metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,2'-bi-1*H*-imidazole- $\kappa^2 N^3$, $N^{3'}$)bis(dimethyl sulfoxide- κO)copper(II) bis(tetrafluoridoborate)

Yong-Cheng Dai,^a Qiong-Hua Jin,^a* Li-Na Cui,^a Li-Jun Xu^a and Cun-Lin Zhang^b

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: jinqh204@163.com

Received 18 July 2010; accepted 9 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.040; wR factor = 0.111; data-to-parameter ratio = 11.0.

In the title copper(II) salt, $[Cu(C_6H_6N_4)_2(C_2H_6OS)_2](BF_4)_2$, the Jahn–Teller distorted octahedral coordination sphere of copper is formed from four 2,2'-bi-1*H*-imidazole N atoms and two dimethyl sulfoxide O atoms. The Cu atom lies on a center of inversion. N–H···O and N–H···F hydrogen bonds give rise to a one-dimensional structure. The BF₄⁻ anion is disordered over two sites in a 0.671 (10):0.329 (10) ratio.

Related literature

Supramolecular complexes containing H₂biim (H₂biim = 2,2'biimidazole) have been applied widely in molecular catalysis, photoelectric conversion materials and molecular recognition, see: Ding *et al.* (2005). For the effect of the coordination bonds, intermolecular hydrogen bonds and π - π packing interactions on the molecular arrangement, see: Burrows (2004); Dai *et al.* (2009). For related structures, see: Jin *et al.* (2010); Aminou *et al.* (2004); Gruia *et al.* (2007); Yang *et al.* (2008). For Cu-O coordination bond lengths, see: Tao *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{lll} [\mathrm{Cu}(\mathrm{C}_{6}\mathrm{H}_{6}\mathrm{N}_{4})_{2}(\mathrm{C}_{2}\mathrm{H}_{6}\mathrm{OS})_{2}](\mathrm{BF}_{4})_{2} & \gamma = 92.000 \ (1)^{\circ} \\ M_{r} = 661.71 & V = 668.68 \ (16) \ \text{\AA}^{3} \\ \mathrm{Triclinic}, \ P\overline{1} & Z = 1 \\ a = 7.059 \ (1) \ \text{\AA} & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ b = 10.0721 \ (13) \ \text{\AA} & \mu = 1.06 \ \mathrm{mm}^{-1} \\ c = 10.3669 \ (15) \ \text{\AA} & T = 298 \ \mathrm{K} \\ \alpha = 113.436 \ (2)^{\circ} & 0.36 \times 0.32 \times 0.20 \ \mathrm{mm} \\ \beta = 96.860 \ (1)^{\circ} \end{array}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.701, T_{\max} = 0.816$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	209 parameters
$vR(F^2) = 0.111$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
2293 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

3418 measured reflections 2293 independent reflections

 $R_{\rm int} = 0.023$

1885 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Cu1-N1	2.016 (2)	Cu1-O1	2.678 (2)
Cu1-N3	2.016 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

	,		
D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.86	1.94	2.745 (4)	155
0.86	2.26	2.874 (4)	128
0.86	2.40	3.127 (4)	142
	<i>D</i> -Н 0.86 0.86 0.86	$\begin{array}{c c} D-H & H\cdots A \\ \hline 0.86 & 1.94 \\ 0.86 & 2.26 \\ 0.86 & 2.40 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (ii) -x, -y + 1, -z + 1; (iii) x - 1, y, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work has been supported by the National Keystone Basic Research Program (973 Program) under grant No. 2007CB310408, No. 2006CB302901 and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality. It was also supported by the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5003).

References

- Aminou, M., Gerard, A. A. & Willem, L. D. (2004). Polyhedron, 23, 1969– 1973.
- Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrows, A. D. (2004). Struct. Bond. 108, 55-96.
- Dai, Y. C., Zhou, L. L., Zhang, Y. Y. & Jin, Q. H. (2009). Chin. Inorg. Chem. 25, 2202–2206.
- Ding, B. B., Weng, Y. Q., Mao, Z. W., Lam, C. K., Chen, X. M. & Ye, B. H. (2005). Inorg. Chem. 44, 8836–8845.
- Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.
- Jin, Q. H., Zhou, L. L., Xu, L. J., Zhang, Y.-Y. & Lu, X. M. (2010). *Polyhedron*, **29**, 317–327.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tao, J., Zhang, Y. & Chen, X. M. (2002). Chem. Commun. pp. 1342-1343.
- Yang, L. N., Li, J., Liu, J. J., Jiao, H. & Zhang, P. X. (2008). *J. Baoji Univ. Arts Sci. (Natur. Sci.)*, **28**, 28–32.

