1.7-29.6^{\circ}$
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, blue-green
$0.40 \times 0.40 \times 0.10 \mathrm{~mm}$

14960 measured reflections
2267 independent reflections
2027 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=29.2^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-13 \rightarrow 13$
$k=-17 \rightarrow 18$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.079$
$S=1.09$
2267 reflections
131 parameters
4 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0448 P)^{2}+1.3613 P\right]$ \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.70 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0027(7)$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu1	$0.62103(3)$	0.00000	$0.15295(2)$	$0.0228(1)$	
Cl1	$0.71809(7)$	0.00000	$0.01460(5)$	$0.0313(2)$	
O1W	$0.8290(2)$	0.00000	$0.30520(15)$	$0.0297(5)$	
N1	$0.5024(2)$	0.00000	$0.25225(16)$	$0.0220(5)$	
N2	$0.59110(15)$	$0.14574(10)$	$0.16522(11)$	$0.0232(3)$	
C1	$0.46408(17)$	$-0.08528(12)$	$0.28568(13)$	$0.0236(4)$	
C2	$0.38165(18)$	$-0.08804(13)$	$0.35839(14)$	$0.0285(5)$	
C3	$0.3403(3)$	0.00000	$0.3937(2)$	$0.0307(7)$	
C4	$0.51479(17)$	$0.16973(12)$	$0.23508(13)$	$0.0232(4)$	
C5	$0.48556(19)$	$0.26583(13)$	$0.25435(15)$	$0.0285(5)$	
C6	$0.5360(2)$	$0.33929(13)$	$0.20053(16)$	$0.0324(5)$	0.500
C7	$0.6149(2)$	$0.31520(13)$	$0.12996(16)$	$0.0316(5)$	$0.0281(5)$
C8	$0.64036(19)$	$0.21726(13)$	$0.11436(14)$	$0.0315(4)$	$0.0527(19)$
C12	$0.1811(2)$	$0.17457(12)$	$0.53617(15)$	0.0450^{*}	
O2W	$0.1572(8)$	$0.1517(5)$	$0.5452(7)$	0.0340^{*}	
H1	$0.826(3)$	$-0.0471(14)$	$0.3423(18)$	0.0370^{*}	
H2	0.35450	-0.14850	0.38310	0.0340^{*}	
H3	0.28300	0.00000	0.44270	0.0390^{*}	0.0380^{*}
H5	0.43180	0.28120	0.30370	0.0340^{*}	0.0790^{*}
H6	0.51640	0.40580	0.21210	0.0790^{*}	0.500
H7	0.65110	0.36470	0.09280		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0288(2)$	$0.0179(2)$	$0.0255(2)$	0.0000	$0.0142(1)$	0.0000
C11	$0.0424(3)$	$0.0279(3)$	$0.0310(3)$	0.0000	$0.0223(2)$	0.0000
O1W	$0.0352(9)$	$0.0237(8)$	$0.0312(9)$	0.0000	$0.0114(7)$	0.0000
N1	$0.0247(9)$	$0.0203(9)$	$0.0230(8)$	0.0000	$0.0104(7)$	0.0000
N2	$0.0261(6)$	$0.0193(6)$	$0.0255(6)$	$-0.0001(5)$	$0.0096(5)$	$0.0007(5)$
C1	$0.0253(7)$	$0.0211(8)$	$0.0252(7)$	$-0.0019(6)$	$0.0088(6)$	$0.0004(6)$
C2	$0.0327(8)$	$0.0262(8)$	$0.0302(8)$	$-0.0034(6)$	$0.0148(7)$	$0.0022(6)$
C3	$0.0351(12)$	$0.0320(13)$	$0.0311(11)$	0.0000	$0.0191(10)$	0.0000
C4	$0.0242(7)$	$0.0201(7)$	$0.0252(7)$	$0.0008(6)$	$0.0071(6)$	$-0.0001(6)$
C5	$0.0302(8)$	$0.0226(8)$	$0.0331(8)$	$0.0015(6)$	$0.0101(7)$	$-0.0025(6)$
C6	$0.0367(9)$	$0.0195(8)$	$0.0398(9)$	$0.0003(7)$	$0.0097(7)$	$-0.0007(7)$
C7	$0.0358(9)$	$0.0226(8)$	$0.0361(9)$	$-0.0040(7)$	$0.0103(7)$	$0.0043(7)$
C8	$0.0292(8)$	$0.0251(8)$	$0.0309(8)$	$-0.0022(7)$	$0.0106(6)$	$0.0023(6)$
C12	$0.0346(7)$	$0.0289(7)$	$0.0337(5)$	$0.0011(5)$	$0.0146(5)$	$-0.0028(5)$
O2W	$0.042(3)$	$0.053(4)$	$0.065(3)$	$-0.001(2)$	$0.019(2)$	$0.015(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{Cl1}$	2.2253 (7)	N2-C8	1.337 (2)
$\mathrm{Cu}-\mathrm{Cl1}^{\text {i }}$	3.3383 (8)	N2-C4	1.355 (2)
Cu1-O1W	2.3348 (19)	$\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	1.477 (2)
$\mathrm{Cu} 1-\mathrm{N} 1$	1.945 (2)	C1-C2	1.391 (2)
$\mathrm{Cu} 1-\mathrm{N} 2$	2.0294 (14)	C2-C3	1.387 (2)
$\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {ii }}$	2.0294 (14)	C4-C5	1.383 (2)
C12-O2W	0.426 (8)	C5-C6	1.385 (3)
$\mathrm{Cl2}-\mathrm{H} 2 \mathrm{~B}$	0.42 (6)	C6-C7	1.381 (3)
$\mathrm{Cl2}-\mathrm{H} 2 \mathrm{~A}$	1.04 (3)	C7-C8	1.389 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1^{\text {ii }}$	0.80 (2)	C2-H2	0.9500
O1W-H1	0.80 (2)	C3-H3	0.9500
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~B}$	0.84 (6)	C5-H5	0.9500
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~A}$	0.84 (4)	C6-H6	0.9500
N1-C1	1.3328 (19)	C7-H7	0.9500
$\mathrm{N} 1-\mathrm{C} 1^{\text {ii }}$	1.3328 (19)	C8-H8	0.9500
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}$	100.56 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	126.85 (15)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 1$	169.42 (6)	N1-C1-C2	120.37 (16)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{N} 2$	99.48 (4)	C1-C2-C3	118.05 (17)
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {ii }}$	99.48 (4)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	120.8 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}-\mathrm{N} 1$	90.02 (8)	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1^{\text {ii }}$	114.40 (14)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{N} 2$	92.59 (4)	N2-C4-C5	121.85 (15)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{ii}}$	92.59 (4)	$\mathrm{C} 1{ }^{\text {iii }}$ - 4 4-C5	123.74 (16)
N1-Cu1-N2	79.87 (4)	C4-C5-C6	118.84 (17)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {ii }}$	79.87 (4)	C5-C6-C7	119.51 (17)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 2{ }^{\text {ii }}$	159.07 (6)	C6-C7-C8	118.69 (17)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Cl} 2-\mathrm{H} 2 \mathrm{~B}$	163 (10)	N2-C8-C7	122.27 (17)

