## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 4-{2-[5-(4-Chlorophenyl)-1-(4-fluorophenyl)-1*H*-pyrazol-3-yl]thiazol-4-yl}benzonitrile

### Tara Shahani,<sup>a</sup> Hoong-Kun Fun,<sup>a</sup>\*‡ R. Venkat Ragavan,<sup>b</sup> V. Vijayakumar<sup>b</sup> and S. Sarveswari<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India Correspondence e-mail: hkfun@usm.my

Received 3 August 2010; accepted 5 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.107; data-to-parameter ratio = 21.8.

The asymmetric unit of the title compound,  $C_{25}H_{14}ClFN_4S$ , contains two independent molecules (*A* and *B*). Each molecule consists of five rings, namely chlorophenyl, fluorophenyl, 1*H*-pyrazole, thiazole and benzonitrile. In molecule *A*, the 1*H*-pyrazole ring makes dihedral angles of 52.54 (8), 35.96 (8) and 15.43 (8)° with respect to the attached chlorophenyl, fluorophenyl and thiazole rings. The corresponding values in molecule *B* are 51.65 (8), 37.26 (8) and 8.32 (8)°. In the crystal, molecules are linked into dimers by C–H···N hydrogen bonds, generating  $R_2^2(10)$  ring motifs. These dimers are further linked into two-dimensional arrays parallel to the *ab* plane *via* intermolecular weak C–H···N and C–H···F hydrogen bonds. The crystal structure is further stabilized by weak  $\pi$ - $\pi$  interactions [with centroid–centroid distances of 3.4303 (9) and 3.6826 (9) Å] and weak C–H··· $\pi$  interactions.

#### **Related literature**

For background and the microbial activity of pyrazole derivatives, see: Ragavan *et al.* (2009, 2010). For related structures, see: Shahani *et al.* (2009, 2010*a*,*b*). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For standard bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).



#### **Experimental**

#### Crystal data

 $C_{25}H_{14}CIFN_4S$   $M_r = 456.91$ Triclinic,  $P\overline{1}$  a = 10.1412 (9) Å b = 15.0496 (14) Å c = 15.8890 (14) Å  $\alpha = 105.518 (2)^{\circ}$   $\beta = 107.869 (2)^{\circ}$ 

 $\begin{array}{l} \gamma = 99.253 \ (2)^{\circ} \\ V = 2144.5 \ (3) \ \text{\AA}^{3} \\ Z = 4 \\ \text{Mo } \kappa \alpha \text{ radiation} \\ \mu = 0.31 \ \text{mm}^{-1} \\ T = 100 \ \text{K} \\ 0.32 \times 0.26 \times 0.08 \ \text{mm} \end{array}$ 

44680 measured reflections

 $R_{\rm int}=0.047$ 

577 parameters

 $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$ 

12570 independent reflections

9300 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

#### Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{min} = 0.909, T_{max} = 0.977$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$   $wR(F^2) = 0.107$  S = 1.0112570 reflections

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

| $D - H \cdot \cdot \cdot A$              | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C5A - H5AA \cdots F1A^{i}$              | 0.93 | 2.39                    | 3.149 (2)    | 138                                  |
| $C8B - H8BA \cdot \cdot \cdot F1B^{i}$   | 0.93 | 2.42                    | 3.283 (2)    | 154                                  |
| $C17B - H17A \cdots N4A^{ii}$            | 0.93 | 2.54                    | 3.419 (2)    | 159                                  |
| $C17A - H17B \cdot \cdot \cdot N4B^{ii}$ | 0.93 | 2.58                    | 3.453 (2)    | 156                                  |
| $C25B - H25A \cdots N2A^{iii}$           | 0.93 | 2.53                    | 3.457 (2)    | 175                                  |
| $C24A - H24B \cdots Cg1^{iv}$            | 0.93 | 2.96                    | 3.7811 (18)  | 148                                  |
| $C21B-H21A\cdots Cg2^{v}$                | 0.93 | 2.97                    | 3.6423 (19)  | 131                                  |
|                                          |      |                         |              |                                      |

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y - 1, z; (iv) -x + 2, -y + 1, -z; (v) -x + 2, -y, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

TSH and HKF thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/ 811012). TSH also thanks USM for the award of a USM fellowship. VV is grateful to the DST-India for funding through the young scientist scheme (Fast Track Proposal).

<sup>‡</sup> Thomson Reuters ResearcherID: A-3561-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5111).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.
- Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). *Eur. J. Med. Chem.* **45**, 1173–1180.
- Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.
- Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, 0142–0143.
- Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, 01357–01358.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2010). E66, o2286–o2287 [https://doi.org/10.1107/S1600536810031405] 4-{2-[5-(4-Chlorophenyl)-1-(4-fluorophenyl)-1*H*-pyrazol-3-yl]thiazol-4yl}benzonitrile

## Tara Shahani, Hoong-Kun Fun, R. Venkat Ragavan, V. Vijayakumar and S. Sarveswari

#### S1. Comment

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are used clinically as antimicrobial agents. In particular pyrazole derivatives are extensively studied and used as antimicrobial agents. However, azole-resistant strains led to the development of new antimicrobial compounds. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological activities, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists as well as kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our ongoing research aiming on the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan *et al.*, 2009; 2010).

The asymmetric unit of the title compound (Fig. 1) contains two molecules (*A* and *B*) with similar geometries. Each molecule consists of five rings, namely chlorophenyl (C1–C6/C11), fluorophenyl (C20–C25/F1), 1*H*-pyrazole (N1/N2/C7–C9), thiazole (N3/S1/C10–C12) and benzonitrile (C13–C19/N4) rings. In molecule *A*, the 1*H*-pyrazole ring is inclined at angles of 52.54 (8) and 35.96 (8)° and 15.43 (8)° with respect to the chlorophenyl, fluorophenyl and thiazole rings attached to it. The corresponding values in molecule *B* are 51.65 (8), 37.26 (8) and 8.32 (8)°. The bond lengths (Allen *et al.*, 1987), and angles are within normal ranges and comparable to the closely related structures (Shahani *et al.*, 2009; 2010*a*,*b*).

In the crystal packing (Fig. 2), intermolecular C17B—H17A···N4A and C17A—H17B···N4B hydrogen bonds (Table 1) link the neighbouring molecules into dimers, generating  $R^2_2(10)$  ring motifs (Bernstein *et al.*, 1995). These dimers are further linked into two-dimensional arrays parallel to the *ab* plane by intermolecular C5A—H5AA···F1A, C8B—H8BA···F1B and C25B—H25A···N2A hydrogen bonds (Table 1). Weak  $\pi$ ··· $\pi$  interactions are observed [Cg1··· $Cg1^{vi} = 3.4303$  (9) Å, symmetry code vi = 2 - *x*, 2 - *y*, 1 - *z*], [Cg1··· $Cg2^{vii} = 3.6826$  (9) Å, symmetry code vii = *x*, 1 + *y*, *z*] where Cg1 is the centroid of the thiazole ring (S1A/N3A/C10A—C12A) and Cg2 is the centroid of the 1*H*-pyrazole ring (N1B/N2B/C7B–C9B). The crystal structure is further stabilized by C—H··· $\pi$  interactions (Table 1), involving the C1A–C6A (centroid Cg3) and C1B–C6B rings (centroid Cg4).

## **S2. Experimental**

The compound has been synthesized by adopting the procedure available in the literature and purified by crystallization in ethanol (Ragavan *et al.*, 2009; 2010). Yellow solid, 76% yield, *mp*: 479.9–480.8 k.

## **S3. Refinement**

H atoms were positioned geometrically [C–H = 0.9300 Å] and refined using a riding model, with  $U_{iso}(H) = 1.2 U_{eq}(C)$ .



#### Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.



### Figure 2

The crystal packing of the title compound, showing a two-dimensional array parallel to the *ab* plane. Intermolecular hydrogen bonds are shown as dashed lines.

Z = 4

F(000) = 936

 $\theta = 2.7 - 30.0^{\circ}$  $\mu = 0.31 \text{ mm}^{-1}$ 

Plate, yellow

 $0.32 \times 0.26 \times 0.08 \text{ mm}$ 

T = 100 K

 $D_{\rm x} = 1.415 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 8583 reflections

4-{2-[5-(4-Chlorophenyl)-1-(4-fluorophenyl)-1H-pyrazol-3-yl]thiazol-4-yl}benzonitrile

Crystal data

C<sub>25</sub>H<sub>14</sub>CIFN<sub>4</sub>S  $M_r = 456.91$ Triclinic, P1 Hall symbol: -P 1 a = 10.1412 (9) Å b = 15.0496 (14) Å c = 15.8890 (14) Å a = 105.518 (2)°  $\beta = 107.869$  (2)°  $\gamma = 99.253$  (2)° V = 2144.5 (3) Å<sup>3</sup>

#### Data collection

| Bruker APEXII DUO CCD area-detector      | 44680 measured reflections                                     |
|------------------------------------------|----------------------------------------------------------------|
| diffractometer                           | 12570 independent reflections                                  |
| Radiation source: fine-focus sealed tube | 9300 reflections with $I > 2\sigma(I)$                         |
| Graphite monochromator                   | $R_{\rm int} = 0.047$                                          |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 30.2^\circ,  \theta_{\rm min} = 1.7^\circ$ |
| Absorption correction: multi-scan        | $h = -14 \rightarrow 14$                                       |
| (SADABS; Bruker, 2009)                   | $k = -21 \rightarrow 21$                                       |
| $T_{\min} = 0.909, \ T_{\max} = 0.977$   | $l = -22 \rightarrow 22$                                       |

Refinement

| Refinement on $F^2$<br>Least-squares matrix: full | Secondary atom site location: difference Fourier      |
|---------------------------------------------------|-------------------------------------------------------|
| Deast squares matrix. Tun                         |                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.042$                   | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.107$                                 | neighbouring sites                                    |
| S = 1.01                                          | H-atom parameters constrained                         |
| 12570 reflections                                 | $w = 1/[\sigma^2(F_o^2) + (0.044P)^2 + 0.5673P]$      |
| 577 parameters                                    | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                |
| 0 restraints                                      | $(\Delta/\sigma)_{\rm max} < 0.001$                   |
| Primary atom site location: structure-invariant   | $\Delta  ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                    | $\Delta  ho_{\min} = -0.50 \text{ e} \text{ Å}^{-3}$  |
|                                                   |                                                       |

### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|--------------|--------------|-------------------------------|
| Cl1A | 0.65750 (6)  | 0.27225 (3)  | 0.07240 (3)  | 0.04616 (13)                  |
| S1A  | 1.13306 (4)  | 1.04182 (3)  | 0.40859 (3)  | 0.02482 (8)                   |
| F1A  | 1.42149 (12) | 0.59713 (9)  | 0.08545 (7)  | 0.0464 (3)                    |
| N1A  | 1.06028 (13) | 0.73997 (8)  | 0.25101 (9)  | 0.0217 (2)                    |
| N2A  | 1.09248 (13) | 0.83652 (8)  | 0.29256 (9)  | 0.0229 (3)                    |
| N3A  | 0.86452 (14) | 0.97158 (9)  | 0.37237 (9)  | 0.0233 (3)                    |
| N4A  | 0.37277 (16) | 1.24996 (10) | 0.53307 (12) | 0.0402 (4)                    |
| C1A  | 0.95272 (17) | 0.52359 (11) | 0.21546 (11) | 0.0248 (3)                    |
| H1AA | 1.0519       | 0.5452       | 0.2463       | 0.030*                        |
| C2A  | 0.88712 (18) | 0.42599 (11) | 0.17403 (11) | 0.0284 (3)                    |
| H2AA | 0.9423       | 0.3823       | 0.1763       | 0.034*                        |
| C3A  | 0.73902 (19) | 0.39404 (11) | 0.12930 (11) | 0.0312 (4)                    |
| C4A  | 0.65433 (18) | 0.45760 (12) | 0.12679 (12) | 0.0324 (4)                    |
| H4AA | 0.5548       | 0.4354       | 0.0986       | 0.039*                        |
| C5A  | 0.72013 (17) | 0.55472 (12) | 0.16696 (11) | 0.0290 (3)                    |
| H5AA | 0.6640       | 0.5979       | 0.1648       | 0.035*                        |
| C6A  | 0.87003 (16) | 0.58924 (10) | 0.21090 (10) | 0.0229 (3)                    |
| C7A  | 0.93212 (15) | 0.69361 (10) | 0.25151 (10) | 0.0220 (3)                    |
| C8A  | 0.88014 (16) | 0.76421 (11) | 0.29533 (11) | 0.0242 (3)                    |
| H8AA | 0.7953       | 0.7563       | 0.3069       | 0.029*                        |
| C9A  | 0.98191 (16) | 0.85051 (10) | 0.31872 (10) | 0.0222 (3)                    |
| C10A | 0.97933 (16) | 0.94805 (10) | 0.36358 (10) | 0.0225 (3)                    |
| C11A | 1.03671 (16) | 1.11797 (11) | 0.44212 (10) | 0.0241 (3)                    |

