metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[{2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenolato}copper(II)]-μ-thiocyanato]

Ling-Wei Xue,* Gan-Qing Zhao, Yong-Jun Han and Yun-Xiao Feng

College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan, Henan 467000, People's Republic of China Correspondence e-mail: pdsuchemistry@163.com

Received 17 August 2010; accepted 23 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.046; wR factor = 0.097; data-to-parameter ratio = 15.6.

In the title thiocyanate-bridged polynuclear copper(II) complex, $[Cu(C_{10}H_{12}NO_3)(NCS)]_n$, the Cu atom is fivecoordinated in a square-pyramidal geometry, with one phenolato O, one imino N and one hydroxy O atom of a Schiff base ligand and one thiocyanato N atom defining the basal plane, and with one thiocyanato S atom occupying the apical position. In the crystal structure, pairs of adjacent complex molecules are linked through intermolecular O– $H \cdots O$ hydrogen bonds into dimers. The dimers are further linked *via* Cu···S interactions, forming two-dimensional layers parallel to the *bc* plane.

Related literature

For the biological properties of Schiff bases, see: Bhandari *et al.* (2008); Sinha *et al.* (2008); Sondhi *et al.* (2006); Singh *et al.* (2006). For metal complexes with Schiff bases, see: Assey *et al.* (2010); Thiam *et al.* (2010); Montazerozohori *et al.* (2009); Eltayeb *et al.* (2009).

Experimental

Crystal data $[Cu(C_{10}H_{12}NO_3)(NCS)]$ $M_r = 315.83$

```
Monoclinic, P2_1/c
a = 10.123 (2) Å
```

b = 11.812 (2) Å c = 10.264 (2) Å $\beta = 94.122 (2)^{\circ}$ $V = 1224.1 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.662, \ T_{\max} = 0.696$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.097$ S = 1.04 2602 reflections 167 parameters1 restraint 2602 independent reflections 1875 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$

Mo $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.20$ mm

6414 measured reflections

 $\mu = 1.96 \text{ mm}^{-1}$

T = 298 K

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{\rm max}=0.36~{\rm e}~{\rm \AA}^{-3}\\ &\Delta\rho_{\rm min}=-0.39~{\rm e}~{\rm \AA}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$02-H2\cdots O1^{ii}$	0.85(1)	1.96 (2)	2.770 (4)	160 (5)
$02-H2\cdots O3^{ii}$	0.85(1)	2.41 (4)	3.020 (4)	129 (4)

Symmetry code: (ii) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2356).

References

- Assey, G., Butcher, R. J., Gultneh, Y. & Yisgedu, T. (2010). Acta Cryst. E66, m711-m712.
- Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). *Bioorg. Med. Chem.* 16, 1822–1831.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, m1692–m1693.
- Montazerozohori, M., Habibi, M. H., Amirnasr, M., Ariyoshi, K. & Suzuki, T. (2009). Acta Cryst. E65, m617.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

metal-organic compounds

- Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.
- Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.
- Thiam, I. E., Retailleau, P., Navaza, A. & Gaye, M. (2010). Acta Cryst. E66, m136.

supporting information

Acta Cryst. (2010). E66, m1172–m1173 [https://doi.org/10.1107/S1600536810034021] *catena*-Poly[[{2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenolato}copper(II)]-μ-thiocyanato]

Ling-Wei Xue, Gan-Qing Zhao, Yong-Jun Han and Yun-Xiao Feng

S1. Comment

Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari *et al.*, 2008; Sinha *et al.*, 2008; Sondhi *et al.*, 2006; Singh *et al.*, 2006). The metal complexes derived from Schiff bases have been extensively studied (Assey *et al.*, 2010; Thiam *et al.*, 2010; Montazerozohori *et al.*, 2009; Eltayeb *et al.*, 2009). In this paper, a new thiocyanato-bridged polynuclear copper(II) complex with the Schiff base 2-[(2-hydroxyethylimino)-methyl]-6-methoxyphenol is reported.

