metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Acetylacetonato)(dicyanamido)(1,10phenanthroline)copper(II) dihydrate

Halimeh Janani,^a Ali Reza Rezvani,^a Faramarz Rostami-Charati,^b Mohamed Makha^c and Brian W. Skelton^c*

^aDepartment of Chemistry, University of Sistan and Baluchestan, PO Box 98135-674, Zahedan, Iran, ^bFaculty of Science, Gonbad Higher Education Center, PO Box 163, Gonbad, Iran, and ^cChemistry, School of Biomedical, Biomolecular & Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia

Correspondence e-mail: brian.skelton@uwa.edu.au

Received 14 July 2010; accepted 29 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.082; data-to-parameter ratio = 22.3.

In the title compound, $[Cu(C_5H_7O_2)(C_2N_3)(C_{12}H_8N_2)]\cdot 2H_2O$, the Cu^{II} atom is five-coordinated in a square-pyramidal geometry with two acetylacetonate O and two phenanthroline N atoms forming the base. The apical position is occupied by the central N atom of the dicyanamide ligand. The dicyanamide N atoms are each involved in hydrogen bonds to water molecules. There are also hydrogen bonds between both the water molecules and their centrosymmetric pairs, creating a hydrogen-bonded chain along the *b*-axis direction.

Related literature

m1062

lanani et al

Dicyanamide (dca) has been shown to be a versatile ligand and may coordinate to metal ions as a terminal ligand through a nitrile or amide nitrogen. It also acts as a bridging ligand. Until now, as many as eight structurally characterized coordination modes of dicyanamide had been reported in the literature, see: Chattopadhyay *et al.* (2008); Liu *et al.* (2005); Miller & Manson (2001); Xu *et al.* (2003).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_5H_7O_2)(C_2N_3)(C_{12}H_8N_2) \end{bmatrix} - \\ 2H_2O \\ M_r = 444.93 \\ Triclinic, P\overline{1} \\ a = 8.2825 (8) Å \\ b = 9.9853 (7) Å \\ c = 12.1109 (7) Å \\ \alpha = 76.388 (5)^{\circ}$

Data collection

Oxford Diffraction Gemini diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{min} = 0.667, T_{max} = 0.847$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.082$ S = 0.976254 reflections 280 parameters 6 restraints

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.9061 (11)	Cu1-N2	2.0136 (13)
Cu1-O2	1.9072 (11)	Cu1-N3	2.3920 (15)
Cu1-N1 D1-Cu1-O2	2.0100 (14) 95.58 (5)	N1-Cu1-N2	82.08 (5)
D1-Cu1-N1	171.80 (5)	O1-Cu1-N3	89.74 (5)
D2-Cu1-N1	90.01 (5)	O2-Cu1-N3	94.16 (5)
D1 - Cu1 - N2	91.52 (5)	N1-Cu1-N3	95.85 (5)
D2 - Cu1 - N2	168.73 (5)	N2-Cu1-N3	94.62 (5)

 $\beta = 79.236 (7)^{\circ}$

 $\gamma = 83.554 \ (7)^{\circ}$

Z = 2

 $V = 953.90 (13) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.44 \times 0.38 \times 0.15 \text{ mm}$

10664 measured reflections 6254 independent reflections

4672 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.18 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.028$

refinement $\Delta \rho_{\text{max}} = 0.52 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 2		
Hydrogen-bond	geometry	(Å,

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O2W - H2B \cdots N5 \\ O2W - H2A \cdots O1W^{i} \end{array}$	0.81(2)	2.08(2)	2.879 (2)	173(2)
	0.80(2)	1.98(2)	2.761 (2)	167(2)
$O1W-H1A\cdots N4$	0.81 (2)	2.10 (2)	2.910 (2)	172 (3)
$O1W-H1B\cdots O2W^{ii}$	0.78 (2)	2.00 (2)	2.742 (2)	160 (2)

°).

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z + 2.