| H11A | 1.0741       | 1.1836        | 0.4728        | 0.029*       |
|------|--------------|---------------|---------------|--------------|
| C12A | 0.89653 (16) | 1.06938 (10)  | 0.41774 (10)  | 0.0227 (3)   |
| C13A | 0.78227 (16) | 1.11019 (10)  | 0.43729 (10)  | 0.0231 (3)   |
| C14A | 0.64515 (18) | 1.05103 (12)  | 0.41109 (12)  | 0.0331 (4)   |
| H14B | 0.6257       | 0.9860        | 0.3792        | 0.040*       |
| C15A | 0.53762 (18) | 1.08749 (12)  | 0.43178 (13)  | 0.0357 (4)   |
| H15B | 0.4465       | 1.0473        | 0.4135        | 0.043*       |
| C16A | 0.56653 (17) | 1.18491 (11)  | 0.48025 (11)  | 0.0275 (3)   |
| C17A | 0.70275 (18) | 1.24542 (11)  | 0.50599 (11)  | 0.0283 (3)   |
| H17B | 0.7219       | 1.3105        | 0.5376        | 0.034*       |
| C18A | 0.80874 (18) | 1.20810(11)   | 0.48427 (11)  | 0.0276 (3)   |
| H18B | 0.8990       | 1.2486        | 0.5011        | 0.033*       |
| C19A | 0.45761 (17) | 1.22203 (11)  | 0.50766 (12)  | 0.0311 (4)   |
| C20A | 1.15274 (15) | 0.70276 (10)  | 0.20723 (10)  | 0.0211 (3)   |
| C21A | 1.29851 (17) | 0.72700 (12)  | 0.25942 (11)  | 0.0282 (3)   |
| H21B | 1.3348       | 0.7669        | 0.3218        | 0.034*       |
| C22A | 1.39029 (18) | 0.69147 (13)  | 0.21811 (12)  | 0.0333 (4)   |
| H22B | 1.4884       | 0.7068        | 0.2521        | 0.040*       |
| C23A | 1.33238 (18) | 0.63320(13)   | 0.12600 (12)  | 0.0310 (4)   |
| C24A | 1.18802 (18) | 0.60842 (12)  | 0.07246 (11)  | 0.0294 (3)   |
| H24B | 1.1524       | 0.5684        | 0.0102        | 0.035*       |
| C25A | 1.09718 (16) | 0.64470 (11)  | 0.11382 (10)  | 0.0243 (3)   |
| H25B | 0.9995       | 0.6302        | 0.0790        | 0.029*       |
| Cl1B | 0.76527 (5)  | -0.39437 (3)  | -0.11384 (3)  | 0.04333 (12) |
| S1B  | 1.14106 (4)  | 0.33994 (3)   | 0.36702 (3)   | 0.02914 (9)  |
| F1B  | 1.57725 (11) | -0.05590 (8)  | 0.10753 (9)   | 0.0484 (3)   |
| N1B  | 1.13119 (13) | 0.06398 (8)   | 0.18871 (9)   | 0.0212 (2)   |
| N2B  | 1.14761 (13) | 0.15432 (8)   | 0.24368 (9)   | 0.0224 (2)   |
| N3B  | 0.86803 (13) | 0.25950 (8)   | 0.29038 (8)   | 0.0216 (2)   |
| N4B  | 0.31537 (16) | 0.53818 (10)  | 0.35928 (12)  | 0.0417 (4)   |
| C1B  | 0.99178 (17) | -0.12120 (11) | 0.01556 (10)  | 0.0251 (3)   |
| H1BA | 1.0637       | -0.0792       | 0.0097        | 0.030*       |
| C2B  | 0.93788 (18) | -0.21482 (11) | -0.04635 (11) | 0.0286 (3)   |
| H2BA | 0.9740       | -0.2358       | -0.0931       | 0.034*       |
| C3B  | 0.82978 (18) | -0.27638 (11) | -0.03761 (11) | 0.0287 (3)   |
| C4B  | 0.77397 (17) | -0.24687 (11) | 0.03145 (12)  | 0.0284 (3)   |
| H4BA | 0.7011       | -0.2890       | 0.0363        | 0.034*       |
| C5B  | 0.82882 (16) | -0.15338 (10) | 0.09319 (11)  | 0.0246 (3)   |
| H5BA | 0.7920       | -0.1328       | 0.1397        | 0.029*       |
| C6B  | 0.93883 (16) | -0.08956 (10) | 0.08655 (10)  | 0.0220 (3)   |
| C7B  | 0.99122 (16) | 0.00952 (10)  | 0.15263 (10)  | 0.0212 (3)   |
| C8B  | 0.91412 (16) | 0.06778 (10)  | 0.18710 (10)  | 0.0230 (3)   |
| H8BA | 0.8164       | 0.0520        | 0.1760        | 0.028*       |
| C9B  | 1.01516 (16) | 0.15581 (10)  | 0.24242 (10)  | 0.0219 (3)   |
| C10B | 0.99350 (16) | 0.24426 (10)  | 0.29498 (10)  | 0.0218 (3)   |
| C11B | 1.02670 (17) | 0.40573 (11)  | 0.39097 (11)  | 0.0267 (3)   |
| H11B | 1.0558       | 0.4691        | 0.4303        | 0.032*       |
| C12B | 0.88655 (16) | 0.35308 (10)  | 0.34484 (10)  | 0.0220 (3)   |
|      |              |               |               |              |

| C13B | 0.76062 (16) | 0.38949 (10)  | 0.34638 (10) | 0.0217 (3) |
|------|--------------|---------------|--------------|------------|
| C14B | 0.62431 (17) | 0.32800 (10)  | 0.31896 (11) | 0.0255 (3) |
| H14A | 0.6121       | 0.2622        | 0.2988       | 0.031*     |
| C15B | 0.50724 (17) | 0.36374 (11)  | 0.32137 (12) | 0.0289 (3) |
| H15A | 0.4171       | 0.3223        | 0.3030       | 0.035*     |
| C16B | 0.52600 (17) | 0.46296 (11)  | 0.35171 (11) | 0.0258 (3) |
| C17B | 0.66100 (17) | 0.52504 (10)  | 0.37804 (11) | 0.0262 (3) |
| H17A | 0.6732       | 0.5908        | 0.3977       | 0.031*     |
| C18B | 0.77587 (17) | 0.48827 (10)  | 0.37473 (11) | 0.0252 (3) |
| H18A | 0.8654       | 0.5298        | 0.3916       | 0.030*     |
| C19B | 0.40724 (18) | 0.50352 (11)  | 0.35543 (12) | 0.0314 (4) |
| C20B | 1.25363 (15) | 0.03680 (10)  | 0.17432 (10) | 0.0216 (3) |
| C21B | 1.33796 (17) | 0.09201 (11)  | 0.14291 (12) | 0.0284 (3) |
| H21A | 1.3194       | 0.1487        | 0.1358       | 0.034*     |
| C22B | 1.45039 (18) | 0.06178 (12)  | 0.12222 (14) | 0.0355 (4) |
| H22A | 1.5097       | 0.0982        | 0.1023       | 0.043*     |
| C23B | 1.47150 (17) | -0.02352 (12) | 0.13207 (13) | 0.0321 (4) |
| C24B | 1.39172 (17) | -0.07789 (11) | 0.16568 (12) | 0.0303 (3) |
| H24A | 1.4112       | -0.1342       | 0.1731       | 0.036*     |
| C25B | 1.28151 (16) | -0.04656 (11) | 0.18819 (11) | 0.0258 (3) |
| H25A | 1.2270       | -0.0810       | 0.2123       | 0.031*     |
|      |              |               |              |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|--------------|--------------|--------------|--------------|--------------|--------------|
| Cl1A | 0.0592 (3)   | 0.0278 (2)   | 0.0379 (2)   | -0.0061 (2)  | 0.0127 (2)   | 0.00634 (18) |
| S1A  | 0.02376 (18) | 0.02641 (18) | 0.02893 (19) | 0.00997 (14) | 0.01377 (15) | 0.00987 (15) |
| F1A  | 0.0419 (6)   | 0.0755 (8)   | 0.0383 (6)   | 0.0401 (6)   | 0.0251 (5)   | 0.0185 (6)   |
| N1A  | 0.0211 (6)   | 0.0218 (6)   | 0.0257 (6)   | 0.0092 (5)   | 0.0124 (5)   | 0.0070 (5)   |
| N2A  | 0.0248 (6)   | 0.0218 (6)   | 0.0264 (6)   | 0.0097 (5)   | 0.0134 (5)   | 0.0082 (5)   |
| N3A  | 0.0255 (6)   | 0.0244 (6)   | 0.0252 (6)   | 0.0113 (5)   | 0.0133 (5)   | 0.0092 (5)   |
| N4A  | 0.0261 (7)   | 0.0277 (7)   | 0.0547 (10)  | 0.0079 (6)   | 0.0127 (7)   | -0.0027 (7)  |
| C1A  | 0.0226 (7)   | 0.0267 (7)   | 0.0274 (8)   | 0.0066 (6)   | 0.0109 (6)   | 0.0108 (6)   |
| C2A  | 0.0348 (9)   | 0.0271 (7)   | 0.0290 (8)   | 0.0113 (7)   | 0.0162 (7)   | 0.0115 (6)   |
| C3A  | 0.0383 (9)   | 0.0254 (7)   | 0.0253 (8)   | -0.0012 (7)  | 0.0126 (7)   | 0.0063 (6)   |
| C4A  | 0.0247 (8)   | 0.0376 (9)   | 0.0286 (8)   | 0.0005 (7)   | 0.0082 (7)   | 0.0080 (7)   |
| C5A  | 0.0220 (7)   | 0.0341 (8)   | 0.0304 (8)   | 0.0084 (6)   | 0.0099 (6)   | 0.0093 (7)   |
| C6A  | 0.0206 (7)   | 0.0264 (7)   | 0.0235 (7)   | 0.0067 (6)   | 0.0104 (6)   | 0.0082 (6)   |
| C7A  | 0.0184 (7)   | 0.0269 (7)   | 0.0242 (7)   | 0.0089 (6)   | 0.0104 (6)   | 0.0096 (6)   |
| C8A  | 0.0200 (7)   | 0.0291 (7)   | 0.0280 (8)   | 0.0102 (6)   | 0.0126 (6)   | 0.0100 (6)   |
| C9A  | 0.0223 (7)   | 0.0258 (7)   | 0.0231 (7)   | 0.0114 (6)   | 0.0113 (6)   | 0.0092 (6)   |
| C10A | 0.0246 (7)   | 0.0249 (7)   | 0.0232 (7)   | 0.0105 (6)   | 0.0122 (6)   | 0.0099 (6)   |
| C11A | 0.0274 (8)   | 0.0240 (7)   | 0.0254 (7)   | 0.0104 (6)   | 0.0138 (6)   | 0.0086 (6)   |
| C12A | 0.0268 (7)   | 0.0253 (7)   | 0.0215 (7)   | 0.0125 (6)   | 0.0116 (6)   | 0.0097 (6)   |
| C13A | 0.0264 (7)   | 0.0261 (7)   | 0.0213 (7)   | 0.0132 (6)   | 0.0114 (6)   | 0.0083 (6)   |
| C14A | 0.0268 (8)   | 0.0263 (8)   | 0.0400 (9)   | 0.0114 (6)   | 0.0116 (7)   | -0.0005 (7)  |
| C15A | 0.0231 (8)   | 0.0308 (8)   | 0.0427 (10)  | 0.0090 (7)   | 0.0099 (7)   | -0.0020 (7)  |
| C16A | 0.0273 (8)   | 0.0290 (8)   | 0.0263 (8)   | 0.0155 (6)   | 0.0089 (6)   | 0.0058 (6)   |
|      |              |              |              |              |              |              |

