organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,6'-Dimethoxy-2,2'-[(cyclohexane-1,2diyl)bis(nitrilomethylidyne)]diphenol

Qian Zhang, Peng-Fei Yan, Guang-Ming Li and Peng Chen*

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: jehugu@yahoo.com.cn

Received 22 July 2010; accepted 19 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.072; wR factor = 0.164; data-to-parameter ratio = 18.3.

The molecule of the title compound, C22H26N2O4, has two azomethine linkages, both of which are in an *E* configuration. The cyclohexyl ring adopts a chair conformation. The dihedral angle between the benzene rings is $66.57 (9)^{\circ}$. The molecular structure is stabilized by two intramolecular O-H···N hydrogen bonds.

Related literature

For related structures, see: Aslantas et al. (2007); Tozzo et al. (2008).

Experimental

Crystal data

$C_{22}H_{26}N_2O_4$	V = 2083.5 (6) Å ³
$M_r = 382.45$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 15.014 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 12.029 (2) Å	T = 293 K
c = 12.099 (2) Å	$0.22 \times 0.20 \times 0.13$
$\beta = 107.54 \ (3)^{\circ}$	

 \times 0.15 mm

4748 independent reflections

 $R_{\rm int} = 0.062$

2352 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID diffractometer

19987 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.072 \\ wR(F^2) &= 0.164 \end{split}$$
H atoms treated by a mixture of independent and constrained S = 1.03refinement $\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$ 4748 reflections $\Delta \rho_{\rm min}$ = -0.18 e Å⁻³ 259 parameters 1 restraint

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3 - H3 \cdots N1 \\ O4 - H4 \cdots N2 \end{array}$	0.88 (2)	1.77 (2)	2.572 (3)	150 (3)
	0.86 (3)	1.80 (3)	2.587 (3)	152 (3)

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5006).

References

Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, 0644-0645.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tozzo, E., Romera, S., Santos, M. P., Muraro, M., Santos, R. H. De A., Liao, L. M., Vizotto, L. & Dockal, E. R. (2008). J. Mol. Struct. 876, 110-120.

supporting information

Acta Cryst. (2010). E66, o2450 [https://doi.org/10.1107/S1600536810033465]

6,6'-Dimethoxy-2,2'-[(cyclohexane-1,2-diyl)bis(nitrilomethylidyne)]diphenol

Qian Zhang, Peng-Fei Yan, Guang-Ming Li and Peng Chen

S1. Comment

We present the crystal structure of the title compound, as shown in Fig. 1. X-ray analysis suggests that the imino group is in the *trans* configuration and the two aromatic rings are lying on in front of the other. Bond lengths and angles within the aromatic rings are consistent with reported examples. Short H-bonds exists between the OH groups and the imino groups in *ortho* position.

S2. Experimental

The title compound was prepared by a known method. *o*-Vanillin (2 mmol, 0.304 g) in acetontrile (20 ml) and *trans*-1,2cyclohexanediamine (1 mmol, 0.114 g) in methanol (20 ml) were mixed and refluxed for about 4 h at 358 K. The reaction mixture was cooled and filtered; Compound was obtained by crystallization from a mixture methanol/acetonitrile solution after a few days. Analysis: calculated for $C_{22}H_{26}N_2O_4$: C 69.09, H 6.85, N 7.32, O 16.73%; found: C 69.21, H.7.01, N 23.78%.

S3. Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97Å (methylene C), and with $U_{iso}(H) = 1.2Ueq(C)$ or C—H = 0.96 Å (methyl C) and with $U_{iso}(H) = 1.5Ueq(C)$. The H atoms attached to the O atoms were found from the Fourier difference map and the O–H bonds are refined in the normal range with $U_{iso}(H) = 1.5Ueq(O)$.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

6,6'-Dimethoxy-2,2'-[(cyclohexane-1,2-diyl)bis(nitrilomethylidyne)]diphenol

Crystal data

C₂₂H₂₆N₂O₄ $M_r = 382.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.014 (3) Å b = 12.029 (2) Å c = 12.099 (2) Å $\beta = 107.54$ (3)° V = 2083.5 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.000 pixels mm⁻¹ ω scans 19987 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.164$ F(000) = 816 $D_x = 1.219 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4748 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.22 \times 0.20 \times 0.15 \text{ mm}$

4748 independent reflections 2352 reflections with $I > 2\sigma(I)$ $R_{int} = 0.062$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.1^\circ$ $h = -19 \rightarrow 19$ $k = -15 \rightarrow 15$ $l = -15 \rightarrow 14$