Data collection: *CrysAlis CCD* (Oxford Diffraction 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to the USB for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2347).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Chattopadhyay, T., Banerjee, A., Banu, K. S., Podder, N., Mukherjee, M., Ghosh, M., Suresh, E. & Das, D. (2008). J. Mol. Struct. 888, 62–69.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Liu, C.-B., Yu, M.-X., Zheng, X.-J., Jin, L.-P., Gao, S. & Lu, S.-Z. (2005). *Inorg. Chim. Acta*, **358**, 2687–2696.
- Miller, J. S. & Manson, J. L. (2001). Acc. Chem. Res. 34, 563-570.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, Y.-Q., Luo, J.-H., Yuan, D.-Q., Xu, Y., Cao, R. & Hong, M.-C. (2003). J. Mol. Struct. 658, 223–228.

supporting information

Acta Cryst. (2010). E66, m1062-m1063 [https://doi.org/10.1107/S1600536810030163]

(Acetylacetonato)(dicyanamido)(1,10-phenanthroline)copper(II) dihydrate

Halimeh Janani, Ali Reza Rezvani, Faramarz Rostami-Charati, Mohamed Makha and Brian W. Skelton

S1. Comment

Metal dicyanamide (dca) compounds are of great interest due to the variety of observed topologies, this being related to the versatility of dca as a ligand, and its potential application in functional materials. In the present work, we describe the synthesis and crystal structure of a new Cu^{II} complex using the diimine ligand (phen), a bidentate ligand with two oxygen donor atoms (acac) and the anionic co-ligand dicyanamide (dca) (Fig. 1). To date, a number of higher - dimensional coordination networks of different transition metals have been reported with dca as a bridging ligand, but there are few compounds with dca acting as a monodentate ligand through the amide nitrogen. To the best of our knowledge, this complex is one of the few cases where dca is acting as a terminal ligand through the amide nitrogen. The molecule of the title compound is shown in Fig. 1 with selected bond lengths and angles listed in Table 1. In this molecule the coordination is square pyramidal with the two acac O and two phen N atoms forming the base. The apical position is occupied by the N of the dicyanamido ligand with the Cu—N3 distance (Cu1—N3 2.3920 (15) Å) being much greater than those in the basal plane Cu1—O1, 1.906 (1), 1.907 (1) Å and Cu1—N1, 2.010 (1), 2.014 (1) Å. The dicyanamide N atoms, N4, N5 are each involved in hydrogen bonds to water molecules. There are also hydrogen bonds between both the water molecules and their centrosymmetric pairs creating a one dimensional hydrogen bonded polymer in the *b* direction (see Fig. 2). Geometrical details are listed in Table 2.

S2. Experimental

Acetylacetone (0.103 ml, 1 mmol) was added to a 20 ml methanolic solution of CuCl₂.2H₂O (170 mg, 1 mmol). After 30 min of stirring, a solution of phen (198 mg, 1 mmol) in 10 ml methanol was added dropwise to this solution. A solution of 1 mmol of sodium dicyanamide (89 mg) dissolved in 5 ml water was then added slowly with stirring. After 10 h of stirring at room temperature, the resulting solution was filtered to remove any undissolved materials. A dark blue crystalline product separated after 2 weeks.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$ for CH and $U_{iso}(H) = 1.5$ times $U_{eq}(C)$ for those on terminal C atoms. Anisotropic displacement parameters were employed throughout for the non-hydrogen atoms. Hydrogen atoms on water molecules were located in the difference Fourier map and refined with O-H bond lengths restrained to ideal values.

Figure 1

The Molecular structure projected oblique the basal coordination plane. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. H atoms are drawn as spheres with arbitrary radii.

Figure 2 The hydrogen-bonded polymer.

(Acetylacetonato)(dicyanamido)(1,10-phenanthroline)copper(II) dihydrate

Crystal data

 $[Cu(C_5H_7O_2)(C_2N_3)(C_{12}H_8N_2)]$ ·2H₂O $M_r = 444.93$ Triclinic, $P\overline{1}$ Hall symbol: -p 1 a = 8.2825 (8) Å b = 9.9853 (7) Åc = 12.1109(7) Å $\alpha = 76.388 (5)^{\circ}$ $\beta = 79.236 (7)^{\circ}$ $\gamma = 83.554 (7)^{\circ}$ $V = 953.90 (13) \text{ Å}^3$

Data collection

Oxford Diffraction Gemini diffractometer Graphite monochromator Detector resolution: 10.4738 pixels mm⁻¹ ω scans Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009) $T_{\rm min} = 0.667, T_{\rm max} = 0.847$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrogen site location: inferred from $wR(F^2) = 0.082$ neighbouring sites S = 0.97H atoms treated by a mixture of independent 6254 reflections and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0386P)^2]$ 280 parameters where $P = (F_0^2 + 2F_c^2)/3$ 6 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$ direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. The water molecule hydrogen geometries were restrained to ideal values.