# supporting information

| C17A | 0.0347 (9)   | 0.0233 (7)   | 0.0306 (8)  | 0.0135 (6)   | 0.0152 (7)   | 0.0079 (6)    |
|------|--------------|--------------|-------------|--------------|--------------|---------------|
| C18A | 0.0294 (8)   | 0.0246 (7)   | 0.0333 (8)  | 0.0096 (6)   | 0.0155 (7)   | 0.0106 (6)    |
| C19A | 0.0248 (8)   | 0.0251 (7)   | 0.0344 (9)  | 0.0091 (6)   | 0.0059 (7)   | 0.0001 (6)    |
| C20A | 0.0208 (7)   | 0.0236 (7)   | 0.0251 (7)  | 0.0104 (5)   | 0.0124 (6)   | 0.0104 (6)    |
| C21A | 0.0240 (8)   | 0.0363 (8)   | 0.0241 (8)  | 0.0106 (6)   | 0.0099 (6)   | 0.0071 (6)    |
| C22A | 0.0216 (8)   | 0.0509 (10)  | 0.0327 (9)  | 0.0183 (7)   | 0.0119 (7)   | 0.0153 (8)    |
| C23A | 0.0320 (9)   | 0.0443 (9)   | 0.0317 (9)  | 0.0253 (8)   | 0.0206 (7)   | 0.0170 (7)    |
| C24A | 0.0334 (9)   | 0.0349 (8)   | 0.0245 (8)  | 0.0169 (7)   | 0.0136 (7)   | 0.0092 (6)    |
| C25A | 0.0219 (7)   | 0.0289 (7)   | 0.0248 (7)  | 0.0108 (6)   | 0.0091 (6)   | 0.0100 (6)    |
| Cl1B | 0.0461 (3)   | 0.0250 (2)   | 0.0414 (2)  | 0.00970 (18) | 0.0042 (2)   | -0.00243 (17) |
| S1B  | 0.02187 (18) | 0.02330 (18) | 0.0385 (2)  | 0.00744 (14) | 0.00972 (16) | 0.00539 (16)  |
| F1B  | 0.0310 (6)   | 0.0397 (6)   | 0.0831 (9)  | 0.0154 (5)   | 0.0356 (6)   | 0.0135 (6)    |
| N1B  | 0.0209 (6)   | 0.0196 (5)   | 0.0251 (6)  | 0.0076 (5)   | 0.0106 (5)   | 0.0067 (5)    |
| N2B  | 0.0247 (6)   | 0.0195 (6)   | 0.0252 (6)  | 0.0084 (5)   | 0.0119 (5)   | 0.0064 (5)    |
| N3B  | 0.0237 (6)   | 0.0209 (6)   | 0.0221 (6)  | 0.0089 (5)   | 0.0104 (5)   | 0.0060 (5)    |
| N4B  | 0.0287 (8)   | 0.0238 (7)   | 0.0653 (11) | 0.0086 (6)   | 0.0160 (8)   | 0.0040 (7)    |
| C1B  | 0.0272 (8)   | 0.0258 (7)   | 0.0251 (7)  | 0.0105 (6)   | 0.0100 (6)   | 0.0101 (6)    |
| C2B  | 0.0352 (9)   | 0.0292 (8)   | 0.0226 (7)  | 0.0165 (7)   | 0.0093 (7)   | 0.0074 (6)    |
| C3B  | 0.0327 (8)   | 0.0202 (7)   | 0.0257 (8)  | 0.0121 (6)   | 0.0019 (6)   | 0.0036 (6)    |
| C4B  | 0.0230 (7)   | 0.0252 (7)   | 0.0340 (8)  | 0.0068 (6)   | 0.0064 (6)   | 0.0098 (6)    |
| C5B  | 0.0216 (7)   | 0.0255 (7)   | 0.0268 (8)  | 0.0095 (6)   | 0.0085 (6)   | 0.0076 (6)    |
| C6B  | 0.0211 (7)   | 0.0235 (7)   | 0.0215 (7)  | 0.0103 (6)   | 0.0059 (6)   | 0.0076 (5)    |
| C7B  | 0.0215 (7)   | 0.0224 (7)   | 0.0223 (7)  | 0.0080 (5)   | 0.0097 (6)   | 0.0083 (5)    |
| C8B  | 0.0210 (7)   | 0.0242 (7)   | 0.0256 (7)  | 0.0083 (6)   | 0.0104 (6)   | 0.0076 (6)    |
| C9B  | 0.0239 (7)   | 0.0224 (7)   | 0.0231 (7)  | 0.0101 (6)   | 0.0107 (6)   | 0.0087 (6)    |
| C10B | 0.0241 (7)   | 0.0201 (6)   | 0.0232 (7)  | 0.0076 (5)   | 0.0099 (6)   | 0.0081 (5)    |
| C11B | 0.0267 (8)   | 0.0208 (7)   | 0.0306 (8)  | 0.0088 (6)   | 0.0102 (6)   | 0.0044 (6)    |
| C12B | 0.0252 (7)   | 0.0213 (7)   | 0.0221 (7)  | 0.0095 (6)   | 0.0105 (6)   | 0.0075 (5)    |
| C13B | 0.0247 (7)   | 0.0229 (7)   | 0.0188 (7)  | 0.0090 (6)   | 0.0095 (6)   | 0.0055 (5)    |
| C14B | 0.0271 (8)   | 0.0199 (7)   | 0.0281 (8)  | 0.0084 (6)   | 0.0105 (6)   | 0.0045 (6)    |
| C15B | 0.0251 (8)   | 0.0231 (7)   | 0.0364 (9)  | 0.0071 (6)   | 0.0120 (7)   | 0.0058 (6)    |
| C16B | 0.0251 (8)   | 0.0244 (7)   | 0.0280 (8)  | 0.0112 (6)   | 0.0109 (6)   | 0.0053 (6)    |
| C17B | 0.0304 (8)   | 0.0194 (7)   | 0.0280 (8)  | 0.0091 (6)   | 0.0124 (7)   | 0.0033 (6)    |
| C18B | 0.0250 (7)   | 0.0218 (7)   | 0.0269 (8)  | 0.0062 (6)   | 0.0105 (6)   | 0.0044 (6)    |
| C19B | 0.0275 (8)   | 0.0212 (7)   | 0.0408 (9)  | 0.0061 (6)   | 0.0122 (7)   | 0.0035 (7)    |
| C20B | 0.0183 (7)   | 0.0229 (7)   | 0.0244 (7)  | 0.0073 (5)   | 0.0093 (6)   | 0.0063 (6)    |
| C21B | 0.0261 (8)   | 0.0227 (7)   | 0.0408 (9)  | 0.0075 (6)   | 0.0168 (7)   | 0.0119 (6)    |
| C22B | 0.0294 (9)   | 0.0306 (8)   | 0.0555 (11) | 0.0076 (7)   | 0.0270 (8)   | 0.0154 (8)    |
| C23B | 0.0203 (7)   | 0.0299 (8)   | 0.0472 (10) | 0.0095 (6)   | 0.0176 (7)   | 0.0067 (7)    |
| C24B | 0.0258 (8)   | 0.0259 (7)   | 0.0416 (9)  | 0.0126 (6)   | 0.0128 (7)   | 0.0111 (7)    |
| C25B | 0.0236 (7)   | 0.0268 (7)   | 0.0321 (8)  | 0.0100 (6)   | 0.0132 (6)   | 0.0126 (6)    |