The complex is a thiocyanato-bridged polynuclear copper(II) complex, as shown in Fig. 1. The Cu atom in the complex is five-coordinate in a square pyramidal geometry, with one phenolate O, one imine N, and one hydroxy O atoms of a Schiff base ligand, and with one thiocyanate N atom, occupying the basal plane, and with one thiocyanate S atom occupying the apical position. The Cu···S' (S' at x, 1/2 - y, 1/2 + z) distance is 2.983 (3) Å. The Cu atom displaced 0.141 (2) Å from the plane defined by the four basal donor atoms. The slight distortion of the square pyramidal coordination can be observed from the coordinate bond lengths and angles (Table 1).

In the crystal structure, the adjacent complex molecules are linked through intermolecular O—H···O hydrogen bonds (Table 2), to form a dimer. The dimers are further linked *via* Cu···S interactions, forming a two-dimensional layers parallel to the *bc* plane (Fig. 2).

S2. Experimental

3-Methoxysalicylaldehyde (152.1 mg, 1.0 mmol), 2-aminoethanol (61.1 mg, 1.0 mmol), ammonium thiocyanate (76.0 mg, 1.0 mmol), and copper acetate monohydrate (199.2 mg, 1.0 mmol) were dissolved in methanol (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding blue block-like crystals.

S3. Refinement

H2 was located in a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å, and with $U_{iso}(H)$ fixed at 0.08 Å². Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with $U_{iso}(H)$ set at $1.2U_{eq}(C)$ and $1.5U_{eq}(C10)$.

Figure 1

The structure of the title complex with 30% probability displacement ellipsoids.

Figure 2

The molecular packing of the title complex. Intermolecular hydrogen bonds are shown as dashed lines. H atoms unrelated to the hydrogen bonding have been omitted for clarity.

catena-Poly[[{2-[(2-hydroxyethyl)iminomethyl]-6- methoxyphenolato}copper(II)]-µ-thiocyanato]

F(000) = 644

 $\theta = 2.5 - 24.5^{\circ}$

 $\mu = 1.96 \text{ mm}^{-1}$ T = 298 K

Block, blue

 $R_{\rm int} = 0.043$

 $h = -12 \rightarrow 12$ $k = -15 \rightarrow 9$

 $l = -10 \rightarrow 13$

 $D_{\rm x} = 1.714 {\rm Mg} {\rm m}^{-3}$

 $0.23 \times 0.20 \times 0.20$ mm

6414 measured reflections 2602 independent reflections

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$

1875 reflections with $I > 2\sigma(I)$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1160 reflections

Crystal data

[Cu(C₁₀H₁₂NO₃)(NCS)] $M_r = 315.83$ Monoclinic, $P2_1/c$ a = 10.123 (2) Å b = 11.812 (2) Å c = 10.264 (2) Å $\beta = 94.122$ (2)° V = 1224.1 (4) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.662, T_{\max} = 0.696$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
<i>S</i> = 1.04	H atoms treated by a mixture of independent
2602 reflections	and constrained refinement
167 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0374P)^2 + 0.2873P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.36 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.53293 (4)	0.44688 (4)	0.14711 (4)	0.03113 (16)	
N1	0.5018 (3)	0.5378 (2)	0.2957 (3)	0.0287 (7)	
N2	0.5887 (3)	0.3555 (3)	0.0048 (3)	0.0347 (8)	
01	0.3542 (2)	0.3978 (2)	0.1187 (2)	0.0313 (6)	

