Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Isopropyl-6-methylpyrimidin-4(3H)one

Madhukar Hemamalini and Hoong-Kun Fun* \ddagger

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 16 August 2010; accepted 25 August 2010

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.039 ; w R$ factor $=0.103$; data-to-parameter ratio $=16.0$.

The molecular structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, indicates that 2-isopropyl-6-methylpyrimidin-4-ol (the enolform) undergoes an enol-to-keto tautomerism during the crystallization process. The pyrimidin- $4(3 H)$-one group is essentially planar, with a maximum deviation of 0.081 (1) A for the O atom. In the crystal structure, symmetry-related molecules are linked into centrosymmetic dimers via pairs of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating $R_{2}^{2}(8)$ rings. These dimers are stacked along the a axis.

Related literature

For applications of pyridinium derivatives, see: Condon et al. (1993); Maeno et al. (1990); Gilchrist (1997); Selby et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=152.20$
Monoclinic, $P 2_{1} / n$

$$
\begin{aligned}
& a=4.8627(2) \AA \\
& b=22.6320(8) \AA \\
& c=7.4228(3) \AA
\end{aligned}
$$

$\beta=96.495(2)^{\circ}$
$V=811.66(5) \AA^{3}$
$Z=4$
$\mu=0.08 \mathrm{~mm}^{-1}$
1.66 (5) A
$T=100 \mathrm{~K}$
$0.74 \times 0.14 \times 0.07 \mathrm{~mm}$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.940, T_{\text {max }}=0.994$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.103$
$S=1.06$
2371 reflections

7806 measured reflections
2371 independent reflections
1958 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.937(15)$	$1.844(14)$	$2.7809(11)$	$178.7(10)$

Symmetry code: (i) $-x+2,-y,-z+2$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5121).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. \& Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman
Maeno, S., Miura, I., Masuda, K. \& Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.
Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. \& Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74-84. Washington DC: American Chemical Society.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[^0]
supporting information

Acta Cryst. (2010). E66, o2459 [https://doi.org/10.1107/S1600536810034276]

2-Isopropyl-6-methylpyrimidin-4(3H)-one

Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as AZT, which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted azolylpyrimidines were reported (Selby et al., 2002). Keeping in view of the importance of the pyrimidine derivatives, the title compound (I) was presented.
The title molecule, (Fig. 1), exists in the keto-form although 2-isopropyl-4-hydroxy-6-methylpyrimidine (the enol-form) was used for crystallization. This indicates the compound undergoes an enol-to-keto tautomerism during the crystallization process (Fig. 3). The $\mathrm{C} 2=\mathrm{O} 1$ bond length is 1.2497 (11) \AA. The pyrimidin- $4(3 H)$-one group is essentially planar with a maximum deviation of 0.081 (1) \AA for atom O1. In the crystal structure (Fig. 2), adjacent molecules are linked via pairs of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form dimers, generating $R_{2}{ }^{2}(8)$ rings (Bernstein et al., 1995). These dimers are stacked along the a-axis.

S2. Experimental

Hot methanol solution (20 ml) of 2-isopropyl-4-hydroxy-6-methylpyrimidine (46 mg , Aldrich) was warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

S3. Refinement

All H atoms were located in a difference Fourier map and refined freely.

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The crystal packing of the title compound, viewed approximately along the a-axis. Hydrogen bonds are shown as dashed lines.

Keto form
Figure 3
The title compound and the tautomeric form.

