

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2-Methoxy-5-methylphenyl)-2*H*benzotriazole

Ming-Jen Chen,^a Chen-Yu Li,^b Chen-Yen Tsai^b and Bao-Tsan Ko^b*

^aDepartment of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung Hsien 433, Taiwan, and ^bDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan Correspondence e-mail: btko@cycu.edu.tw

Received 27 July 2010; accepted 5 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.136; data-to-parameter ratio = 10.2.

In the title molecule, $C_{14}H_{13}N_3O$, the dihedral angle between the mean planes of the benzotriazole ring system and the benzene ring is 57.8 (2)°.

Related literature

For related structures, see: Li *et al.* (2009, 2010); Liu *et al.* (2009).

Experimental

Crystal data C₁₄H₁₃N₃O

 $M_r = 239.27$

Monoclinic, $P2_1$ a = 7.1604 (2) Å b = 8.2560 (2) Å c = 11.0342 (3) Å $\beta = 103.450$ (1)° V = 634.41 (3) Å³

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.962, T_{max} = 0.986$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 & 1 \text{ restraint} \\ wR(F^2) &= 0.136 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 0.17 \text{ e } \text{ Å}^{-3} \\ 1674 \text{ reflections} & \Delta\rho_{\text{min}} = -0.15 \text{ e } \text{ Å}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC99–2113-M-033– 007-MY2) and in part from the CYCU Distinctive Research Area project in the Chung Yuan Christian University, Taiwan (CYCU–98–CR–CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5100).

References

Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, J.-Y., Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2475. Li, C.-Y., Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2010). Acta Cryst. E66, o726. Liu, Y.-C., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, o2058. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Z = 2

Mo $K\alpha$ radiation

 $0.48 \times 0.32 \times 0.17 \text{ mm}$

6057 measured reflections

1674 independent reflections

1401 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.021$

supporting information

Acta Cryst. (2010). E66, o2279 [https://doi.org/10.1107/S1600536810031363]

2-(2-Methoxy-5-methylphenyl)-2H-benzotriazole

Ming-Jen Chen, Chen-Yu Li, Chen-Yen Tsai and Bao-Tsan Ko

S1. Comment

In terms of coordination chemistry, the benzotriazole-phenolate (BTP) group can provide the *N*, *O*-bidentate chelation to stabilize transition metal or main group metal complexes. Therefore, our group is focused on the design and synthesis of the functionalized benzotriazole-phenolate ligand derived from 4-methyl-2-(2*H*-benzotriazol-2-yl)phenol (^{*Me*}BTP-H). For instance, our group has successfully synthesized and structural characterized the amino-phenolate ligand *via* a Mannich condensation derived from ^{*Me*}BTP-H (Li *et al.*, 2009). Most recently, we also reported the synthesis and crystal structure of the salicylaldehyde group substituted benzotriazole derivative (Li *et al.*, 2010). In order to develop more useful ligands originated from BTP derivatives, we report herein the synthesis and crystal structure of the title compound, (**I**), a potential ligand for the preparation of orthometallated Ir^{III} or Pd^{II} complexes.

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the mean planes of the benzotriazole unit and the benzene ring of the 2-methoxy-5-methylphenyl group is 57.8 (2)°, which is larger than that found in the crystal structure of 2-(2H-Benzotriazol-2-yl)-4-methylphenyl diphenylphosphinate (Liu *et al.*, 2009).

S2. Experimental

The title compound (I) was synthesized by the procedure shown in Fig. 2. A mixture of 4-methyl-2-(2*H*-benzotriazol-2yl)phenol (2.48 g, 10.0 mmol) and potassium carbonate (1.40 g, 10.0 mmol) in THF (30 ml) was stirred at room temperature for 0.5 h. Dimethyl sulfate (1.90 g, 15.0 mmol) was then added and the resulting mixture was refluxed for another 24 h. The mixture was filtered and the filtrate was dried *in vacuo* giving white powder. The white powder was redissolved in hexane and cooled to 253 K to give white crystalline solids. Colourless crystals were obtained from the saturated Et₂O solution overnight. ¹H NMR (CDCl₃, p.p.m.): δ 7.01–7.97 (7*H*, m, Ph*H*), 3.84 (3*H*, s, OC*H*₃), 2.36 (3*H*, s, *CH*₃).