supporting information

Acta Cryst. (2010). E66, m1124–m1125 [https://doi.org/10.1107/S1600536810031922] Bis(2,2'-bi-1*H*-imidazole- $\kappa^2 N^3$, $N^{3'}$)bis(dimethyl sulfoxide- κO)copper(II) bis-(tetrafluoridoborate)

Yong-Cheng Dai, Qiong-Hua Jin, Li-Na Cui, Li-Jun Xu and Cun-Lin Zhang

S1. Comment

Supramolecular complexes containing H₂biim have been applied widely in molecular catalysis, photoelectric conversion materials and molecular recognition (Ding *et al.*, 2005) The ligand of H₂biim has been widely studied and applied because of the diversity of their coordination and the strong ability to form hydrogen bonds as a multi-proton donor. The utilization of the coordination bonds of a transition metal ion, intermolecular hydrogen bonds and πi - πi packing interactions help to control the molecular arrangement (Burrows, 2004; Dai *et al.*, 2009). We focus on the synthesis of the biimidazole-metal complexes. Here we report a new complex [Cu(H₂biim)₂(DMSO)₂](BF₄)₂ (1). Similar complexes {[Cu(H₂biim)₂(H₂O)](SiF₆)}.H₂O (2), [Cu(H₂biim)₂](ClO₄)₂.2DMSO (Jin *et al.*,2010) and [Cd(H₂biim)₃](SiF₆) (BF₄)₂.6EtOH (Gruia *et al.*,2007) will be compared here.

The title complex is composed of $[Cu(H_2biim)_2(DMSO)_2]^{2+}$ and two free BF₄⁻ anions. Cu(II) atom is in the center of Jahn-Teller elongated octahedron. The equatorial positions are occupied by four nitrogen atoms of two bidentate H₂biim molecules, while the axial positions are occupied by O atoms from two DMSO (Fig. 1). The $[Cu(H_2biim)_2(DMSO)_2]^{2+}$ unit stacks along the *b* axis to form a step-shaped infinite chain structure through $\pi i \cdot \pi i$ stacking and H-bonds(Fig.2).

The two identical distances Cu \cdots O(DMSO) of 2.678 (2)Å are in the range of Cu—O coordination bond (from 2.522Å to 2.724 Å) (Tao *et al.*, 2002). The two identical Cu—N distances of 2.016 (2)Å are slightly shorter than those in $[Cu(H_2biim)_2](ClO_4)_2.2DMSO$ [2.021 (2)Å and 2.018 (2) Å]. In the title complex there exist two types of hydrogen bonds, one is N—H \cdots O formed between N—H group of the H₂biim and oxygen atom of DMSO, the other is N—H \cdots F formed between N—H group of H₂biim and fluorine atom of BF₄⁻. The DMSO molecule and BF₄⁻ anion are located at both sides of the cation to form hydrogen bonds mentioned above. The face-to-face distance between the immidazole rings is 3.43Å with the dihedral angle of 3.718°, which suggests the existence of significant $\pi i \cdot \pi i$ interactions between them. There is a weak interaction Cu \cdots S_{DMSO}(3.458 Å) in complex (1).

The solvent plays an important role in the reaction of metal salt with 2,2'-bimidazole. Not only the configuration of the anions but also the coordination geometry of the cations are affected by the solvent. Complex 1 was prepared in the mixed solvent of ethanol and DMSO by the reaction of 2,2'- bimidazole with copper tetrafluoroborate with molar ratio 3:1. However, the ratio of ligand and metal in the cation $[Cu(H_2biim)_2(DMSO)_2]^{2+}$ of complex 1 is not consistent with the raw molar ratio, which may be related to the selectivity of solvent DMSO. Complex 2, $\{[Cu(H_2biim)_2(H_2O)]SiF_6\}$.H₂O, was prepared by the similar method of preparing (1) except using solvent water (Jin *et al.*,2010). Due to the different solvents, both the cation and the anion in complex (1) and complex (2) are different. It is noted that in complex (1) the anion BF₄⁻ was coming from starting material Cu(BF₄)₂ while in complex (2) the anion SiF₆²⁻ was not, but was formed by the reaction of BF₄⁻ with glass container in water. The complex $[Cd(H_2biim)_3](SiF_6)(BF_4)_2.6EtOH(Gruia$ *et al.*,2007) contains mixed cations SiF₆²⁻ and BF₄⁻, which is related to the mixed solvent water and enthanol used in the reaction

system.