supporting information

O2	0.6958 (2)	0.5474 (2)	0.1426 (3)	0.0369 (7)
03	0.1241 (2)	0.3292 (2)	0.0317 (3)	0.0502 (8)
S1	0.69266 (9)	0.20646 (9)	-0.17233 (10)	0.0367 (3)
C1	0.2666 (3)	0.5001 (3)	0.2971 (4)	0.0299 (9)
C2	0.2552 (3)	0.4302 (3)	0.1865 (4)	0.0282 (8)
C3	0.1256 (4)	0.3941 (3)	0.1410 (4)	0.0356 (9)
C4	0.0163 (4)	0.4253 (4)	0.2056 (4)	0.0467 (11)
H4	-0.0676	0.4013	0.1746	0.056*
C5	0.0312 (4)	0.4923 (4)	0.3164 (5)	0.0512 (12)
H5	-0.0428	0.5120	0.3602	0.061*
C6	0.1528 (4)	0.5294 (4)	0.3616 (4)	0.0423 (11)
H6	0.1613	0.5747	0.4358	0.051*
C7	0.3894 (4)	0.5518 (3)	0.3442 (3)	0.0308 (9)
H7	0.3874	0.5995	0.4161	0.037*
C8	0.6186 (4)	0.6025 (3)	0.3450 (4)	0.0353 (10)
H8A	0.6777	0.5550	0.3997	0.042*
H8B	0.5922	0.6665	0.3964	0.042*
C9	0.6868 (4)	0.6430 (3)	0.2283 (4)	0.0394 (10)
H9A	0.6362	0.7034	0.1844	0.047*
H9B	0.7744	0.6714	0.2551	0.047*
C10	-0.0026 (4)	0.2961 (4)	-0.0268 (5)	0.0643 (15)
H10A	-0.0477	0.2509	0.0338	0.096*
H10B	0.0091	0.2528	-0.1043	0.096*
H10C	-0.0542	0.3624	-0.0492	0.096*
C11	0.6318 (3)	0.2926 (3)	-0.0683 (4)	0.0265 (8)
H2	0.701 (5)	0.568 (4)	0.0643 (18)	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0286 (2)	0.0349 (3)	0.0305 (3)	-0.0015 (2)	0.00595 (18)	-0.0093 (2)
N1	0.0324 (16)	0.0280 (19)	0.0260 (17)	0.0028 (13)	0.0036 (13)	-0.0012 (14)
N2	0.0380 (17)	0.038 (2)	0.0291 (19)	0.0019 (15)	0.0067 (14)	-0.0066 (16)
O1	0.0285 (13)	0.0328 (15)	0.0335 (16)	-0.0030 (11)	0.0085 (11)	-0.0096 (12)
O2	0.0373 (14)	0.0396 (18)	0.0348 (16)	-0.0047 (12)	0.0100 (13)	-0.0066 (15)
O3	0.0379 (15)	0.060(2)	0.052 (2)	-0.0168 (14)	0.0020 (13)	-0.0150 (17)
S1	0.0390 (5)	0.0337 (6)	0.0376 (6)	0.0032 (4)	0.0050 (4)	-0.0110 (5)
C1	0.0325 (19)	0.030(2)	0.028 (2)	0.0055 (16)	0.0064 (16)	0.0026 (18)
C2	0.0301 (18)	0.024 (2)	0.032 (2)	-0.0017 (16)	0.0092 (16)	0.0061 (17)
C3	0.038 (2)	0.033 (2)	0.035 (2)	-0.0047 (18)	0.0054 (18)	0.005 (2)
C4	0.031 (2)	0.060 (3)	0.050 (3)	-0.004 (2)	0.0109 (19)	0.008 (2)
C5	0.039 (2)	0.067 (3)	0.051 (3)	0.008 (2)	0.026 (2)	0.008 (3)
C6	0.045 (2)	0.048 (3)	0.036 (2)	0.011 (2)	0.0183 (19)	0.002 (2)
C7	0.043 (2)	0.028 (2)	0.022 (2)	0.0052 (17)	0.0034 (16)	-0.0042 (18)
C8	0.037 (2)	0.034 (2)	0.035 (2)	-0.0026 (17)	-0.0045 (17)	-0.0041 (19)
C9	0.038 (2)	0.037 (3)	0.042 (3)	-0.0071 (18)	-0.0020 (18)	0.000(2)
C10	0.050 (3)	0.067 (3)	0.075 (4)	-0.029 (2)	-0.008 (2)	-0.005 (3)
C11	0.0287 (18)	0.028 (2)	0.022 (2)	-0.0040 (16)	-0.0017 (15)	0.0055 (18)

Geometric parameters (Å, °)