S3. Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å with $U_{iso}(H) = 1.2 U_{eq}(C)$ for phenyl hydrogen; 0.96 Å with $U_{iso}(H) = 1.5 U_{eq}(C)$ for the CH₃ groups.

The molecular structure of **I** with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The synthetic procedure of I.

2-(2-Methoxy-5-methylphenyl)-2H-benzotriazole

Crystal data

C₁₄H₁₃N₃O $M_r = 239.27$ Monoclinic, P2₁ Hall symbol: P 2yb a = 7.1604 (2) Å b = 8.2560 (2) Å c = 11.0342 (3) Å $\beta = 103.450$ (1)° V = 634.41 (3) Å³ Z = 2 F(000) = 252 $D_x = 1.253 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3727 reflections $\theta = 2.9-28.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KColumnar, colourless $0.48 \times 0.32 \times 0.17 \text{ mm}$ Data collection

Duiu conection	
Bruker APEXII CCD diffractometer	6057 measured reflections 1674 independent reflections
Radiation source: fine-focus sealed tube	1401 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.021$
Detector resolution: 8.3333 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
φ and ω scans	$h = -8 \rightarrow 9$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Bruker, 2008)	$l = -14 \rightarrow 14$
$T_{\min} = 0.962, \ T_{\max} = 0.986$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0703P)^2 + 0.098P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
1674 reflections	$(\Delta/\sigma)_{ m max} < 0.001$
164 parameters	$\Delta ho_{ m max} = 0.17$ e Å ⁻³
1 restraint	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick
direct methods	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.067 (13)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	Y	Ζ	$U_{ m iso}^{*}/U_{ m eq}$	
0	0.4845 (3)	0.6862 (5)	0.1130 (2)	0.1062 (12)	
N1	0.3698 (3)	0.9600 (4)	0.2453 (2)	0.0707 (7)	
N2	0.2199 (3)	0.8702 (3)	0.19219 (18)	0.0547 (5)	
N3	0.0939 (3)	0.8349 (3)	0.25880 (19)	0.0610 (6)	
C1	0.3261 (4)	0.7274 (4)	0.0259 (2)	0.0661 (8)	
C2	0.1880 (4)	0.8191 (4)	0.0643 (2)	0.0551 (6)	
C3	0.0210 (4)	0.8665 (4)	-0.0174 (2)	0.0563 (6)	
H3B	-0.0689	0.9279	0.0113	0.068*	
C4	-0.0144 (4)	0.8234 (4)	-0.1425 (2)	0.0602 (7)	
C5	0.1215 (5)	0.7297 (4)	-0.1801 (2)	0.0668 (8)	
H5A	0.0995	0.6976	-0.2630	0.080*	
C6	0.2882 (5)	0.6826 (5)	-0.0987 (3)	0.0720 (8)	
H6A	0.3768	0.6198	-0.1274	0.086*	
C7	0.3395 (4)	0.9863 (4)	0.3605 (2)	0.0638 (7)	

