metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{1-[(4-methylphenyl)iminomethyl]-2naphtholato- $\kappa^2 N$,O}copper(II)

Peihua Zhu,* Hongyan Wang, Yan Wang, Yanli Chen and **Qin Wei**

School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China: Correspondence e-mail: chm_zhuph@ujn.edu.cn

Received 21 July 2010; accepted 1 August 2010

Key indicators: single-crystal X-ray study: T = 293 K: mean σ (C–C) = 0.003 Å: R factor = 0.032; wR factor = 0.076; data-to-parameter ratio = 15.3.

In the title complex, $[Cu(C_{18}H_{14}NO)_2]$, the Cu^{II} ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment. The 1-[(4-methylphenyl)iminomethyl]-2-naphtholate ligands are coordinated in a trans arrangement with respect to the N and O atoms.

Related literature

For background information and applications of Schiff base complexes, see: Adsule et al. (2006); Barton et al. (1979); Cohen et al. (1964); Henrici-Olive & Olive (1984); Erxleben & Schumacher (2001). For related structures, see: Kani et al. (1998); Lo et al. (1997); Ünver (2002).

Experimental

Crystal data $[Cu(C_{18}H_{14}NO)_2]$ $M_r = 584.14$

Triclinic, $P\overline{1}$ a = 7.0948 (6) Å

b = 10.2335 (7) Å	Z = 1
c = 10.5784 (10) Å	Mo $K\alpha$ radiation
$\alpha = 104.559 \ (7)^{\circ}$	$\mu = 0.81 \text{ mm}^{-1}$
$\beta = 98.728 \ (7)^{\circ}$	T = 293 K
$\gamma = 102.573 \ (7)^{\circ}$	$0.25 \times 0.12 \times 0.11 \text{ mm}$
$V = 708.01 (10) \text{ Å}^3$	
Data collection Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.824, T_{max} = 0.916$	7213 measured reflections 2878 independent reflections 2395 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	188 parameters
$wR(F^2) = 0.076$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
2878 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O	1.8837 (12)	Cu1-N	1.9848 (14)
O ⁱ -Cu1-O	180	O-Cu1-N	90.42 (5)
O ⁱ -Cu1-N	89.58 (5)	$N-Cu1-N^{i}$	180

Symmetry code: (i) -x + 1, -y, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by Shandong Province (2007BS02016).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5095).

References

Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.

- Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051
- Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039-3046.
- Henrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide. Berlin: Springer.
- Kani, Y., Ohba, S., Ishikawa, T., Sakamoto, M. & Nishida, Y. (1998). Acta Cryst. C54, 191-193.
- Lo, J.-M., Yao, H.-H., Liao, F.-L., Wang, S.-L. & Lu, T.-H. (1997). Acta Cryst. C53, 848-850.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ünver, H. (2002). J. Mol. Struct. 641, 35-40.

supporting information

Acta Cryst. (2010). E66, m1076 [https://doi.org/10.1107/S1600536810030667] Bis{1-[(4-methylphenyl)iminomethyl]-2-naphtholato-κ²N,O}copper(II) Peihua Zhu, Hongyan Wang, Yan Wang, Yanli Chen and Qin Wei

S1. Comment

Schiff bases and their metal complexes have aroused considerable attention, mainly because of their interesting structures and potential applications, *e.g.* catalytic activity (Henrici-Olive & Olive *et al.*, 1984), photochromic properties (Cohen *et al.*, 1964), biological activity (Barton *et al.*, 1979). Additionally, copper (II) complexes of Schiff bases have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumacher, 2001), and their cellular proteasome activity (Adsule *et al.*, 2006). Herein we report the synthesis and crystal structure of the title complex.

The molecular structure of the title complex is shown in Fig. 1. The Cu^{II} ion is coordinated by two O atoms and two N atoms of two bidentate schiff base ligands to form a square-planar geometry in a *trans* arrangement. The Cu—N and Cu —O bond lengths agree with those in related complexes (e.g. Kani *et al.*, 1998; Lo *et al.*, 1997; Ünver, 2002).

S2. Experimental

Copper(II) acetate hydrate (0.199 g, 0.001 mol) in methanol (50 ml) and *N*-(*p*-Tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile(75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Black crystals started appearing after 3 days and were then collected, 0.621 g (79%) yields.

S3. Refinement

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic H atoms and C—H = 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for methyl H atoms.

Figure 1

The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms (symmetry code: (A) -x+1, -y, -z).