S = 1.034748 reflections 259 parameters 1 restraint

Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.6508P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.0604 (3)	0.6458 (3)	0.0711 (3)	0.1152 (12)
H1A	0.0594	0.6532	-0.0083	0.173*
H1B	0.1008	0.7015	0.1171	0.173*
H1C	-0.0016	0.6553	0.0765	0.173*
C2	0.0895 (3)	0.5459 (3)	0.4138 (4)	0.1002 (11)
H2A	0.0743	0.5934	0.4661	0.120*
C3	0.6339 (2)	0.4074 (3)	0.4551 (3)	0.0913 (10)
H3A	0.6771	0.4377	0.4223	0.110*
C4	0.2019 (2)	-0.1264 (2)	0.3541 (3)	0.0877 (9)
H4A	0.2139	-0.1370	0.4368	0.105*
H4B	0.1573	-0.1825	0.3140	0.105*
C5	0.1206 (2)	0.4412 (3)	0.4475 (3)	0.0897 (9)
H5A	0.1276	0.4182	0.5231	0.108*
C6	0.2916 (2)	-0.1400 (2)	0.3237 (3)	0.0832 (9)
H6A	0.2788	-0.1342	0.2404	0.100*
H6B	0.3175	-0.2132	0.3475	0.100*
C7	0.6257 (2)	0.5092 (3)	0.7826 (3)	0.1011 (11)
H7A	0.6137	0.5225	0.8550	0.152*
H7B	0.6185	0.5774	0.7395	0.152*
H7C	0.6883	0.4821	0.7971	0.152*
C8	0.5739 (2)	0.3277 (3)	0.3967 (2)	0.0801 (9)
H8A	0.5761	0.3042	0.3243	0.096*
C9	0.0802 (2)	0.5821 (2)	0.3029 (3)	0.0869 (9)
H9A	0.0599	0.6542	0.2813	0.104*
C10	0.36190 (19)	-0.0523 (2)	0.3828 (2)	0.0712 (8)
H10A	0.4176	-0.0605	0.3587	0.085*
H10B	0.3796	-0.0634	0.4660	0.085*
C11	0.16120 (19)	-0.0121 (2)	0.3201 (3)	0.0805 (9)
H11A	0.1046	-0.0040	0.3421	0.097*

supporting information

H11B	0.1449	-0.0038	0.2366	0.097*
C12	0.10074 (19)	0.5126 (2)	0.2240 (3)	0.0721 (8)
C13	0.14201 (18)	0.3684 (2)	0.3698 (2)	0.0645 (7)
C14	0.6317 (2)	0.4439 (2)	0.5620(2)	0.0732 (8)
H14A	0.6731	0.4987	0.6009	0.088*
C15	0.17636 (18)	0.2574 (2)	0.4061 (2)	0.0658 (7)
H15A	0.1869	0.2370	0.4831	0.079*
C16	0.23034 (17)	0.0781 (2)	0.3785 (2)	0.0605 (7)
H16A	0.2407	0.0746	0.4624	0.073*
C17	0.13111 (18)	0.4042 (2)	0.2567 (3)	0.0677 (7)
C18	0.56880 (19)	0.3998 (2)	0.6112 (2)	0.0605 (7)
C19	0.50689 (17)	0.3178 (2)	0.5532 (2)	0.0546 (6)
C20	0.32359 (16)	0.0644 (2)	0.3545 (2)	0.0565 (6)
H20A	0.3149	0.0794	0.2723	0.068*
C21	0.50889 (17)	0.2810 (2)	0.44483 (19)	0.0558 (6)
C22	0.44426 (17)	0.1969 (2)	0.3816 (2)	0.0574 (6)
H22A	0.4441	0.1787	0.3068	0.069*
N1	0.19248 (14)	0.18712 (18)	0.33625 (18)	0.0628 (6)
N2	0.38790 (14)	0.14722 (17)	0.42452 (16)	0.0568 (5)
01	0.56134 (14)	0.42882 (16)	0.71764 (15)	0.0826 (6)
O2	0.09388 (17)	0.53935 (17)	0.1121 (2)	0.1010 (7)
O3	0.15024 (16)	0.33730 (17)	0.17764 (17)	0.0920 (7)
H3	0.166 (3)	0.2728 (19)	0.211 (3)	0.138*
O4	0.44555 (14)	0.27515 (16)	0.60379 (15)	0.0754 (6)
H4	0.414 (2)	0.225 (3)	0.557 (3)	0.113*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.121 (3)	0.082 (2)	0.148 (3)	0.027 (2)	0.048 (3)	0.034 (2)
C2	0.113 (3)	0.078 (2)	0.125 (3)	-0.003(2)	0.058 (2)	-0.029 (2)
C3	0.093 (2)	0.111 (3)	0.081 (2)	-0.041 (2)	0.0441 (18)	-0.012 (2)
C4	0.082 (2)	0.0693 (19)	0.112 (2)	-0.0142 (16)	0.0286 (19)	0.0015 (18)
C5	0.105 (3)	0.081 (2)	0.095 (2)	-0.0020 (19)	0.049 (2)	-0.0140 (19)
C6	0.083 (2)	0.0656 (18)	0.098 (2)	0.0009 (16)	0.0235 (18)	-0.0063 (17)
C7	0.116 (3)	0.106 (2)	0.073 (2)	-0.028 (2)	0.0178 (19)	-0.0256 (19)
C8	0.086 (2)	0.099 (2)	0.0646 (17)	-0.0261 (18)	0.0367 (16)	-0.0097 (16)
C9	0.075 (2)	0.0583 (18)	0.130 (3)	-0.0048 (15)	0.036 (2)	-0.011 (2)
C10	0.0629 (18)	0.0709 (18)	0.0779 (18)	0.0088 (15)	0.0182 (14)	0.0011 (15)
C11	0.0510 (17)	0.082 (2)	0.105 (2)	-0.0047 (15)	0.0185 (16)	0.0027 (18)
C12	0.0568 (18)	0.0676 (19)	0.089 (2)	0.0003 (14)	0.0181 (15)	-0.0017 (17)
C13	0.0553 (16)	0.0637 (17)	0.0768 (18)	-0.0028 (13)	0.0231 (14)	-0.0080 (15)
C14	0.071 (2)	0.0743 (18)	0.0709 (18)	-0.0194 (15)	0.0154 (15)	-0.0041 (15)
C15	0.0591 (17)	0.0781 (19)	0.0619 (15)	-0.0067 (14)	0.0207 (13)	-0.0010 (15)
C16	0.0526 (16)	0.0638 (16)	0.0643 (15)	0.0046 (13)	0.0163 (12)	0.0075 (13)
C17	0.0513 (16)	0.0673 (18)	0.0813 (19)	0.0062 (14)	0.0150 (14)	-0.0084 (16)
C18	0.0653 (17)	0.0625 (16)	0.0514 (14)	0.0017 (14)	0.0142 (13)	0.0037 (13)
C19	0.0539 (15)	0.0601 (15)	0.0508 (14)	0.0007 (13)	0.0175 (12)	0.0066 (12)