C8	0.4473 (6)	1.0761 (6)	0.4615 (3)	0.0895 (11)	
H8A	0.5613	1.1274	0.4574	0.107*	
C9	0.3761 (6)	1.0840 (5)	0.5651 (3)	0.0949 (13)	
H9A	0.4439	1.1419	0.6336	0.114*	
C10	0.2044 (8)	1.0082 (6)	0.5726 (3)	0.1011 (13)	
H10A	0.1620	1.0180	0.6458	0.121*	
C11	0.0972 (7)	0.9208 (6)	0.4769 (3)	0.0900 (11)	
H11A	-0.0172	0.8715	0.4825	0.108*	
C12	0.1694 (4)	0.9090 (4)	0.3677 (2)	0.0609 (7)	
C13	-0.1948 (5)	0.8824 (5)	-0.2321 (3)	0.0846 (10)	
H13A	-0.2701	0.9448	-0.1875	0.127*	
H13B	-0.2683	0.7911	-0.2707	0.127*	
H13C	-0.1605	0.9487	-0.2951	0.127*	
C14	0.6487 (5)	0.6546 (7)	0.0835 (4)	0.0985 (14)	
H14A	0.7439	0.6277	0.1575	0.148*	
H14B	0.6896	0.7481	0.0448	0.148*	
H14C	0.6321	0.5649	0.0266	0.148*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0	0.0727 (13)	0.190 (4)	0.0590 (11)	0.0505 (19)	0.0224 (10)	0.0159 (18)
N1	0.0598 (13)	0.096 (2)	0.0548 (12)	-0.0144 (13)	0.0095 (10)	-0.0005 (13)
N2	0.0544 (11)	0.0688 (14)	0.0417 (9)	-0.0028 (10)	0.0126 (8)	0.0001 (9)
N3	0.0703 (13)	0.0706 (14)	0.0464 (10)	-0.0090 (12)	0.0222 (9)	-0.0029 (10)
C1	0.0627 (15)	0.089 (2)	0.0502 (13)	0.0096 (16)	0.0203 (11)	0.0099 (14)
C2	0.0568 (13)	0.0702 (16)	0.0403 (10)	-0.0049 (12)	0.0154 (9)	-0.0003 (11)
C3	0.0576 (13)	0.0615 (15)	0.0495 (12)	-0.0047 (12)	0.0122 (10)	-0.0021 (11)
C4	0.0687 (15)	0.0617 (15)	0.0475 (11)	-0.0131 (13)	0.0080 (10)	0.0025 (12)
C5	0.089 (2)	0.0702 (17)	0.0435 (12)	-0.0138 (16)	0.0213 (12)	-0.0059 (12)
C6	0.085 (2)	0.084 (2)	0.0560 (14)	0.0083 (17)	0.0333 (14)	-0.0004 (15)
C7	0.0725 (16)	0.0697 (17)	0.0443 (12)	-0.0040 (14)	0.0037 (11)	0.0046 (12)
C8	0.094 (2)	0.103 (3)	0.0595 (17)	-0.018 (2)	-0.0068 (15)	-0.0009 (19)
C9	0.134 (3)	0.094 (3)	0.0441 (14)	-0.012 (3)	-0.0043 (17)	-0.0044 (16)
C10	0.166 (4)	0.094 (3)	0.0461 (15)	-0.013 (3)	0.0296 (19)	-0.0035 (16)
C11	0.129 (3)	0.094 (2)	0.0549 (16)	-0.021 (2)	0.0374 (18)	-0.0089 (17)
C12	0.0783 (17)	0.0611 (15)	0.0427 (11)	-0.0037 (13)	0.0132 (11)	0.0039 (11)
C13	0.090 (2)	0.095 (3)	0.0565 (15)	-0.009 (2)	-0.0091 (14)	-0.0017 (17)
C14	0.0672 (19)	0.143 (4)	0.091 (2)	0.017 (2)	0.0301 (17)	0.015 (3)

Geometric parameters (Å, °)

O-C14	1.317 (4)	C7—C12	1.393 (4)	
0—C1	1.348 (3)	C7—C8	1.410 (4)	
N1—N2	1.324 (3)	C8—C9	1.357 (5)	
N1—C7	1.355 (4)	C8—H8A	0.9300	
N2—N3	1.322 (3)	C9—C10	1.399 (6)	
N2—C2	1.439 (3)	C9—H9A	0.9300	