Z = 2F(000) = 458 $D_{\rm x} = 1.549 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5220 reflections $\theta = 3.5 - 32.5^{\circ}$ $\mu = 1.18 \text{ mm}^{-1}$ T = 100 KSlab, blue $0.44 \times 0.38 \times 0.15 \text{ mm}$

10664 measured reflections 6254 independent reflections 4672 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$ $\theta_{\rm max} = 32.6^\circ, \ \theta_{\rm min} = 3.5^\circ$ $h = -12 \rightarrow 10$ $k = -15 \rightarrow 14$ $l = -17 \rightarrow 17$

 $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

	x	y	Z	$U_{\rm iso}^*/U_{\rm eq}$
Cul	0.44471 (3)	0.77615 (2)	0.641559 (16)	0.01300 (6)
01	0.30198 (14)	0.93968 (11)	0.64219 (9)	0.0147 (2)
02	0.46649 (15)	0.78689 (11)	0.48019 (9)	0.0151 (2)
N1	0.61346 (17)	0.61447 (13)	0.65445 (11)	0.0131 (3)
N2	0.47043 (17)	0.76076 (13)	0.80625 (11)	0.0136 (3)
N3	0.20994 (18)	0.64152 (14)	0.69007 (12)	0.0195 (3)
N4	0.24313 (19)	0.38636 (15)	0.73851 (12)	0.0207 (3)
N5	-0.04970 (19)	0.77968 (15)	0.73930 (13)	0.0232 (3)
C1	0.6620 (2)	0.57862 (16)	0.75956 (13)	0.0128 (3)
C2	0.7799 (2)	0.47088 (16)	0.78859 (13)	0.0146 (3)
C3	0.8485 (2)	0.39566 (17)	0.70360 (14)	0.0166 (3)
Н3	0.928	0.3205	0.7195	0.02*
C4	0.7992 (2)	0.43239 (17)	0.59769 (14)	0.0182 (3)
H4	0.845	0.383	0.5397	0.022*
C5	0.6813 (2)	0.54268 (16)	0.57561 (14)	0.0158 (3)
Н5	0.6486	0.5672	0.5019	0.019*
C6	0.8253 (2)	0.44452 (17)	0.90081 (14)	0.0171 (3)
H6	0.905	0.3712	0.9219	0.021*
C7	0.5862 (2)	0.65973 (16)	0.84136 (13)	0.0128 (3)
C8	0.6326 (2)	0.63354 (16)	0.94977 (13)	0.0151 (3)
C9	0.5529 (2)	0.71780 (17)	1.02540 (14)	0.0174 (3)
Н9	0.5812	0.705	1.0999	0.021*
C10	0.4343 (2)	0.81839 (17)	0.99064 (14)	0.0180 (3)
H10	0.3791	0.875	1.0412	0.022*
C11	0.3953 (2)	0.83697 (16)	0.87987 (13)	0.0157 (3)
H11	0.3125	0.9063	0.8567	0.019*
C12	0.7560 (2)	0.52296 (17)	0.97732 (14)	0.0180 (3)
H12	0.7895	0.5045	1.0506	0.022*
C13	0.1266 (2)	1.13270 (17)	0.57670 (14)	0.0190 (3)
H13A	0.0297	1.0988	0.632	0.028*
H13B	0.0922	1.1839	0.5043	0.028*
H13C	0.1812	1.1938	0.6083	0.028*
C14	0.2445 (2)	1.01218 (16)	0.55433 (13)	0.0140 (3)
C15	0.2838 (2)	0.98785 (16)	0.44328 (13)	0.0152 (3)
H15	0.2332	1.0492	0.3847	0.018*
C16	0.3917 (2)	0.88016 (16)	0.41157 (13)	0.0134 (3)
C17	0.4305 (2)	0.86863 (17)	0.28774 (13)	0.0171 (3)
H17A	0.5449	0.89	0.2564	0.026*
H17B	0.3564	0.934	0.2433	0.026*
H17C	0.4154	0.7744	0.2828	0.026*
C18	0.2200 (2)	0.50592 (17)	0.71782 (13)	0.0152 (3)
C19	0.0677 (2)	0.70993 (16)	0.71876 (14)	0.0163 (3)