Geometric parameters (Å, °)

| Cl1A—C3A | 1.7401 (16) | Cl1B—C3B | 1.7428 (15) |
|----------|-------------|----------|-------------|
| S1A—C11A | 1.7044 (15) | S1B—C11B | 1.7055 (15) |
| S1A-C10A | 1.7325 (16) | S1B—C10B | 1.7312 (15) |
| F1A—C23A | 1.3617 (17) | F1B—C23B | 1.3647 (17) |
|          |             |          |             |

Acta Cryst. (2010). E66, o2286–o2287

| N1A—N2A           | 1.3622 (16)          | N1B—N2B           | 1.3570 (16) |
|-------------------|----------------------|-------------------|-------------|
| N1A—C7A           | 1.3761 (18)          | N1B—C7B           | 1.3749 (18) |
| N1A—C20A          | 1.4273 (17)          | N1B—C20B          | 1.4314 (18) |
| N2A—C9A           | 1.3377 (18)          | N2B—C9B           | 1.3411 (18) |
| N3A—C10A          | 1.3063 (18)          | N3B—C10B          | 1.3124 (19) |
| N3A—C12A          | 1.3879 (18)          | N3B—C12B          | 1.3895 (18) |
| N4A—C19A          | 1.148 (2)            | N4B—C19B          | 1.148 (2)   |
| C1A—C2A           | 1 390 (2)            | C1B—C2B           | 1 390(2)    |
| C1A - C6A         | 1 397 (2)            | C1B— $C6B$        | 1 398 (2)   |
| C1A—H1AA          | 0.9300               | C1B—H1BA          | 0.9300      |
| $C^{2}A - C^{3}A$ | 1 386 (2)            | $C^{2}B$ $C^{3}B$ | 1.384(2)    |
| $C_{2A}$ H2AA     | 0.9300               | C2B—H2BA          | 0.9300      |
| $C_{2}A$ $C_{4}A$ | 1.385(2)             | $C_{2B}$ $C_{4B}$ | 1.387(2)    |
| $C_{AA}$ $C_{AA}$ | 1.385(2)<br>1.384(2) | $C_{AB}$ $C_{5B}$ | 1.387(2)    |
|                   | 0.0300               |                   | 0.0300      |
| C4A - H4AA        | 1,402,(2)            | C4D - H4DA        | 1,400(2)    |
| CSA-COA           | 1.403(2)             | C5D_U5DA          | 1.400(2)    |
| CSA—HSAA          | 0.9300               | CSB—HSBA          | 0.9300      |
| C6A - C/A         | 1.4/3 (2)            | $C_{0}B - C_{1}B$ | 1.4/4 (2)   |
| C/A—C8A           | 1.379(2)             | C/B—C8B           | 1.3808 (19) |
| C8A—C9A           | 1.402 (2)            | C8B—C9B           | 1.402 (2)   |
| C8A—H8AA          | 0.9300               | C8B—H8BA          | 0.9300      |
| C9A—C10A          | 1.459 (2)            | C9B—C10B          | 1.459 (2)   |
| C11A—C12A         | 1.372 (2)            | C11B—C12B         | 1.369 (2)   |
| C11A—H11A         | 0.9300               | C11B—H11B         | 0.9300      |
| C12A—C13A         | 1.471 (2)            | C12B—C13B         | 1.473 (2)   |
| C13A—C14A         | 1.396 (2)            | C13B—C14B         | 1.400 (2)   |
| C13A—C18A         | 1.401 (2)            | C13B—C18B         | 1.401 (2)   |
| C14A—C15A         | 1.384 (2)            | C14B—C15B         | 1.387 (2)   |
| C14A—H14B         | 0.9300               | C14B—H14A         | 0.9300      |
| C15A—C16A         | 1.396 (2)            | C15B—C16B         | 1.402 (2)   |
| C15A—H15B         | 0.9300               | C15B—H15A         | 0.9300      |
| C16A—C17A         | 1.398 (2)            | C16B—C17B         | 1.397 (2)   |
| C16A—C19A         | 1.444 (2)            | C16B—C19B         | 1.445 (2)   |
| C17A—C18A         | 1.381 (2)            | C17B—C18B         | 1.377 (2)   |
| C17A—H17B         | 0.9300               | C17B—H17A         | 0.9300      |
| C18A—H18B         | 0.9300               | C18B—H18A         | 0.9300      |
| C20A—C25A         | 1.385 (2)            | C20B—C25B         | 1.388 (2)   |
| C20A—C21A         | 1.385 (2)            | C20B—C21B         | 1.388 (2)   |
| C21A—C22A         | 1.389 (2)            | C21B—C22B         | 1.390 (2)   |
| C21A—H21B         | 0.9300               | C21B—H21A         | 0.9300      |
| C22A—C23A         | 1.370(2)             | C22B—C23B         | 1.376 (2)   |
| C22A—H22B         | 0.9300               | C22B—H22A         | 0.9300      |
| C23A—C24A         | 1.377 (2)            | C23B—C24B         | 1.377 (2)   |
| C24A—C25A         | 1.386 (2)            | C24B— $C25B$      | 1.387(2)    |
| C24A—H24B         | 0.9300               | C24B - H24A       | 0.9300      |
| C25A—H25B         | 0.9300               | C25B— $H25A$      | 0.9300      |
|                   | 0.9200               |                   | 0.7500      |
| C11A—S1A—C10A     | 89 00 (7)            | C11B—S1B—C10B     | 88 81 (7)   |
|                   | 02.00(7)             |                   | 00.01 (7)   |