supporting information

N3—C12	1.345 (3)	C10-C11	1.360 (6)
C1—C2	1.387 (4)	C10—H10A	0.9300
C1—C6	1.389 (4)	C11—C12	1.421 (4)
C2—C3	1.377 (4)	C11—H11A	0.9300
C3—C4	1.391 (4)	C13—H13A	0.9600
C3—H3B	0.9300	C13—H13B	0.9600
C4—C5	1.380 (4)	C13—H13C	0.9600
C4-C13	1 513 (4)	C14—H14A	0.9600
C5-C6	1.372(4)	C14—H14B	0.9600
C5—H5A	0.9300	C14—H14C	0.9600
C6 H6A	0.9300		0.9000
Co-mon	0.9500		
C14—O—C1	121.7 (2)	C9—C8—C7	116.6 (4)
N2—N1—C7	102.4 (2)	C9—C8—H8A	121.7
N3—N2—N1	1177(2)	C7—C8—H8A	121.7
N3—N2—C2	120.5(2)	C8 - C9 - C10	122.5(3)
N1_N2_C2	120.3(2) 121.7(2)	C8 - C9 - H9A	1122.5 (5)
$N_2 N_3 C_{12}$	121.7(2) 102.2(2)	C_{10} C_{9} H_{9A}	118.8
$\begin{array}{c} \mathbf{N}_{2} - \mathbf{N}_{3} - \mathbf{C}_{12} \\ \mathbf{O}_{1} - \mathbf{C}_{1} \\ \mathbf{O}_{2} \end{array}$	102.2(2) 117.5(2)	$C_{10} = C_{10} = C_{10}$	122 A (A)
0 - C1 - C2	117.3(2) 125.2(3)	$C_{11} = C_{10} = C_{10}$	122.4 (4)
$C_{1}^{2} = C_{1}^{2} = C_{0}^{2}$	123.2(3) 117.3(3)	$C_1 = C_1 = H_1 \otimes A$	110.0
$C_2 = C_1 = C_0$	117.3(3)	C_{10} C_{11} C_{12}	116.0
$C_2 = C_2 = C_1$	121.9(2) 118.2(2)	C10 - C11 - C12	110.4 (4)
$C_3 = C_2 = N_2$	110.3(2)		121.8
C1 = C2 = N2	119.8 (2)	CI2—CII—HIIA	121.8
$C_2 = C_3 = C_4$	120.5 (3)	N3-C12-C7	109.4 (2)
С2—С3—Н3В	119.8	N3-C12-C11	129.7 (3)
C4—C3—H3B	119.8	C7—C12—C11	120.8 (3)
C5—C4—C3	117.6 (3)	C4—C13—H13A	109.5
C5—C4—C13	122.6 (3)	C4—C13—H13B	109.5
C3—C4—C13	119.8 (3)	H13A—C13—H13B	109.5
C6—C5—C4	121.9 (2)	C4—C13—H13C	109.5
С6—С5—Н5А	119.0	H13A—C13—H13C	109.5
C4—C5—H5A	119.0	H13B—C13—H13C	109.5
C5—C6—C1	120.8 (3)	O-C14-H14A	109.5
С5—С6—Н6А	119.6	O-C14-H14B	109.5
C1—C6—H6A	119.6	H14A—C14—H14B	109.5
N1—C7—C12	108.2 (2)	O-C14-H14C	109.5
N1—C7—C8	130.4 (3)	H14A—C14—H14C	109.5
С12—С7—С8	121.4 (3)	H14B—C14—H14C	109.5
C7—N1—N2—N3	0.3 (3)	C13—C4—C5—C6	177.3 (3)
C7—N1—N2—C2	177.1 (3)	C4—C5—C6—C1	0.3 (5)
N1—N2—N3—C12	-0.2 (3)	O-C1-C6-C5	179.4 (3)
C2—N2—N3—C12	-177.0 (2)	C2—C1—C6—C5	0.9 (5)
C14—O—C1—C2	-154.6 (4)	N2—N1—C7—C12	-0.3 (3)
C14—O—C1—C6	26.9 (7)	N2—N1—C7—C8	-178.9 (4)
O-C1-C2-C3	-179.7 (3)	N1—C7—C8—C9	178.0 (4)
C6—C1—C2—C3	-1.0 (5)	C12—C7—C8—C9	-0.4(5)

O-C1-C2-N2	1.8 (4)	C7—C8—C9—C10	-0.3 (6)
C6-C1-C2-N2	-179.5 (3)	C8—C9—C10—C11	0.3 (7)
N3—N2—C2—C3	56.9 (4)	C9—C10—C11—C12	0.4 (7)
N1—N2—C2—C3	-119.8 (3)	N2—N3—C12—C7	0.0 (3)
N3—N2—C2—C1	-124.6 (3)	N2—N3—C12—C11	177.5 (4)
N1—N2—C2—C1	58.8 (4)	N1—C7—C12—N3	0.2 (4)
C1—C2—C3—C4	-0.1 (4)	C8—C7—C12—N3	178.9 (3)
N2-C2-C3-C4	178.5 (3)	N1—C7—C12—C11	-177.6 (3)
C2—C3—C4—C5	1.2 (4)	C8—C7—C12—C11	1.1 (5)
C2—C3—C4—C13	-177.5 (3)	C10-C11-C12-N3	-178.4 (4)
C3—C4—C5—C6	-1.3 (5)	C10-C11-C12-C7	-1.1 (6)