O1W	0.1223 (2)	0.12775 (15)	0.88013 (13)	0.0353 (4)
O2W	-0.13527 (19)	0.96983 (16)	0.89006 (12)	0.0292 (3)
H1A	0.165 (3)	0.195 (2)	0.8385 (17)	0.054 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H1B	0.137 (3)	0.117 (2)	0.9432 (13)	0.034 (7)*
H2A	-0.059 (3)	1.016 (2)	0.877 (2)	0.044 (8)*
H2B	-0.116 (3)	0.9122 (19)	0.8518 (18)	0.041 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cu1	0.01465 (11)	0.01279 (10)	0.01157 (10)	0.00093 (7)	-0.00271 (7)	-0.00316(7)
01	0.0164 (6)	0.0138 (5)	0.0137 (5)	-0.0002 (5)	-0.0029 (4)	-0.0026 (4)
O2	0.0184 (6)	0.0135 (5)	0.0135 (5)	0.0005 (5)	-0.0035 (4)	-0.0033 (4)
N1	0.0146 (7)	0.0136 (6)	0.0112 (6)	-0.0029 (5)	-0.0013 (5)	-0.0026 (5)
N2	0.0155 (7)	0.0118 (6)	0.0129 (6)	-0.0011 (5)	-0.0010 (5)	-0.0026 (5)
N3	0.0163 (7)	0.0138 (7)	0.0267 (8)	-0.0019 (6)	0.0011 (6)	-0.0042 (6)
N4	0.0201 (8)	0.0182 (7)	0.0235 (7)	0.0007 (6)	-0.0052 (6)	-0.0037 (6)
N5	0.0179 (8)	0.0182 (7)	0.0317 (8)	-0.0021 (6)	-0.0017 (6)	-0.0033 (6)
C1	0.0118 (7)	0.0128 (7)	0.0141 (7)	-0.0028 (6)	-0.0015 (6)	-0.0031 (6)
C2	0.0130 (8)	0.0139 (7)	0.0167 (7)	-0.0023 (6)	-0.0028 (6)	-0.0021 (6)
C3	0.0142 (8)	0.0145 (8)	0.0216 (8)	0.0001 (6)	-0.0033 (6)	-0.0049 (6)
C4	0.0189 (9)	0.0173 (8)	0.0196 (8)	-0.0002 (7)	-0.0013 (6)	-0.0085 (6)
C5	0.0174 (8)	0.0167 (8)	0.0147 (7)	-0.0014 (6)	-0.0028 (6)	-0.0061 (6)
C6	0.0150 (8)	0.0179 (8)	0.0181 (8)	-0.0004 (6)	-0.0053 (6)	-0.0016 (6)
C7	0.0133 (8)	0.0130 (7)	0.0120 (7)	-0.0018 (6)	-0.0020 (6)	-0.0022 (6)
C8	0.0155 (8)	0.0165 (8)	0.0141 (7)	-0.0037 (6)	-0.0025 (6)	-0.0035 (6)
C9	0.0196 (9)	0.0214 (8)	0.0128 (7)	-0.0048 (7)	-0.0020 (6)	-0.0056 (6)
C10	0.0216 (9)	0.0189 (8)	0.0145 (7)	-0.0020 (7)	-0.0006 (6)	-0.0072 (6)
C11	0.0177 (8)	0.0137 (7)	0.0154 (7)	-0.0016 (6)	-0.0011 (6)	-0.0040 (6)
C12	0.0176 (9)	0.0212 (8)	0.0158 (8)	-0.0014 (7)	-0.0061 (6)	-0.0025 (6)
C13	0.0186 (9)	0.0177 (8)	0.0201 (8)	0.0034 (7)	-0.0031 (6)	-0.0054 (6)
C14	0.0119 (8)	0.0126 (7)	0.0175 (8)	-0.0029 (6)	-0.0017 (6)	-0.0026 (6)
C15	0.0159 (8)	0.0153 (7)	0.0143 (7)	0.0001 (6)	-0.0053 (6)	-0.0014 (6)
C16	0.0121 (8)	0.0151 (7)	0.0139 (7)	-0.0048 (6)	-0.0030 (6)	-0.0024 (6)
C17	0.0211 (9)	0.0178 (8)	0.0133 (7)	-0.0005 (7)	-0.0041 (6)	-0.0044 (6)
C18	0.0127 (8)	0.0223 (8)	0.0118 (7)	-0.0021 (6)	-0.0020 (6)	-0.0057 (6)
C19	0.0181 (8)	0.0142 (7)	0.0168 (8)	-0.0072 (6)	-0.0035 (6)	-0.0008 (6)
O1W	0.0484 (10)	0.0288 (8)	0.0272 (8)	-0.0153 (7)	-0.0032 (7)	0.0003 (7)
O2W	0.0272 (8)	0.0325 (8)	0.0322 (8)	0.0022 (7)	-0.0080 (6)	-0.0150 (6)

