Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

6,6'-Dimethyl-2,2'-[oxalylbis(azanediyl)]dipyridinium dichloride acetonitrile solvate

Hui-Ling Hu, ${ }^{\text {a }}$ Pei-Chi Cheng, ${ }^{\text {b }}$ Chia-Jun Wu ${ }^{\text {b }}$ and Jhy-Der Chen ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemical and Materials Engineering, Nanya Institute of Technology, Chung-Li, Taiwan, and ${ }^{\mathbf{b}}$ Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan
Correspondence e-mail: jdchen@cycu.edu.tw

Received 2 August 2010; accepted 19 August 2010

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.035 ; w R$ factor $=0.094 ;$ data-to-parameter ratio $=13.7$.

In the crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+}$.$2 \mathrm{Cl}^{-} \cdot \mathrm{CH}_{3} \mathrm{CN}$, weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are found between the H atoms bound to the pyridine and amine N atoms and the chloride anions. The asymmetric unit consits of one half cationic molecule which is located on a centre of inversion, one chloride anion in a general position and one half acetonitrile molecule which is located on a twofold axis. Because of symmetry, the $\mathrm{C}-\mathrm{H}$ hydrogens of the acetonitrile solvent molecule are disordered over two orientations.

Related literature

For $\operatorname{Ag}(\mathrm{I})$ complexes incorporating $\quad N, N^{\prime}$-bis(2-pyridyl)oxamide ligands which show one- and two-dimensional structures, see: Hsu \& Chen (2004); Hu et al. (2004). For the synthesis of the starting reactant, see: Cheng et al. (2009).

Monoclinic, $P 2 / c$
$a=10.6740$ (19) £
$Z=2$
$b=8.7637$ (5) \AA
Mo $K \alpha$ radiation
$c=10.370(3) \AA$
$\mu=0.38 \mathrm{~mm}^{-1}$
$c=10.370$ (3) A
$T=295 \mathrm{~K}$
$\beta=109.83(2)^{\circ}$
$0.6 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Bruker P4 diffractometer Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.823, T_{\max }=0.922$
2165 measured reflections 1619 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.07$
1619 reflections

1308 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
3 standard reflections every 97 reflections
intensity decay: none

118 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{\circ} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.14	$2.9772(16)$	165
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl}^{\mathrm{i}}$	0.86	2.43	$3.2057(17)$	150

Symmetry code: (i) $x, y+1, z$.

Data collection: XSCANS (Siemens, 1995); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of the specific research fields in Chung-Yuan Christian University, Taiwan, under grant No. CYCU-98-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2195).

References

Cheng, P.-C., Wu, C.-J. \& Chen, J.-D. (2009). Acta Cryst. E65, o2734.
Hsu, Y.-F. \& Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 1488-1493.
Hu, H.-L., Yeh, C.-W. \& Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 46964701.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Experimental

Crystal data

$$
\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \quad M_{r}=384.26
$$

supporting information

Acta Cryst. (2010). E66, o2386 [https://doi.org/10.1107/S1600536810033519]

6,6'-Dimethyl-2,2'-[oxalylbis(azanediyl)]dipyridinium dichloride acetonitrile solvate

Hui-Ling Hu, Pei-Chi Cheng, Chia-Jun Wu and Jhy-Der Chen

S1. Comment

Several $\mathrm{Ag}(\mathrm{I})$ complexes containg N, N^{\prime}-bis(2-pyridyl)oxamide ligands have been prepared, which show one-dimensional and two-dimensional structures (Hsu, et al., 2004; Hu, et al., 2004). To investigate the steric effect of the alkyl groups on the structural type of such complexes, we have synthesized N, N^{\prime}-bis(6-methyl-2-pyridyl)oxamide (Cheng, et al., 2009) and reacted with metal salts. Within this project the crystal structure of the title compound was determined.
In the crystal structure the cationic molecules are almost planar and the O atoms are trans-oriented (Fig. 1). The N, N^{\prime} -Bis(6-methyl-2-pyridinium)oxamide cations and the chloride anions are connected by weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (Tab. 1).