| N2A—N1A—C7A                                                                                                                                                                                                                                                                                                        | 112.26 (11)              | N2B—N1B—C7B           | 112.35 (11) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------|
| N2A—N1A—C20A                                                                                                                                                                                                                                                                                                       | 117.81 (11)              | N2B—N1B—C20B          | 119.34 (12) |
| C7A—N1A—C20A                                                                                                                                                                                                                                                                                                       | 129.66 (12)              | C7B—N1B—C20B          | 128.31 (12) |
| C9A—N2A—N1A                                                                                                                                                                                                                                                                                                        | 104.36 (12)              | C9B—N2B—N1B           | 104.17 (12) |
| C10A—N3A—C12A                                                                                                                                                                                                                                                                                                      | 110.04 (13)              | C10B—N3B—C12B         | 109.82 (12) |
| C2A—C1A—C6A                                                                                                                                                                                                                                                                                                        | 120.19 (15)              | C2B—C1B—C6B           | 120.61 (14) |
| C2A—C1A—H1AA                                                                                                                                                                                                                                                                                                       | 119.9                    | C2B—C1B—H1BA          | 119.7       |
| C6A—C1A—H1AA                                                                                                                                                                                                                                                                                                       | 119.9                    | C6B—C1B—H1BA          | 119.7       |
| C3A—C2A—C1A                                                                                                                                                                                                                                                                                                        | 119.69 (15)              | C3B—C2B—C1B           | 119.22 (15) |
| СЗА—С2А—Н2АА                                                                                                                                                                                                                                                                                                       | 120.2                    | C3B—C2B—H2BA          | 120.4       |
| C1A—C2A—H2AA                                                                                                                                                                                                                                                                                                       | 120.2                    | C1B—C2B—H2BA          | 120.4       |
| C4A—C3A—C2A                                                                                                                                                                                                                                                                                                        | 121.18 (15)              | C2B—C3B—C4B           | 121.55 (14) |
| C4A—C3A—C11A                                                                                                                                                                                                                                                                                                       | 119.05 (13)              | C2B—C3B—C11B          | 119.01 (13) |
| C2A—C3A—C11A                                                                                                                                                                                                                                                                                                       | 119.75 (14)              | C4B—C3B—C11B          | 119.42 (13) |
| C5A - C4A - C3A                                                                                                                                                                                                                                                                                                    | 118 95 (15)              | C3B-C4B-C5B           | 118 84 (15) |
| C5A - C4A - H4AA                                                                                                                                                                                                                                                                                                   | 120 5                    | C3B-C4B-H4BA          | 120.6       |
| $C_{3A}$ $C_{4A}$ $H_{4AA}$                                                                                                                                                                                                                                                                                        | 120.5                    | C5B-C4B-H4BA          | 120.6       |
| $C_{44}$ $C_{54}$ $C_{64}$                                                                                                                                                                                                                                                                                         | 120.5                    | C4B-C5B-C6B           | 120.0       |
| $C_{4A} = C_{5A} = C_{6A}$                                                                                                                                                                                                                                                                                         | 121.13 (15)              | C4B $C5B$ $H5BA$      | 110 5       |
| $C_{A} = C_{A} = H_{A}$                                                                                                                                                                                                                                                                                            | 119.4                    | C4D - C5D - H5DA      | 119.5       |
| C1A C6A C5A                                                                                                                                                                                                                                                                                                        | 119.4                    | C0B - C5B - H5BA      | 119.3       |
| CIA = COA = CJA                                                                                                                                                                                                                                                                                                    | 110.00(14)<br>122.26(12) | C1B - C0B - C3B       | 110.00(13)  |
| CIA = COA = C/A                                                                                                                                                                                                                                                                                                    | 123.20 (13)              | CIB - C6B - C7B       | 122.35(13)  |
| CSA - CbA - C/A                                                                                                                                                                                                                                                                                                    | 117.93 (14)              |                       | 118.81 (13) |
| NIA—C/A—C8A                                                                                                                                                                                                                                                                                                        | 105.87 (13)              | NIB-C/B-C8B           | 106.21 (12) |
| N1A—C7A—C6A                                                                                                                                                                                                                                                                                                        | 124.12 (13)              | N1B—C7B—C6B           | 124.85 (13) |
| C8A—C7A—C6A                                                                                                                                                                                                                                                                                                        | 130.00 (13)              | C8B—C7B—C6B           | 128.87 (13) |
| C7A—C8A—C9A                                                                                                                                                                                                                                                                                                        | 105.62 (13)              | C7B—C8B—C9B           | 105.04 (13) |
| С7А—С8А—Н8АА                                                                                                                                                                                                                                                                                                       | 127.2                    | C7B—C8B—H8BA          | 127.5       |
| С9А—С8А—Н8АА                                                                                                                                                                                                                                                                                                       | 127.2                    | C9B—C8B—H8BA          | 127.5       |
| N2A—C9A—C8A                                                                                                                                                                                                                                                                                                        | 111.89 (13)              | N2B—C9B—C8B           | 112.23 (13) |
| N2A—C9A—C10A                                                                                                                                                                                                                                                                                                       | 118.99 (13)              | N2B—C9B—C10B          | 118.76 (13) |
| C8AC9AC10A                                                                                                                                                                                                                                                                                                         | 129.10 (13)              | C8B—C9B—C10B          | 129.00 (14) |
| N3A—C10A—C9A                                                                                                                                                                                                                                                                                                       | 123.79 (14)              | N3B-C10B-C9B          | 125.06 (13) |
| N3A—C10A—S1A                                                                                                                                                                                                                                                                                                       | 115.43 (11)              | N3B-C10B-S1B          | 115.54 (11) |
| C9A—C10A—S1A                                                                                                                                                                                                                                                                                                       | 120.78 (11)              | C9B-C10B-S1B          | 119.37 (11) |
| C12A—C11A—S1A                                                                                                                                                                                                                                                                                                      | 110.82 (11)              | C12B—C11B—S1B         | 111.18 (11) |
| C12A—C11A—H11A                                                                                                                                                                                                                                                                                                     | 124.6                    | C12B—C11B—H11B        | 124.4       |
| S1A—C11A—H11A                                                                                                                                                                                                                                                                                                      | 124.6                    | S1B—C11B—H11B         | 124.4       |
| C11A—C12A—N3A                                                                                                                                                                                                                                                                                                      | 114.71 (13)              | C11B—C12B—N3B         | 114.62 (13) |
| C11A—C12A—C13A                                                                                                                                                                                                                                                                                                     | 126.63 (14)              | C11B—C12B—C13B        | 125.19(13)  |
| N3A—C12A—C13A                                                                                                                                                                                                                                                                                                      | 118.64 (13)              | N3B—C12B—C13B         | 120.14 (13) |
| C14A—C13A—C18A                                                                                                                                                                                                                                                                                                     | 118.52 (14)              | C14B—C13B—C18B        | 118.50 (13) |
| C14A - C13A - C12A                                                                                                                                                                                                                                                                                                 | 120.22(13)               | C14B— $C13B$ — $C12B$ | 121 88 (13) |
| C18A - C13A - C12A                                                                                                                                                                                                                                                                                                 | 121 24 (14)              | C18B— $C13B$ — $C12B$ | 119 61 (13) |
| C15A - C14A - C13A                                                                                                                                                                                                                                                                                                 | 121.12 (11)              | C15B $C14B$ $C13B$    | 120.98 (14) |
| C15A - C14A - H14B                                                                                                                                                                                                                                                                                                 | 119.4                    | C15B $C14B$ $H14A$    | 119 5       |
| C13A - C14A - H14B                                                                                                                                                                                                                                                                                                 | 119.4                    | C13B - C14B - H14A    | 119.5       |
| C14A $C15A$ $C16A$                                                                                                                                                                                                                                                                                                 | 110.5 (16)               | C14B $C15B$ $C14B$    | 110.26 (14) |
| $\cup \neg \neg \neg \neg \cup \cup \neg \neg \neg \cup \cup \cup \cup \neg \neg \cup \cup \cup \cup \cup \neg \neg \cup \cup$ | 117.05 (10)              |                       | 117.30(14)  |