Geometric parameters (Å, °)

Cu1—O1	1.9061 (11)	С6—Н6	0.95	
Cu1—O2	1.9072 (11)	С7—С8	1.394 (2)	
Cu1—N1	2.0100 (14)	C8—C9	1.412 (2)	
Cu1—N2	2.0136 (13)	C8—C12	1.440 (2)	
Cu1—N3	2.3920 (15)	C9—C10	1.373 (2)	
O1—C14	1.2775 (19)	С9—Н9	0.95	
O2—C16	1.2805 (19)	C10—C11	1.404 (2)	
N1—C5	1.332 (2)	C10—H10	0.95	
N1-C1	1.362 (2)	C11—H11	0.95	

N2—C11	1.329 (2)	C12—H12	0.95
N2—C7	1.361 (2)	C13—C14	1.505 (2)
N3—C18	1.313 (2)	C13—H13A	0.98
N3—C19	1.324 (2)	С13—Н13В	0.98
N4—C18	1.162 (2)	С13—Н13С	0.98
N5—C19	1.154 (2)	C14—C15	1.395 (2)
C1—C2	1.396 (2)	C15—C16	1.398 (2)
C1—C7	1.436 (2)	С15—Н15	0.95
C2—C3	1.413 (2)	C16—C17	1.503 (2)
C2—C6	1.435 (2)	C17—H17A	0.98
C3—C4	1 374 (2)	C17—H17B	0.98
C3—H3	0.95	C17 - H17C	0.98
C4-C5	1 398 (2)	O1W—H1A	0.812(15)
C4—H4	0.95	O1W—H1B	0.012(15) 0.778(15)
C5—H5	0.95	$\Omega^2 W = H^2 A$	0.795(15)
C6-C12	1 358 (2)	O2W - H2B	0.806 (15)
00 012	1.556 (2)		0.000 (15)
$01 - C_{11} - 02$	95 58 (5)	C8_C7_C1	120 19 (14)
O1 - Cu1 - O2	171.80 (5)	$C_{7}^{-}C_{8}^{-}C_{9}^{0}$	120.19(14) 116.93(15)
$\Omega^2 - C_{\mu} 1 - N_1$	90.01.(5)	C7 - C8 - C12	110.95(15) 118.38(15)
$O_2 = Cu_1 = N_1$ $O_1 = Cu_1 = N_2$	90.01 (5)	$C_{1} = C_{1} = C_{1}$	110.58(15) 124.68(15)
$O_2 = C_{11} = N_2$	16873(5)	$C_{10} = C_{0} = C_{12}$	119 60 (15)
$N_1 = C_{u1} = N_2$	82.08 (5)	$C_{10} = C_{9} = C_{8}$	120.2
$\Omega_1 = \Omega_1 = \Omega_2$	80.74 (5)	$C_{10} = C_{20} = H_{20}$	120.2
$O_1 = Cu_1 = N_3$	09.74(5)	$C_{0} = C_{10} = C_{11}$	120.2
$V_2 = Cu_1 = N_3$	94.10(3)	$C_{0} = C_{10} = C_{11}$	119.45 (15)
$N_1 = C_{11} = N_2$	95.65 (5)	$C_{11} = C_{10} = H_{10}$	120.3
$N_2 = Cu1 = N_3$	94.02(3)	$\mathbf{N}_{2} = \mathbf{C}_{1} = \mathbf{C}_{1} 0$	120.3
C14 - O1 - Cu1	124.32(11) 124.10(11)	N2 - C11 - U11	122.19 (13)
$C_{10} = 02 = C_{11}$	124.19(11) 118 21 (14)	$N_2 = C_{11} = H_{11}$	118.9