S2. Experimental

N, N '-bis(6-methyl-2-pyridyl)oxamide ($0.30 \mathrm{~g}, 1.1 \mathrm{mmol}$) (Cheng, et al., 2009) and $\mathrm{CuCl}_{2}(0.15 \mathrm{~g}, 1.1 \mathrm{mmol})$ were placed in a flask containing $10 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was refluxed for 8 h . The precipitate was then filtered and dried in vacuum. Coloress plate crystals of the title compound suitable for X-ray crystallography were obtained by slow evaporization of the solvent from a solution of the precipitate in $\mathrm{CH}_{3} \mathrm{CN}$.

S3. Refinement

All the hydrogen atoms were placed into idealized positions (methyl H atoms allowed to rotate but not to tip) and constrained by the riding atom approximation with $C-\mathrm{H}=0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ (1.5 for methyl H atoms).

Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
Symmetry code: $\mathrm{i}=-x+1,-y+2,-z+1$. Disordering is shown as full and open bonds.
6,6'-Dimethyl-2,2'-[oxalylbis(azanediyl)]dipyridinium dichloride acetonitrile solvate

Crystal data

```
C}\mp@subsup{\textrm{C}}{14}{}\mp@subsup{\textrm{H}}{16}{}\mp@subsup{\textrm{N}}{4}{}\mp@subsup{\textrm{O}}{2}{2+}\cdot2.2\mp@subsup{\textrm{Cl}}{}{-}\cdot\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{3}{}\textrm{N
Mr}=384.2
Monoclinic, P2/c
Hall symbol: -P 2yc
a=10.6740 (19) \AA
b=8.7637 (5) A
c=10.370 (3) A
\beta=109.83 (2)}\mp@subsup{}{}{\circ
V=912.5 (3) \AA}\mp@subsup{\AA}{}{3
Z=2
```


Data collection

Bruker P4

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

ω scans

Absorption correction: ψ scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.823, T_{\text {max }}=0.922$
2165 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.07$
$F(000)=400$
$D_{\mathrm{x}}=1.399 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 28 reflections
$\theta=4.7-12.5^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, colourless
$0.6 \times 0.2 \times 0.1 \mathrm{~mm}$

1619 independent reflections
1308 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 1$
$l=-12 \rightarrow 1$
3 standard reflections every 97 reflections
intensity decay: none

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0401 P)^{2}+0.2279 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0090 (15)

Special details

Experimental. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cl	0.23722 (6)	0.11398 (6)	0.09664 (5)	0.0569 (2)	
O	0.55710 (15)	0.81506 (16)	0.54656 (14)	0.0542 (4)	
N1	0.27012 (15)	0.78055 (18)	0.15297 (15)	0.0400 (4)	
H1A	0.2513	0.8715	0.1212	0.048*	
N2	0.39872 (16)	0.90108 (18)	0.34987 (15)	0.0424 (4)	
H2A	0.3653	0.9837	0.3073	0.051*	
N3	1.0000	0.6381 (4)	0.2500	0.0953 (12)	
C1	0.1214 (2)	0.7019 (3)	-0.0703 (2)	0.0596 (6)	
H1B	0.0933	0.6103	-0.1230	0.089*	
H1C	0.1660	0.7672	-0.1153	0.089*	
H1D	0.0450	0.7538	-0.0626	0.089*	
C2	0.2141 (2)	0.6624 (2)	0.0687 (2)	0.0443 (5)	
C3	0.2463 (2)	0.5175 (2)	0.1183 (2)	0.0521 (5)	
H3A	0.2118	0.4336	0.0627	0.062*	
C4	0.3305 (2)	0.4971 (3)	0.2514 (2)	0.0567 (6)	
H4A	0.3514	0.3985	0.2851	0.068*	
C5	0.3847 (2)	0.6201 (2)	0.3363 (2)	0.0522 (5)	
H5A	0.4406	0.6054	0.4262	0.063*	
C6	0.35325 (19)	0.7650 (2)	0.28310 (18)	0.0395 (4)	
C7	0.4915 (2)	0.9157 (2)	0.47672 (19)	0.0420 (5)	
C8	1.0000	0.7663 (4)	0.2500	0.0583 (8)	
C9	1.0000	0.9293 (4)	0.2500	0.0666 (9)	
H9B	1.0894	0.9658	0.2704	0.100*	0.50
H9A	0.9650	0.9658	0.3182	0.100*	0.50
H9C	0.9456	0.9658	0.1614	0.100*	0.50