supporting information

C20	0.0523 (15)	0.0650 (16)	0.0519 (13)	-0.0002 (13)	0.0151 (12)	0.0026 (13)
C21	0.0546 (16)	0.0651 (16)	0.0475 (13)	-0.0021 (13)	0.0151 (12)	0.0028 (12)
C22	0.0566 (16)	0.0722 (17)	0.0446 (13)	0.0030 (13)	0.0170 (12)	0.0015 (13)
N1	0.0553 (13)	0.0680 (14)	0.0620 (13)	0.0058 (11)	0.0129 (11)	-0.0021 (12)
N2	0.0513 (13)	0.0666 (13)	0.0527 (11)	-0.0026 (10)	0.0157 (10)	0.0019 (10)
01	0.0954 (15)	0.0916 (14)	0.0620 (11)	-0.0214 (12)	0.0258 (10)	-0.0159 (11)
O2	0.1142 (18)	0.0841 (15)	0.1000 (17)	0.0303 (13)	0.0250 (14)	0.0171 (13)
O3	0.1182 (18)	0.0836 (14)	0.0708 (13)	0.0356 (13)	0.0233 (12)	0.0012 (11)
O4	0.0820 (14)	0.0921 (15)	0.0601 (11)	-0.0245 (11)	0.0335 (10)	-0.0087 (10)

Geometric parameters (Å, °)