C5_NI_CT	116.51(14) 128.07(11)		110.9
CI_NI_Cui	128.97 (11)	C_{0} C_{12} $C_$	121.43 (15)
CI—NI—CUI	112.72 (10)	$C_0 - C_{12} - H_{12}$	119.3
CII = N2 = C/	118.32 (13)	C8—C12—H12	119.3
C11 - N2 - Cu1	129.06 (11)	C14—C13—H13A	109.5
C/-N2-Cul	112.58 (10)	CI4—CI3—HI3B	109.5
C18 - N3 - C19	119.10 (15)	H13A - C13 - H13B	109.5
C18 - N3 - Cul	123.48 (12)	C14—C13—H13C	109.5
C19 - N3 - Cul	114.92 (11)	H13A—C13—H13C	109.5
NI—CI—C2	123.32 (15)	HI3B—CI3—HI3C	109.5
NI—CI—C/	116.23 (14)	01	125.18 (15)
$C_2 - C_1 - C_1$	120.45 (14)	01	115.20 (14)
C1—C2—C3	117.10 (15)	C15—C14—C13	119.63 (14)
C1—C2—C6	118.67 (15)	C14—C15—C16	125.02 (14)
C3—C2—C6	124.22 (15)	C14—C15—H15	117.5
C4—C3—C2	119.32 (15)	C16—C15—H15	117.5
C4—C3—H3	120.3	O2—C16—C15	125.37 (14)
С2—С3—Н3	120.3	O2—C16—C17	114.54 (14)
C3—C4—C5	119.77 (15)	C15—C16—C17	120.08 (14)

supporting information

C3—C4—H4	120.1	C16—C17—H17A	109.5
C5—C4—H4	120.1	С16—С17—Н17В	109.5
N1—C5—C4	122.17 (15)	H17A—C17—H17B	109.5
N1—C5—H5	118.9	С16—С17—Н17С	109.5
С4—С5—Н5	118.9	H17A—C17—H17C	109.5
C12—C6—C2	120.86 (15)	H17B—C17—H17C	109.5
С12—С6—Н6	119.6	N4—C18—N3	174.12 (19)
С2—С6—Н6	119.6	N5-C19-N3	174.19 (18)
N2—C7—C8	123.49 (14)	H1A—O1W—H1B	112 (2)
N2—C7—C1	116.31 (13)	H2A—O2W—H2B	109.1 (19)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.81 (2)	2.08 (2)	2.879 (2)	173 (2)
0.80 (2)	1.98 (2)	2.761 (2)	167 (2)
0.81 (2)	2.10 (2)	2.910 (2)	172 (3)
0.78 (2)	2.00 (2)	2.742 (2)	160 (2)
	<i>D</i> —H 0.81 (2) 0.80 (2) 0.81 (2) 0.78 (2)	D —H $H \cdots A$ 0.81 (2)2.08 (2)0.80 (2)1.98 (2)0.81 (2)2.10 (2)0.78 (2)2.00 (2)	D—HH···A D ···A0.81 (2)2.08 (2)2.879 (2)0.80 (2)1.98 (2)2.761 (2)0.81 (2)2.10 (2)2.910 (2)0.78 (2)2.00 (2)2.742 (2)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, –*y*+1, –*z*+2.