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0769(4)$	$0.0307(3)$	$0.0530(3)$	$0.0030(2)$	$0.0089(3)$	$0.0052(2)$
O	$0.0635(9)$	$0.0404(9)$	$0.0450(7)$	$0.0124(7)$	$0.0005(7)$	$0.0022(6)$
N 1	$0.0498(9)$	$0.0268(8)$	$0.0401(8)$	$0.0023(7)$	$0.0112(7)$	$0.0022(6)$
N 2	$0.0546(10)$	$0.0297(9)$	$0.0373(8)$	$0.0057(7)$	$0.0082(7)$	$0.0012(6)$
N 3	$0.107(3)$	$0.052(2)$	$0.136(3)$	0.000	$0.054(3)$	0.000
C 1	$0.0696(15)$	$0.0438(13)$	$0.0510(12)$	$-0.0032(11)$	$0.0017(11)$	$-0.0076(10)$
C2	$0.0499(11)$	$0.0326(10)$	$0.0494(11)$	$-0.0034(9)$	$0.0155(9)$	$-0.0053(8)$
C3	$0.0604(14)$	$0.0300(11)$	$0.0625(13)$	$-0.0045(9)$	$0.0166(11)$	$-0.0053(10)$
C4	$0.0689(14)$	$0.0289(10)$	$0.0680(14)$	$0.0042(10)$	$0.0178(12)$	$0.0110(10)$
C5	$0.0639(13)$	$0.0361(11)$	$0.0491(11)$	$0.0044(10)$	$0.0095(10)$	$0.0071(9)$
C6	$0.0465(10)$	$0.0334(10)$	$0.0382(9)$	$0.0016(8)$	$0.0140(8)$	$0.0010(8)$
C7	$0.0472(11)$	$0.0398(11)$	$0.0364(10)$	$0.0059(9)$	$0.0109(8)$	$-0.0008(8)$
C8	$0.0587(19)$	$0.053(2)$	$0.066(2)$	0.000	$0.0248(16)$	0.000
C9	$0.080(2)$	$0.0492(19)$	$0.068(2)$	0.000	$0.0212(18)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O-C7	1.204 (2)	C2-C3	1.370 (3)
N1-C6	1.347 (2)	C3-C4	1.380 (3)
N1-C2	1.356 (2)	C3-H3A	0.9300
N1-H1A	0.8600	C4-C5	1.388 (3)
N2-C7	1.358 (2)	C4-H4A	0.9300
N2-C6	1.382 (2)	C5-C6	1.379 (3)
N2-H2A	0.8600	C5-H5A	0.9300
N3-C8	1.123 (5)	C7-C7 ${ }^{\text {i }}$	1.545 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.486 (3)	C8-C9	1.429 (5)
C1-H1B	0.9600	C9-H9B	0.9600
C1-H1C	0.9600	C9—H9A	0.9600
C1-H1D	0.9600	C9-H9C	0.9600
C6-N1-C2	124.41 (17)	C3-C4-H4A	119.2
C6-N1-H1A	117.8	C5-C4-H4A	119.2
C2-N1-H1A	117.8	C6-C5-C4	117.98 (19)
C7-N2-C6	125.72 (16)	C6-C5-H5A	121.0
C7-N2-H2A	117.1	C4-C5-H5A	121.0
C6-N2-H2A	117.1	N1-C6-C5	118.82 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1-C6-N2	114.49 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C5-C6-N2	126.69 (17)
H1B-C1-H1C	109.5	$\mathrm{O}-\mathrm{C} 7-\mathrm{N} 2$	126.70 (18)
C2-C1-H1D	109.5	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	122.0 (2)
H1B-C1-H1D	109.5	N2-C7-C7 ${ }^{\text {i }}$	111.3 (2)
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.5	N3-C8-C9	180.000 (2)
N1-C2-C3	117.77 (18)	C8-C9-H9B	109.5
N1-C2-C1	116.77 (18)	C8-C9-H9A	109.5
C3-C2-C1	125.46 (19)	H9B-C9-H9A	109.5

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.4(2)$	C8-C9-H9C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3	H9B-C9-H9C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3	H9A-C9-H9C	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.6(2)$		

Symmetry code: (i) $-x+1,-y+2,-z+1$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl} l^{\mathrm{ii}}$	0.86	2.14	$2.9772(16)$	165
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.86	2.43	$3.2057(17)$	150

Symmetry code: (ii) $x, y+1, z$.