The title complex is also similar to the following complexes: $[Cu(H_2biim)_2](ClO_4)_2$ (Aminou *et al.*,2004), $[Cu(H_2biim)_2]Br_2(Yang$ *et al.*,2008) and $[Cu(H_2biim)_2](ClO_4)_2.2DMSO$ (Jin *et al.*,2010).

S2. Experimental

 $Cu(BF_4)_2.6H_2O$ (0.1726 g, 1 mmol)dissolved in C_2H_3OH (5 ml) was added to a solution of H_2 biim (0.2010 g, 3 mmol) in C_2H_3OH (5 ml). The mixture was refluxed for 0.5 h, then 1 ml DMSO was added, stirring for another hour at room temperature, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of green crystals of the title complex after four weeks. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared. Analysis found(percentage): C 38.08, H 3.83, N 22.19; calculated: C 37.71, H 3.90, N 21.86.

S3. Refinement

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F^2 .

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Figure 1

Perspective view of a basic unit of the title complex. Hydrogen atoms are omitted for clarity. Atoms are displayed as elliposoids at the 50% probability level.

Bis(2,2'-bi-1*H*-imidazole- $\kappa^2 N^3$, N^3) bis(dimethyl sulfoxide- κO) copper(II) bis(tetrafluoridoborate)

Crystal data

SADABS

 $T_{\rm min} = 0.701, \ T_{\rm max} = 0.816$

$[Cu(C_{6}H_{6}N_{4})_{2}(C_{2}H_{6}OS)_{2}](BF_{4})_{2}$ $M_{r} = 661.71$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.059 (1) Å b = 10.0721 (13) Å c = 10.3669 (15) Å a = 113.436 (2)° $\beta = 96.860$ (1)° $\gamma = 92.000$ (1)° V = 668.68 (16) Å ³	Z = 1 F(000) = 335 $D_x = 1.643 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2039 reflections $\theta = 2.2-27.1^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 298 K Block, green $0.36 \times 0.32 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	3418 measured reflections 2293 independent reflections
Radiation source: fine-focus sealed tube	1885 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
phi and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$

 $k = -11 \rightarrow 11$

 $l = -12 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 0.5099P]$
S = 1.03	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2293 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
209 parameters	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.048 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cu1	0.5000	0.5000	0.5000	0.0390 (2)	
F1	0.7595 (5)	0.2780 (3)	0.7673 (4)	0.1074 (11)	
F2	0.7494 (11)	0.2364 (7)	0.9569 (6)	0.133 (3)	0.671 (10)
F3	0.8593 (16)	0.0735 (12)	0.7739 (12)	0.131 (5)	0.671 (10)
F4	0.5500 (11)	0.1020 (9)	0.7667 (9)	0.111 (3)	0.671 (10)
F2′	0.676 (3)	0.0585 (13)	0.6485 (15)	0.153 (7)	0.329 (10)
F3′	0.577 (2)	0.1641 (18)	0.8495 (19)	0.114 (7)	0.329 (10)
F4′	0.873 (3)	0.121 (3)	0.844 (3)	0.137 (10)	0.329 (10)
N1	0.3310 (3)	0.6573 (3)	0.5939 (3)	0.0400 (6)	
N2	0.0728 (4)	0.7101 (3)	0.6960 (3)	0.0487 (7)	
H2	-0.0297	0.7002	0.7297	0.058*	
N3	0.3261 (3)	0.3835 (3)	0.5650 (3)	0.0392 (6)	
N4	0.0623 (4)	0.3776 (3)	0.6562 (3)	0.0472 (7)	
H4	-0.0392	0.4047	0.6943	0.057*	
01	0.2552 (3)	0.4077 (3)	0.2573 (2)	0.0501 (6)	
S1	0.37073 (11)	0.34825 (10)	0.13515 (8)	0.0454 (3)	
B2	0.7268 (7)	0.1654 (5)	0.8039 (6)	0.0657 (13)	
C1	0.1883 (4)	0.6060 (4)	0.6387 (3)	0.0378 (7)	
C2	0.1466 (5)	0.8336 (4)	0.6911 (4)	0.0585 (10)	
H2A	0.0972	0.9235	0.7252	0.070*	
C3	0.3060 (5)	0.8018 (4)	0.6273 (4)	0.0526 (9)	
H3	0.3849	0.8663	0.6093	0.063*	
C4	0.1839 (4)	0.4588 (4)	0.6222 (3)	0.0377 (7)	