Cu1—O1	1.902 (2)	C2—C3	1.426 (5)
Cu1—N1	1.910 (3)	C3—C4	1.380 (5)
Cu1—N2	1.933 (3)	C4—C5	1.385 (6)
Cu1—O2	2.035 (3)	C4—H4	0.9300
Cu1—S1 ⁱ	2.983 (3)	C5—C6	1.357 (6)
N1—C7	1.285 (4)	С5—Н5	0.9300
N1—C8	1.467 (4)	С6—Н6	0.9300
N2—C11	1.164 (4)	С7—Н7	0.9300
O1—C2	1.317 (4)	C8—C9	1.502 (5)
O2—C9	1.439 (5)	C8—H8A	0.9700
O2—H2	0.846 (10)	C8—H8B	0.9700
O3—C3	1.357 (5)	С9—Н9А	0.9700
O3—C10	1.431 (4)	С9—Н9В	0.9700
S1—C11	1.627 (4)	C10—H10A	0.9600
C1—C2	1.401 (5)	C10—H10B	0.9600
C1—C6	1.413 (5)	C10—H10C	0.9600
C1—C7	1.438 (5)		
O1—Cu1—N1	94.82 (11)	C5—C4—H4	119.9
O1—Cu1—N2	92.31 (11)	C6—C5—C4	120.5 (4)
N1—Cu1—N2	172.47 (12)	С6—С5—Н5	119.7
O1—Cu1—O2	159.63 (11)	С4—С5—Н5	119.7
N1—Cu1—O2	82.55 (12)	C5—C6—C1	120.7 (4)
N2—Cu1—O2	91.59 (12)	С5—С6—Н6	119.6
O1—Cu1—S1 ⁱ	112.18 (12)	С1—С6—Н6	119.6
$O2$ — $Cu1$ — $S1^i$	87.96 (12)	N1—C7—C1	125.7 (3)
N1—Cu1—S1 ⁱ	87.62 (12)	N1—C7—H7	117.1
N2—Cu1—S1 ⁱ	87.45 (12)	С1—С7—Н7	117.1
C7—N1—C8	120.9 (3)	N1—C8—C9	107.2 (3)
C7—N1—Cu1	125.7 (3)	N1—C8—H8A	110.3
C8—N1—Cu1	113.2 (2)	С9—С8—Н8А	110.3
C11—N2—Cu1	171.1 (3)	N1—C8—H8B	110.3
C2—O1—Cu1	125.6 (2)	C9—C8—H8B	110.3
C9—O2—Cu1	110.9 (2)	H8A—C8—H8B	108.5
С9—О2—Н2	111 (3)	O2—C9—C8	106.9 (3)
Cu1—O2—H2	107 (3)	О2—С9—Н9А	110.3
C3—O3—C10	117.2 (3)	С8—С9—Н9А	110.3
C2—C1—C6	120.1 (3)	O2—C9—H9B	110.3
C2—C1—C7	122.8 (3)	С8—С9—Н9В	110.3
C6—C1—C7	116.9 (4)	Н9А—С9—Н9В	108.6
O1—C2—C1	125.3 (3)	O3—C10—H10A	109.5
O1—C2—C3	117.2 (3)	O3—C10—H10B	109.5
C1—C2—C3	117.5 (3)	H10A—C10—H10B	109.5
O3—C3—C4	125.9 (4)	O3—C10—H10C	109.5
O3—C3—C2	113.3 (3)	H10A—C10—H10C	109.5
C4—C3—C2	120.9 (4)	H10B—C10—H10C	109.5

supporting information

C3—C4—C5	120.2 (4)	N2—C11—S1	179.0 (4)
C3—C4—H4	119.9		

Symmetry code: (i) x, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	<i>D</i> —H··· <i>A</i>
02—H2…O1 ⁱⁱ	0.85 (1)	1.96 (2)	2.770 (4)	160 (5)
O2—H2…O3 ⁱⁱ	0.85 (1)	2.41 (4)	3.020 (4)	129 (4)

Symmetry code: (ii) -x+1, -y+1, -z.