C1—O2	1.410 (3)	C10—H10A	0.9700
C1—H1A	0.9600	C10—H10B	0.9700
C1—H1B	0.9600	C11—C16	1.521 (3)
C1—H1C	0.9600	C11—H11A	0.9700
C2—C5	1.363 (4)	C11—H11B	0.9700
C2—C9	1.378 (4)	C12—O2	1.365 (3)
C2—H2A	0.9300	C12—C17	1.399 (4)
C3—C8	1.358 (4)	C13—C17	1.396 (4)
C3—C14	1.377 (4)	C13—C15	1.452 (4)
С3—НЗА	0.9300	C14—C18	1.367 (3)
C4—C6	1.509 (4)	C14—H14A	0.9300
C4—C11	1.510 (4)	C15—N1	1.269 (3)
C4—H4A	0.9700	C15—H15A	0.9300
C4—H4B	0.9700	C16—N1	1.459 (3)
C5—C13	1.392 (4)	C16—C20	1.522 (3)
С5—Н5А	0.9300	C16—H16A	0.9800
C6—C10	1.511 (4)	C17—O3	1.346 (3)
C6—H6A	0.9700	C18—O1	1.371 (3)
С6—Н6В	0.9700	C18—C19	1.392 (3)
C7—O1	1.425 (3)	C19—O4	1.351 (3)
C7—H7A	0.9600	C19—C21	1.393 (3)
С7—Н7В	0.9600	C20—N2	1.466 (3)
С7—Н7С	0.9600	C20—H20A	0.9800
C8—C21	1.397 (3)	C21—C22	1.450 (3)
C8—H8A	0.9300	C22—N2	1.268 (3)
C9—C12	1.371 (4)	C22—H22A	0.9300
С9—Н9А	0.9300	O3—H3	0.876 (18)
C10—C20	1.516 (3)	O4—H4	0.86 (3)
O2_C1_H1A	109.5	C4C11H11B	109.4
$O_2 - C_1 - H_1B$	109.5		109.4
$H_1A - C_1 - H_1B$	109.5		109.4
$\Omega^2 - \Omega^1 - H^1 \Omega$	109.5	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	125 5 (3)
$H_1A - C_1 - H_1C$	109.5	02 - C12 - C17	123.3(3) 114 9 (3)
HIB-C1-HIC	109.5	$C_{2} = C_{12} = C_{17}$	119.6 (3)
$C_{5}-C_{2}-C_{9}$	120.6 (3)	C_{5} C_{12} C_{17}	119.1 (3)
05 02 - 07	120.0 (3)	05 015-017	117.1 (3)

С5—С2—Н2А	119.7	C5—C13—C15	120.5 (3)
С9—С2—Н2А	119.7	C17—C13—C15	120.4 (2)
C8—C3—C14	121.0 (3)	C18—C14—C3	120.0 (3)
С8—С3—НЗА	119.5	C18—C14—H14A	120.0
С14—С3—НЗА	119.5	C3—C14—H14A	120.0
C6—C4—C11	110.5 (2)	N1—C15—C13	122.2 (3)
C6—C4—H4A	109.6	N1—C15—H15A	118.9
C11—C4—H4A	109.6	C13—C15—H15A	118.9
C6—C4—H4B	109.6	N1-C16-C11	109.8 (2)
C11—C4—H4B	109.6	N1-C16-C20	108.3 (2)
H4A—C4—H4B	108.1	C11—C16—C20	111.9 (2)
C2—C5—C13	120.5 (3)	N1—C16—H16A	108.9
С2—С5—Н5А	119.8	C11—C16—H16A	108.9
С13—С5—Н5А	119.8	C20—C16—H16A	108.9
C4—C6—C10	110.9 (2)	O3—C17—C13	121.7 (2)
С4—С6—Н6А	109.5	O3—C17—C12	118.5 (3)
С10—С6—Н6А	109.5	C13—C17—C12	119.7 (3)
С4—С6—Н6В	109.5	C14—C18—O1	125.0 (2)
С10—С6—Н6В	109.5	C14—C18—C19	120.0 (2)
H6A—C6—H6B	108.0	O1—C18—C19	115.0 (2)
O1—C7—H7A	109.5	O4—C19—C18	118.9 (2)
O1—C7—H7B	109.5	O4—C19—C21	121.1 (2)
H7A—C7—H7B	109.5	C18—C19—C21	120.0 (2)
O1—C7—H7C	109.5	N2-C20-C10	111.1 (2)
H7A—C7—H7C	109.5	N2-C20-C16	107.46 (19)
H7B—C7—H7C	109.5	C10—C20—C16	111.4 (2)
C3—C8—C21	120.3 (3)	N2—C20—H20A	108.9
C3—C8—H8A	119.9	С10—С20—Н20А	108.9
C21—C8—H8A	119.9	C16—C20—H20A	108.9
C12—C9—C2	120.5 (3)	C19—C21—C8	118.7 (2)
С12—С9—Н9А	119.8	C19—C21—C22	121.2 (2)
С2—С9—Н9А	119.8	C8—C21—C22	120.1 (2)
C6—C10—C20	112.1 (2)	N2—C22—C21	122.4 (2)
C6C10H10A	109.2	N2—C22—H22A	118.8
C20-C10-H10A	109.2	C21—C22—H22A	118.8
C6-C10-H10B	109.2	C15—N1—C16	119.8 (2)
C20-C10-H10B	109.2	C22—N2—C20	119.2 (2)
H10A—C10—H10B	107.9	C18—O1—C7	117.2 (2)
C4—C11—C16	111.1 (2)	C12—O2—C1	118.4 (3)
C4—C11—H11A	109.4	С17—О3—Н3	107 (2)
C16—C11—H11A	109.4	C19—O4—H4	106 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3…N1	0.88 (2)	1.77 (2)	2.572 (3)	150 (3)
O4—H4…N2	0.86 (3)	1.80 (3)	2.587 (3)	152 (3)