supporting information

C5	0.1283 (5)	0.2444 (5)	0.6198 (4)	0.0579 (10)
Н5	0.0720	0.1651	0.6303	0.069*
C6	0.2919 (5)	0.2493 (4)	0.5652 (4)	0.0516 (9)
H6	0.3691	0.1732	0.5329	0.062*
C7	0.2567 (7)	0.3869 (5)	-0.0058 (4)	0.0692 (11)
H7A	0.1224	0.3562	-0.0226	0.104*
H7B	0.3121	0.3360	-0.0902	0.104*
H7C	0.2735	0.4895	0.0189	0.104*
C8	0.3115 (7)	0.1570 (5)	0.0606 (5)	0.0762 (13)
H8B	0.3505	0.1193	0.1304	0.114*
H8C	0.3765	0.1122	-0.0202	0.114*
H8A	0.1756	0.1363	0.0314	0.114*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0288 (3)	0.0399 (4)	0.0538 (4)	0.0093 (2)	0.0220 (2)	0.0197 (3)
F1	0.110 (2)	0.0760 (19)	0.165 (3)	0.0132 (16)	0.069 (2)	0.066 (2)
F2	0.163 (6)	0.137 (5)	0.080 (4)	-0.018 (4)	0.039 (4)	0.020 (3)
F3	0.130 (10)	0.099 (7)	0.197 (12)	0.083 (7)	0.096 (10)	0.067 (7)
F4	0.084 (4)	0.102 (6)	0.142 (7)	-0.037 (4)	-0.005 (5)	0.053 (5)
F2′	0.180 (15)	0.096 (9)	0.129 (11)	0.004 (8)	0.030 (10)	-0.013 (7)
F3′	0.095 (13)	0.124 (13)	0.143 (16)	0.020 (10)	0.085 (13)	0.056 (11)
F4′	0.098 (13)	0.120 (17)	0.18 (2)	0.012 (11)	-0.044 (14)	0.060 (15)
N1	0.0305 (13)	0.0407 (15)	0.0455 (15)	0.0044 (11)	0.0131 (11)	0.0119 (12)
N2	0.0365 (14)	0.0599 (19)	0.0431 (16)	0.0132 (13)	0.0190 (12)	0.0095 (14)
N3	0.0332 (13)	0.0446 (15)	0.0454 (15)	0.0063 (11)	0.0135 (11)	0.0217 (12)
N4	0.0333 (14)	0.066 (2)	0.0450 (16)	-0.0008 (13)	0.0155 (12)	0.0237 (14)
01	0.0525 (14)	0.0504 (14)	0.0450 (13)	0.0066 (11)	0.0263 (11)	0.0113 (11)
S1	0.0382 (5)	0.0576 (6)	0.0371 (5)	0.0021 (4)	0.0142 (3)	0.0134 (4)
B2	0.051 (3)	0.052 (3)	0.105 (4)	0.009 (2)	0.034 (3)	0.037 (3)
C1	0.0261 (14)	0.0506 (19)	0.0314 (15)	0.0073 (13)	0.0100 (12)	0.0092 (14)
C2	0.056 (2)	0.048 (2)	0.059 (2)	0.0190 (18)	0.0190 (18)	0.0050 (18)
C3	0.050(2)	0.042 (2)	0.064 (2)	0.0095 (15)	0.0198 (17)	0.0154 (17)
C4	0.0261 (14)	0.056 (2)	0.0328 (16)	0.0029 (13)	0.0103 (12)	0.0181 (14)
C5	0.055 (2)	0.065 (3)	0.065 (2)	-0.0041 (19)	0.0159 (18)	0.037 (2)
C6	0.050 (2)	0.051 (2)	0.063 (2)	0.0090 (16)	0.0183 (17)	0.0298 (18)
C7	0.089 (3)	0.070 (3)	0.053 (2)	0.015 (2)	0.015 (2)	0.026 (2)
C8	0.100 (3)	0.054 (3)	0.075 (3)	0.020 (2)	0.037 (3)	0.018 (2)