2-Isopropyl-6-methylpyrimidin-4(3H)-one

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=152.20$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=4.8627$ (2) A
$b=22.6320(8) \AA$
$c=7.4228$ (3) \AA
$\beta=96.495(2)^{\circ}$
$V=811.66(5) \AA^{3}$
$Z=4$

$$
F(000)=328
$$

$D_{\mathrm{x}}=1.245 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2995 reflections
$\theta=2.9-30.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.74 \times 0.14 \times 0.07 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.940, T_{\text {max }}=0.994$

> 7806 measured reflections
> 2371 independent reflections
> 1958 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=30.1^{\circ}, \theta_{\min }=1.8^{\circ}$
> $h=-5 \rightarrow 6$
> $k=-26 \rightarrow 31$
> $l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.103$
$S=1.06$
2371 reflections
148 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.77782(15)$	$0.03007(3)$	$0.81600(9)$	$0.02023(18)$
N1	$0.43265(17)$	$-0.13343(3)$	$0.84671(10)$	$0.01613(18)$

N2	$0.75959(17)$	$-0.06091(3)$	$0.94759(10)$	$0.01473(17)$
C1	$0.64511(19)$	$-0.11546(4)$	$0.95755(12)$	$0.01455(19)$
C2	$0.6596(2)$	$-0.01885(4)$	$0.82081(12)$	$0.0158(2)$
C3	$0.4232(2)$	$-0.03768(4)$	$0.70385(12)$	$0.0169(2)$
C4	$0.32239(19)$	$-0.09370(4)$	$0.71759(12)$	$0.0156(2)$
C5	$0.0868(2)$	$-0.11656(5)$	$0.58916(13)$	$0.0190(2)$
C6	$0.7737(2)$	$-0.15603(4)$	$1.10544(13)$	$0.01614(19)$
C7	$0.8468(3)$	$-0.21559(5)$	$1.02578(15)$	$0.0249(2)$
C8	$0.5752(2)$	$-0.16347(5)$	$1.25028(14)$	$0.0222(2)$
H1N2	$0.915(3)$	$-0.0510(7)$	$1.0283(19)$	$0.034(4)^{*}$
H3A	$0.338(3)$	$-0.0101(6)$	$0.6146(18)$	$0.025(3)^{*}$
H5A	$-0.064(3)$	$-0.1299(6)$	$0.655(2)$	$0.036(4)^{*}$
H5B	$0.011(3)$	$-0.0864(7)$	$0.503(2)$	$0.044(4)^{*}$
H5C	$0.151(3)$	$-0.1505(6)$	$0.5237(19)$	$0.034(4)^{*}$
H6A	$0.946(3)$	$-0.1369(5)$	$1.1613(16)$	$0.018(3)^{*}$
H7A	$0.922(3)$	$-0.2424(6)$	$1.124(2)$	$0.031(3)^{*}$
H7B	$0.984(3)$	$-0.2117(6)$	$0.9349(19)$	$0.031(4)^{*}$
H7C	$0.681(3)$	$-0.2348(6)$	$0.9648(19)$	$0.036(4)^{*}$
H8A	$0.661(3)$	$-0.1874(6)$	$1.3518(19)$	$0.029(3)^{*}$
H8B	$0.408(3)$	$-0.1849(6)$	$1.1978(18)$	$0.031(4)^{*}$
H8C	$0.519(3)$	$-0.1249(6)$	$1.2967(19)$	$0.032(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0210(4)$	$0.0159(3)$	$0.0229(4)$	$-0.0031(3)$	$-0.0012(3)$	$0.0032(3)$
N 1	$0.0159(4)$	$0.0163(4)$	$0.0157(4)$	$-0.0010(3)$	$0.0002(3)$	$-0.0005(3)$
N 2	$0.0146(4)$	$0.0143(4)$	$0.0150(4)$	$-0.0008(3)$	$0.0005(3)$	$0.0004(3)$
C1	$0.0146(4)$	$0.0146(4)$	$0.0146(4)$	$0.0003(3)$	$0.0026(3)$	$-0.0007(3)$
C2	$0.0159(4)$	$0.0161(4)$	$0.0156(4)$	$0.0005(3)$	$0.0028(3)$	$0.0007(3)$
C3	$0.0165(5)$	$0.0185(4)$	$0.0153(4)$	$0.0014(3)$	$0.0006(3)$	$0.0019(3)$
C4	$0.0143(4)$	$0.0185(5)$	$0.0142(4)$	$0.0005(3)$	$0.0019(3)$	$-0.0018(3)$
C5	$0.0164(5)$	$0.0227(5)$	$0.0172(4)$	$-0.0011(4)$	$-0.0013(3)$	$-0.0022(4)$
C6	$0.0157(4)$	$0.0151(4)$	$0.0168(4)$	$-0.0011(3)$	$-0.0015(3)$	$0.0009(3)$
C7	$0.0301(6)$	$0.0172(5)$	$0.0260(5)$	$0.0036(4)$	$-0.0026(4)$	$-0.0004(4)$
C8	$0.0202(5)$	$0.0268(5)$	$0.0193(5)$	$-0.0016(4)$	$0.0012(4)$	$0.0061(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	$1.2497(11)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	$0.978(16)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3105(12)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	$0.978(15)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.3777(12)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.5297(14)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.3595(12)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.5332(14)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.3874(12)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	$0.990(12)$
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	$0.937(15)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	$0.985(14)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.5114(13)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	$1.004(14)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4254(13)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	$0.980(15)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3672(13)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	$0.982(14)$