| C14A—C15A—H15B                | 120.2                    | C14B—C15B—H15A                | 120.3                     |
|-------------------------------|--------------------------|-------------------------------|---------------------------|
| C16A—C15A—H15B                | 120.2                    | C16B—C15B—H15A                | 120.3                     |
| C15A—C16A—C17A                | 119.99 (14)              | C17B—C16B—C15B                | 120.22 (14)               |
| C15A—C16A—C19A                | 119.77 (15)              | C17B—C16B—C19B                | 118.43 (13)               |
| C17A—C16A—C19A                | 120.17 (14)              | C15B—C16B—C19B                | 121.34 (14)               |
| C18A—C17A—C16A                | 119.70 (14)              | C18B-C17B-C16B                | 119.62 (14)               |
| C18A - C17A - H17B            | 120.2                    | C18B— $C17B$ — $H17A$         | 120.2                     |
| $C_{16A}$ $C_{17A}$ $H_{17B}$ | 120.2                    | C16B-C17B-H17A                | 120.2                     |
| C17A - C18A - C13A            | 121.01 (15)              | C17B— $C18B$ — $C13B$         | 120.2<br>121 30 (14)      |
| C17A— $C18A$ — $H18B$         | 119.5                    | C17B $C18B$ $H18A$            | 119.3                     |
| $C_{13}A - C_{18}A - H_{18}B$ | 119.5                    | C13B $C18B$ $H18A$            | 119.3                     |
| N44 - C194 - C164             | 176.7 (2)                | N4B $C19B$ $C16B$             | 178 14 (17)               |
| $C_{25A}$ $C_{20A}$ $C_{21A}$ | 170.7(2)<br>120.03(14)   | C25B C20B C21B                | 170.14(17)<br>121.52(13)  |
| $C_{25A} = C_{20A} = C_{21A}$ | 120.95(14)<br>120.26(13) | C25B - C20B - C21B            | 121.32(13)<br>110 10 (13) |
| $C_{23}A = C_{20}A = N_{1}A$  | 120.20(13)<br>118.80(13) | $C_{23}D = C_{20}D = N1D$     | 119.10(13)<br>110.22(13)  |
| $C_{21}A = C_{20}A = N_{1}A$  | 110.60 (15)              | $C_{21}D - C_{20}D - N_{1}D$  | 119.32(13)<br>110.22(14)  |
| $C_{20A} = C_{21A} = C_{22A}$ | 119.06 (15)              | C20B - C21B - C22B            | 119.52 (14)               |
| $C_{20A} = C_{21A} = H_{21B}$ | 120.2                    | $C_{20}D = C_{21}D = H_{21}A$ | 120.5                     |
| $C_{22A}$ $C_{21A}$ $H_{21B}$ | 120.2                    | $C_{22}B = C_{21}B = H_{21}A$ | 120.5                     |
| $C_{23}A = C_{22}A = C_{21}A$ | 118.22 (15)              | $C_{23B} = C_{22B} = C_{21B}$ | 118.09 (15)               |
| $C_{23}A - C_{22}A - H_{22}B$ | 120.9                    | $C_{23}B - C_{22}B - H_{22}A$ | 121.0                     |
| C2IA—C22A—H22B                | 120.9                    | C21B—C22B—H22A                | 121.0                     |
| F1A—C23A—C22A                 | 118.52 (15)              | F1B—C23B—C22B                 | 118.39 (15)               |
| FIA—C23A—C24A                 | 118.24 (15)              | F1B—C23B—C24B                 | 118.19 (14)               |
| C22A—C23A—C24A                | 123.24 (15)              | C22B—C23B—C24B                | 123.42 (14)               |
| C23A—C24A—C25A                | 118.27 (15)              | C23B—C24B—C25B                | 118.34 (14)               |
| C23A—C24A—H24B                | 120.9                    | C23B—C24B—H24A                | 120.8                     |
| C25A—C24A—H24B                | 120.9                    | C25B—C24B—H24A                | 120.8                     |
| C20A—C25A—C24A                | 119.63 (14)              | C24B—C25B—C20B                | 119.20 (14)               |
| C20A—C25A—H25B                | 120.2                    | C24B—C25B—H25A                | 120.4                     |
| C24A—C25A—H25B                | 120.2                    | C20B—C25B—H25A                | 120.4                     |
| C7A—N1A—N2A—C9A               | -0.46 (16)               | C7B—N1B—N2B—C9B               | 0.54 (16)                 |
| C20A—N1A—N2A—C9A              | 174.20 (12)              | C20B—N1B—N2B—C9B              | -179.95 (12)              |
| C6A—C1A—C2A—C3A               | -0.9 (2)                 | C6B—C1B—C2B—C3B               | 0.7 (2)                   |
| C1A—C2A—C3A—C4A               | -1.4 (2)                 | C1B—C2B—C3B—C4B               | 0.0 (2)                   |
| C1A—C2A—C3A—Cl1A              | 176.82 (12)              | C1B—C2B—C3B—C11B              | -178.65 (12)              |
| C2A—C3A—C4A—C5A               | 2.3 (2)                  | C2B—C3B—C4B—C5B               | -0.3 (2)                  |
| Cl1A—C3A—C4A—C5A              | -175.97 (12)             | Cl1B—C3B—C4B—C5B              | 178.40 (12)               |
| C3A—C4A—C5A—C6A               | -0.9 (2)                 | C3B—C4B—C5B—C6B               | -0.2 (2)                  |
| C2A—C1A—C6A—C5A               | 2.3 (2)                  | C2B—C1B—C6B—C5B               | -1.1(2)                   |
| C2A—C1A—C6A—C7A               | -178.81 (14)             | C2B—C1B—C6B—C7B               | -178.93 (14)              |
| C4A—C5A—C6A—C1A               | -1.4 (2)                 | C4B—C5B—C6B—C1B               | 0.8 (2)                   |
| C4A—C5A—C6A—C7A               | 179.62 (14)              | C4B—C5B—C6B—C7B               | 178.76 (14)               |
| N2A—N1A—C7A—C8A               | 0.16 (17)                | N2B—N1B—C7B—C8B               | -0.64 (16)                |
| C20A—N1A—C7A—C8A              | -173.70 (14)             | C20B—N1B—C7B—C8B              | 179.92 (13)               |
| N2A—N1A—C7A—C6A               | 179.59 (13)              | N2B—N1B—C7B—C6B               | 176.52 (13)               |
| C20A—N1A—C7A—C6A              | 5.7 (2)                  | C20B—N1B—C7B—C6B              | -2.9 (2)                  |
| C1A—C6A—C7A—N1A               | 37.1 (2)                 | C1B—C6B—C7B—N1B               | -36.7 (2)                 |
|                               | × /                      |                               | · 、 / /                   |