Geometric parameters (Å, °)

Cu1—N1	2.016 (2)	N4—H4	0.8600	
Cu1—N1 ⁱ	2.016 (2)	N4—C4	1.335 (4)	
Cu1—N3 ⁱ	2.016 (2)	N4—C5	1.357 (5)	
Cu1—N3	2.016 (2)	O1—S1	1.519 (2)	
Cu1—O1	2.678 (2)	S1—C7	1.769 (4)	
F1—B2	1.351 (5)	S1—C8	1.779 (4)	

supporting information

F2—B2	1.443 (8)	C1—C4	1.422 (5)
F3—B2	1.316 (9)	C2—H2A	0.9300
F4—B2	1.322 (8)	C2—C3	1.356 (5)
F2′—B2	1.529 (14)	С3—Н3	0.9300
F3′—B2	1.213 (13)	С5—Н5	0.9300
F4′—B2	1.23 (2)	C5—C6	1.353 (5)
N1—C1	1.328 (4)	С6—Н6	0.9300
N1—C3	1 378 (4)	C7—H7A	0.9600
N2—H2	0.8600	C7—H7B	0.9600
N2—C1	1 340 (4)	C7—H7C	0.9600
$N_2 - C_2$	1 353 (5)	C8—H8B	0.9600
N3—C4	1.333(3)	C8—H8C	0.9600
N3 C6	1.351(4) 1.365(4)		0.9600
115-00	1.505 (4)	Co—110A	0.9000
F1—B2—F2	102.1 (5)	N3—C6—H6	125.3
F1—B2—F2'	92.2 (7)	N4—C4—C1	132.0 (3)
F2—B2—F2'	165.0 (7)	N4—C5—H5	126.6
F3—B2—F1	113.0 (7)	O1—S1—C7	107.35 (18)
F3—B2—F2	106.0 (7)	O1—S1—C8	104.93 (18)
F3—B2—F4	113.7 (8)	S1—O1—Cu1	107.75 (12)
F3—B2—F2'	71.8 (8)	S1—C7—H7A	109.5
F4—B2—F1	115.9 (6)	S1—C7—H7B	109.5
F4—B2—F2	104 4 (6)	S1 - C7 - H7C	109.5
F4 = B2 = F2'	64 6 (8)	S1—C8—H8B	109.5
$F_{3'}$ _B2_F1	1143(9)	S1_C8_H8C	109.5
$F_{3} - B_{2} - F_{1}$	67.7(10)	S1 C8 H8A	109.5
F_{2}^{-} F_{2	122.6(11)	$C_1 = N_1 = C_{12}$	109.5
$F_3 \longrightarrow B_2 \longrightarrow F_3$ $F_2' \longrightarrow F_4$	152.0(11)	C1 = N1 = C01	111.0(2) 106.2(2)
$F_3 \longrightarrow B_2 \longrightarrow F_4$	37.9(7)	C1 = N1 = U2	100.2 (3)
$F_3 - B_2 - F_2$	102.4(11) 122.6(19)	C1 = N2 = H2	120.1
F3	123.0 (18)	C1 - N2 - C2	107.7 (3)
F4' - B2 - F1	114.2 (15)	C_2 — N_2 — H_2	126.1
F4'—B2—F2	75.5 (12)	C2—C3—N1	108.3 (3)
F4′—B2—F3	31.1 (11)	С2—С3—Н3	125.9
F4'—B2—F4	128.6 (14)	C3—N1—Cul	142.8 (2)
F4′—B2—F2′	102.9 (11)	С3—С2—Н2А	126.3
N1—Cu1—N1 ¹	180.00 (16)	C4—N3—Cu1	111.3 (2)
$N1^{i}$ —Cu1—N3 ⁱ	82.24 (10)	C4—N3—C6	105.6 (3)
N1 ⁱ —Cu1—N3	97.76 (10)	C4—N4—H4	126.3
N1—Cu1—N3 ⁱ	97.76 (10)	C4—N4—C5	107.5 (3)
N1—Cu1—N3	82.24 (10)	C5—N4—H4	126.3
N1—Cu1—O1	90.17 (9)	C5—C6—N3	109.4 (3)
N1 ⁱ —Cu1—O1	89.83 (9)	С5—С6—Н6	125.3
N1—C1—N2	110.5 (3)	C6—N3—Cu1	143.0 (2)
N1-C1-C4	118.0 (3)	C6—C5—N4	106.7 (3)
N1—C3—H3	125.9	С6—С5—Н5	126.6
N2-C1-C4	131.6 (3)	C7—S1—C8	98.8 (2)
N2—C2—H2A	126.3	H7A—C7—H7B	109.5
N2—C2—C3	107.3 (3)	Н7А—С7—Н7С	109.5