C3-H3A	0.968 (13)	C8-H8B	0.987 (14)
C4-C5	1.4972 (13)	C8-H8C	0.988 (15)
C5-H5A	0.973 (16)		
C1-N1-C4	116.83 (8)	H5A-C5-H5C	107.8 (12)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	123.08 (8)	H5B-C5-H5C	109.9 (12)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	119.2 (9)	C1-C6-C7	110.47 (8)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	117.7 (9)	C1-C6-C8	109.54 (8)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	123.11 (9)	C7-C6-C8	111.50 (8)
N1-C1-C6	119.97 (8)	C1-C6-H6A	107.5 (7)
N2-C1-C6	116.92 (8)	C7-C6-H6A	108.9 (7)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 2$	120.02 (9)	C8-C6-H6A	108.9 (7)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	126.12 (9)	C6-C7-H7A	109.9 (8)
N2-C2-C3	113.86 (8)	C6-C7-H7B	112.5 (8)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.21 (9)	H7A-C7-H7B	109.4 (11)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.2 (8)	C6-C7- H 7 C	110.8 (9)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	118.6 (8)	H7A-C7-H7C	106.5 (12)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	122.85 (9)	H7B-C7-H7C	107.6 (11)
C3-C4-C5	121.86 (9)	C6-C8-H8A	110.7 (8)
N1-C4-C5	115.27 (8)	C6-C8-H8B	109.4 (8)
C4-C5-H5A	110.6 (9)	H8A-C8-H8B	106.8 (12)
C4-C5-H5B	112.3 (9)	C6-C8- H 8 C	111.6 (8)
H5A-C5-H5B	107.2 (12)	H8A-C8-H8C	109.3 (11)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	108.9 (8)	H8B-C8-H8C	109.0 (11)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-1.11 (13)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	2.79 (14)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	178.69 (8)	C2-C3-C4-C5	-175.72 (8)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	0.98 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	-0.79 (13)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$	-178.83 (8)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	177.82 (8)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{O} 1$	-178.41 (8)	N1-C1-C6-C7	52.88 (12)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	0.98 (12)	N2-C1-C6-C7	-127.31 (9)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	176.61 (9)	N1-C1-C6-C8	-70.32 (11)
N2-C2-C3-C4	-2.73 (13)	N2-C1-C6-C8	109.50 (9)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H}^{\cdots} A$
$\mathrm{~N} 2 — \mathrm{H} 1 N 2 \cdots \mathrm{Ol}^{\mathrm{i}}$	$0.937(15)$	$1.844(14)$	$2.7809(11)$	$178.7(10)$

Symmetry code: (i) $-x+2,-y,-z+2$.

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.