$\mathrm{H} 2 \mathrm{~A}-\mathrm{Cl} 2-\mathrm{H} 2 \mathrm{~B}$	145 (8)
$\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H}^{1 i}$	107.9 (19)
$\mathrm{H} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1^{\text {ii }}$	107 (2)
$\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1$	107.9 (19)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~B}$	114 (6)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{Cl}^{1 i}$	118.81 (10)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	118.81 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1^{\text {ii }}$	122.37 (18)
C4-N2-C8	118.84 (15)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 8$	127.08 (12)
Cu1-N2-C4	114.06 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	112.75 (15)
O1W-Cu1-N1-C1	-89.53 (15)
N2-Cu1-N1-C1	177.85 (17)
N2-Cu1-N1-C1 ${ }^{\text {ii }}$	-3.10 (15)
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	3.10 (15)
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	171.96 (11)
$\mathrm{Cl1}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 8$	-9.43 (15)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	-86.88 (12)
O1W-Cu1-N2-C8	91.73 (15)
N1-Cu1-N2-C4	2.68 (12)
N1-Cu1-N2-C8	-178.71 (16)
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4$	17.3 (2)
$\mathrm{N} 2 \mathrm{ii}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 8$	-164.12 (15)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	178.75 (13)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4{ }^{\text {ii }}$	-2.9 (2)
C1ii-N1-C1-C2	-0.3 (3)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1{ }^{\text {iii }}-\mathrm{C} 4$	2.9 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1{ }^{\text {iii }}$ - C 4	-178.13 (17)

C3-C2-H2	121.00
C1-C2-H2	121.00
C2-C3-H3	120.00
C2 ${ }^{\text {iii }}-\mathrm{C} 3-\mathrm{H} 3$	120.00
C4-C5-H5	121.00
C6-C5-H5	121.00
C7-C6-H6	120.00
C5-C6-H6	120.00
C6-C7-H7	121.00
C8-C7-H7	121.00
C7-C8-H8	119.00
N2-C8-H8	119.00
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	179.30 (13)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{Cl}^{\text {ii }}$	-1.98 (18)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	0.6 (2)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1^{\text {ii }}$	179.29 (15)
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	-179.12 (14)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	-0.6 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.5 (3)
C4i- ${ }^{\text {ii } 1-\mathrm{C} 2-\mathrm{C} 3}$	-177.64 (19)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4{ }^{\mathrm{ii}}-\mathrm{N} 2^{\mathrm{ii}}$	178.71 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4{ }^{\mathrm{ii}}-\mathrm{C} 5^{\mathrm{ii}}$	0.0 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2{ }^{\text {ii }}$	-0.8 (3)
N2-C4-C5-C6	0.0 (3)
C1i- $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	-178.62 (17)
C4-C5-C6-C7	-0.5 (3)
C5-C6-C7-C8	0.5 (3)
C6-C7-C8-N2	0.0 (3)

Symmetry codes: (i) $-x+1, y,-z$; (ii) $x,-y, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

D—H $\cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 \cdots \mathrm{Cl} 2^{\text {iii }}$	0.80 (2)	2.34 (2)	3.143 (2)	175 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 \cdots \mathrm{O} 2 W^{\text {iii }}$	0.80 (2)	1.99 (2)	2.787 (8)	170 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O} 2 W^{\text {iv }}$	0.84 (2)	2.13 (3)	2.922 (15)	159 (6)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl2}{ }^{\text {v }}$	0.95	2.69	3.635 (2)	172
C5-H5 ${ }^{\text {Cl2 }} 2^{\text {vi }}$	0.95	2.65	3.593 (3)	172
C5-H5 ${ }^{\text {O }} 2 W^{\text {vi }}$	0.95	2.50	3.429 (8)	166
C7-H7 $\cdots{ }^{\text {Cl }}{ }^{\text {vii }}$	0.95	2.82	3.765 (2)	175

Symmetry codes: (iii) $-x+1,-y,-z+1$; (iv) $-x, y,-z+1$; (v) $-x+1 / 2, y-1 / 2,-z+1$; (vi) $-x+1 / 2,-y+1 / 2,-z+1$; (vii) $-x+3 / 2, y+1 / 2,-z$.