N3 ⁱ —Cu1—N3	180.0	H7B—C7—H7C	109.5
N3—Cu1—O1	87.32 (9)	H8B—C8—H8C	109.5
N3 ⁱ —Cu1—O1	92.68 (9)	H8B—C8—H8A	109.5
N3—C4—N4	110.9 (3)	H8C—C8—H8A	109.5
N3—C4—C1	117.1 (3)		
Cu1—N1—C1—N2	-177.6 (2)	N3—Cu1—N1—C3	176.9 (4)
Cu1—N1—C1—C4	3.6 (3)	N3 ⁱ —Cu1—N1—C3	-3.1 (4)
Cu1—N1—C3—C2	177.8 (3)	N3 ⁱ —Cu1—N3—C4	-68 (100)
Cu1—N3—C4—N4	175.87 (19)	N3 ⁱ —Cu1—N3—C6	107 (100)
Cu1—N3—C4—C1	-5.3 (3)	N3—Cu1—O1—S1	-129.93 (14)
Cu1—N3—C6—C5	-173.6 (3)	N3 ⁱ —Cu1—O1—S1	50.07 (14)
Cu1—O1—S1—C7	-146.23 (18)	N4C5	-1.1 (4)
Cu1—O1—S1—C8	109.39 (19)	O1—Cu1—N1—C1	82.3 (2)
N1 ⁱ —Cu1—N1—C1	-142 (100)	O1—Cu1—N1—C3	-95.8 (4)
N1 ⁱ —Cu1—N1—C3	40 (100)	O1—Cu1—N3—C4	-85.0 (2)
N1 ⁱ —Cu1—N3—C4	-174.5 (2)	O1—Cu1—N3—C6	89.6 (4)
N1—Cu1—N3—C4	5.5 (2)	C1—N1—C3—C2	-0.4 (4)
N1 ⁱ —Cu1—N3—C6	0.1 (4)	C1—N2—C2—C3	1.3 (4)
N1—Cu1—N3—C6	-179.9 (4)	C2-N2-C1-N1	-1.6 (4)
N1—Cu1—O1—S1	147.85 (14)	C2—N2—C1—C4	177.0 (3)
N1 ⁱ —Cu1—O1—S1	-32.15 (14)	C3—N1—C1—N2	1.2 (4)
N1-C1-C4-N3	1.2 (4)	C3—N1—C1—C4	-177.6 (3)
N1-C1-C4-N4	179.7 (3)	C4—N3—C6—C5	1.2 (4)
N2-C1-C4-N3	-177.3 (3)	C4—N4—C5—C6	0.7 (4)
N2-C1-C4-N4	1.3 (6)	C5—N4—C4—N3	0.0 (4)
N2-C2-C3-N1	-0.5 (4)	C5—N4—C4—C1	-178.6 (3)
N3 ⁱ —Cu1—N1—C1	175.1 (2)	C6—N3—C4—N4	-0.7 (4)
N3—Cu1—N1—C1	-4.9 (2)	C6—N3—C4—C1	178.1 (3)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H2···O1 ⁱⁱ	0.86	1.94	2.745 (4)	155
N4—H4…F1 ⁱⁱⁱ	0.86	2.26	2.874 (4)	128
N4—H4···O1 ⁱⁱ	0.86	2.40	3.127 (4)	142

Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x-1, y, z.