| C5A - C6A - C7A - N1A                                 | -143.99(15)    | C5B—C6B—C7B—N1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 145 41 (14)  |
|-------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| C1A - C6A - C7A - C8A                                 | -143.60(17)    | C1B - C6B - C7B - C8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139.76(16)   |
| $C_{5A}$ $C_{6A}$ $C_{7A}$ $C_{8A}$                   | 353(2)         | $C_{5B}$ $C_{6B}$ $C_{7B}$ $C_{8B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -381(2)      |
| $\frac{C3A}{C7A} = \frac{C7A}{C8A} = \frac{C8A}{C9A}$ | 55.5(2)        | N1P C7P C8P C0P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44(16)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | -170, 10, (15) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17656(14)   |
| COA - C/A - COA - C9A                                 | -1/9.19(13)    | $\begin{array}{c} COB \\ \hline \\ COB \\ \hline C$ | -170.30(14)  |
| NIA = N2A = C9A = C8A                                 | 0.39(17)       | N1D - N2D - C9D - C0D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.24(10)    |
| NIA - NZA - C9A - C10A                                | -1/8.03(12)    | NIB-N2B-C9B-C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1/9.58(12)  |
| C/A—C8A—C9A—N2A                                       | -0.51 (18)     | C/B—C8B—C9B—N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.13 (17)   |
| C/A—C8A—C9A—C10A                                      | 177.94 (15)    | C/B—C8B—C9B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.12 (14)  |
| C12A—N3A—C10A—C9A                                     | -179.85 (13)   | C12B—N3B—C10B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -176.26 (13) |
| C12A—N3A—C10A—S1A                                     | -0.36 (16)     | C12B—N3B—C10B—S1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.59 (16)    |
| N2A—C9A—C10A—N3A                                      | 163.76 (14)    | N2B—C9B—C10B—N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170.87 (14)  |
| C8A—C9A—C10A—N3A                                      | -14.6 (3)      | C8B—C9B—C10B—N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -8.3 (2)     |
| N2A—C9A—C10A—S1A                                      | -15.70 (19)    | N2B-C9B-C10B-S1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6.90 (18)   |
| C8A—C9A—C10A—S1A                                      | 165.95 (13)    | C8B—C9B—C10B—S1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.89 (12)  |
| C11A—S1A—C10A—N3A                                     | 0.31 (12)      | C11B—S1B—C10B—N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.16 (12)   |
| C11A—S1A—C10A—C9A                                     | 179.81 (13)    | C11B—S1B—C10B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176.82 (12)  |
| C10A—S1A—C11A—C12A                                    | -0.15 (12)     | C10B—S1B—C11B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.34 (12)    |
| S1A—C11A—C12A—N3A                                     | -0.01 (17)     | S1B—C11B—C12B—N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48 (17)    |
| S1A—C11A—C12A—C13A                                    | 178.17 (12)    | S1B-C11B-C12B-C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -176.84 (11) |
| C10A—N3A—C12A—C11A                                    | 0.24 (18)      | C10B—N3B—C12B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.32 (18)   |
| C10A—N3A—C12A—C13A                                    | -178.10(13)    | C10B—N3B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 176.15 (12)  |
| C11A—C12A—C13A—C14A                                   | -177.63(16)    | C11B—C12B—C13B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -163.03(15)  |
| N3A - C12A - C13A - C14A                              | 0.5 (2)        | N3B - C12B - C13B - C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.8 (2)     |
| C11A - C12A - C13A - C18A                             | 0.8(2)         | C11B - C12B - C13B - C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.9(2)      |
| N3A = C12A = C13A = C18A                              | 178 91 (14)    | N3B - C12B - C13B - C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -15931(13)   |
| $C_{18A}$ $C_{13A}$ $C_{14A}$ $C_{15A}$               | -0.8(3)        | $\begin{array}{c} C18B \\ C13B \\ C14B \\ C15B \\ C1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -12(2)       |
| $C_{12A} = C_{13A} = C_{14A} = C_{15A}$               | 177.70(16)     | $C_{12B}$ $C_{13B}$ $C_{14B}$ $C_{15B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2(2)       |
| $C_{12A} = C_{13A} = C_{14A} = C_{15A} = C_{16A}$     | -0.5(2)        | $C_{12}D_{-}C_{13}D_{-}C_{14}D_{-}C_{15}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{-}C_{16}D_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179.08(14)   |
| C14A = C15A = C16A                                    | -0.3(3)        | C13D - C14D - C15D - C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0(2)       |
| C14A = C15A = C16A = C17A                             | 1.3(3)         | C14B = C15B = C10B = C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8(2)       |
| C14A - C15A - C16A - C19A                             | -1/5./2(1/)    | C14B— $C15B$ — $C16B$ — $C19B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1/9.99 (15) |
| C15A - C16A - C17A - C18A                             | -0.8(2)        | C15B— $C16B$ — $C1/B$ — $C18B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.5 (2)     |
| C19A—C16A—C17A—C18A                                   | 176.16 (15)    | C19B—C16B—C17B—C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1/9.70(15)  |
| C16A—C17A—C18A—C13A                                   | -0.4 (2)       | C16B—C17B—C18B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.7 (2)     |
| C14A—C13A—C18A—C17A                                   | 1.2 (2)        | C14B—C13B—C18B—C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6 (2)      |
| C12A—C13A—C18A—C17A                                   | -177.22 (14)   | C12B—C13B—C18B—C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -179.31 (14) |
| N2A—N1A—C20A—C25A                                     | -124.58 (15)   | N2B—N1B—C20B—C25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129.87 (15)  |
| C7A—N1A—C20A—C25A                                     | 49.0 (2)       | C7B—N1B—C20B—C25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.7 (2)    |
| N2A—N1A—C20A—C21A                                     | 54.44 (18)     | N2B—N1B—C20B—C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -52.93 (19)  |
| C7A—N1A—C20A—C21A                                     | -131.98 (16)   | C7B—N1B—C20B—C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.48 (16)  |
| C25A—C20A—C21A—C22A                                   | -1.0 (2)       | C25B—C20B—C21B—C22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9 (3)      |
| N1A—C20A—C21A—C22A                                    | 179.96 (14)    | N1B-C20B-C21B-C22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -175.22 (15) |
| C20A—C21A—C22A—C23A                                   | 0.2 (3)        | C20B—C21B—C22B—C23B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3 (3)      |
| C21A—C22A—C23A—F1A                                    | -179.16 (15)   | C21B—C22B—C23B—F1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 176.88 (16)  |
| C21A—C22A—C23A—C24A                                   | 0.2 (3)        | C21B—C22B—C23B—C24B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.3 (3)     |
| F1A—C23A—C24A—C25A                                    | 179.68 (14)    | F1B-C23B-C24B-C25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -178.21 (15) |
| C22A—C23A—C24A—C25A                                   | 0.3 (3)        | C22B—C23B—C24B—C25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0 (3)      |
| C21A—C20A—C25A—C24A                                   | 1.6 (2)        | C23B—C24B—C25B—C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3 (2)      |

| N1A—C20A—C25A—C24A  | -179.45 (13) | C21B—C20B—C25B—C24B | -3.3 (2)    |
|---------------------|--------------|---------------------|-------------|
| C23A—C24A—C25A—C20A | -1.2 (2)     | N1B-C20B-C25B-C24B  | 173.87 (14) |

## Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1A-C6A and C1B-C6B rings, respectively.

| D—H···A                                                  | D—H  | H···A | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------------------|------|-------|--------------|------------|
| $C5A$ —H5 $AA$ ····F1 $A^{i}$                            | 0.93 | 2.39  | 3.149 (2)    | 138        |
| C8B—H8BA···F1B <sup>i</sup>                              | 0.93 | 2.42  | 3.283 (2)    | 154        |
| C17B—H17A····N4 $A^{ii}$                                 | 0.93 | 2.54  | 3.419 (2)    | 159        |
| C17 <i>A</i> —H17 <i>B</i> ···N4 <i>B</i> <sup>ii</sup>  | 0.93 | 2.58  | 3.453 (2)    | 156        |
| C25 <i>B</i> —H25 <i>A</i> ···N2 <i>A</i> <sup>iii</sup> | 0.93 | 2.53  | 3.457 (2)    | 175        |
| $C24A$ — $H24B$ ···· $Cg1^{iv}$                          | 0.93 | 2.96  | 3.7811 (18)  | 148        |
| C21 <i>B</i> —H21 <i>A</i> ··· <i>C</i> g2 <sup>v</sup>  | 0.93 | 2.97  | 3.6423 (19)  | 131        |
|                                                          |      |       |              |            |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*+2, -*y*+1, -*z*; (v) -*x*+2, -*y*, -*z*.