Bis{1-[(4-methylphenyl)iminomethyl]-2-naphtholato- $\kappa^2 N, O$ }copper(II)

Crystal data	
$\begin{bmatrix} Cu(C_{18}H_{14}NO)_{2} \end{bmatrix}$ $M_{r} = 584.14$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.0948 (6) Å b = 10.2335 (7) Å c = 10.5784 (10) Å a = 104.559 (7)° $\beta = 98.728$ (7)° $\gamma = 102.573$ (7)° V = 708.01 (10) Å ³	Z = 1 F(000) = 303 $D_x = 1.370 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1252 reflections $\theta = 2.5-23.9^{\circ}$ $\mu = 0.81 \text{ mm}^{-1}$ T = 293 K Block, black $0.25 \times 0.12 \times 0.11 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{\min} = 0.824, T_{\max} = 0.916$	7213 measured reflections 2878 independent reflections 2395 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.4^\circ$, $\theta_{min} = 3.2^\circ$ $h = -8 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.01	H-atom parameters constrained
2878 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0431P)^2]$
188 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.24 \ m e \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.5000	0.0000	0.0000	0.03685 (13)
0	0.63653 (18)	-0.08439 (14)	0.10934 (13)	0.0465 (3)
Ν	0.3572 (2)	0.06231 (15)	0.14161 (14)	0.0353 (3)
С	0.2582 (3)	0.17043 (18)	0.14181 (17)	0.0348 (4)
C1	0.3384 (3)	0.00334 (19)	0.23682 (18)	0.0374 (4)
H1	0.2561	0.0326	0.2922	0.045*
C2	0.5826 (3)	-0.13173 (18)	0.20525 (18)	0.0380 (4)
C5	0.0594 (3)	0.14665 (19)	0.14435 (19)	0.0403 (4)
Н5	-0.0138	0.0584	0.1419	0.048*
C6	-0.0300 (3)	0.2550 (2)	0.15063 (19)	0.0464 (5)
H6	-0.1636	0.2380	0.1525	0.056*
C7	0.3611 (3)	0.30083 (19)	0.13974 (19)	0.0443 (5)
H7	0.4929	0.3167	0.1332	0.053*
C8	0.3767 (3)	-0.16156 (19)	0.37004 (18)	0.0397 (4)
С9	0.0726 (3)	0.3872 (2)	0.15411 (19)	0.0459 (5)
C10	0.4283 (3)	-0.09993 (19)	0.26615 (18)	0.0366 (4)
C12	0.2192 (3)	-0.1408 (2)	0.43269 (19)	0.0481 (5)
H12	0.1454	-0.0824	0.4091	0.058*
C14	0.4870 (3)	-0.24967 (19)	0.41041 (19)	0.0452 (5)
C15	0.2694 (3)	0.4076 (2)	0.1473 (2)	0.0493 (5)
H15	0.3417	0.4952	0.1478	0.059*
C17	-0.0240 (4)	0.5069 (2)	0.1698 (3)	0.0680 (7)
H17A	-0.1612	0.4714	0.1253	0.102*
H17B	0.0411	0.5744	0.1308	0.102*
H17C	-0.0132	0.5507	0.2631	0.102*

C18	0.6458 (3)	-0.2737 (2)	0.3493 (2)	0.0530 (5)	
H18	0.7205	-0.3293	0.3779	0.064*	
C19	0.1725 (3)	-0.2047 (2)	0.5277 (2)	0.0595 (6)	
H19	0.0684	-0.1889	0.5678	0.071*	
C20	0.6920 (3)	-0.2190 (2)	0.2516 (2)	0.0493 (5)	
H20	0.7966	-0.2380	0.2136	0.059*	
C21	0.2798 (4)	-0.2931 (2)	0.5642 (2)	0.0651 (6)	
H21	0.2455	-0.3379	0.6270	0.078*	
C23	0.4339 (4)	-0.3138 (2)	0.5084 (2)	0.0602 (6)	
H23	0.5067	-0.3714	0.5350	0.072*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03127 (19)	0.0423 (2)	0.0432 (2)	0.01461 (14)	0.01515 (13)	0.01531 (15)
0	0.0397 (7)	0.0623 (9)	0.0530 (8)	0.0251 (7)	0.0218 (6)	0.0273 (7)
Ν	0.0314 (8)	0.0371 (8)	0.0410 (9)	0.0132 (7)	0.0112 (6)	0.0126 (7)
С	0.0350 (9)	0.0366 (10)	0.0338 (10)	0.0135 (8)	0.0105 (7)	0.0072 (8)
C1	0.0311 (9)	0.0421 (11)	0.0391 (11)	0.0110 (8)	0.0121 (8)	0.0083 (9)
C2	0.0334 (10)	0.0379 (10)	0.0413 (11)	0.0095 (8)	0.0072 (8)	0.0100 (9)
C5	0.0370 (10)	0.0388 (10)	0.0472 (11)	0.0122 (8)	0.0149 (8)	0.0110 (9)
C6	0.0369 (10)	0.0510 (12)	0.0538 (12)	0.0192 (9)	0.0159 (9)	0.0098 (10)
C7	0.0342 (10)	0.0436 (11)	0.0559 (13)	0.0101 (9)	0.0109 (8)	0.0157 (10)
C8	0.0415 (10)	0.0365 (10)	0.0368 (10)	0.0058 (8)	0.0065 (8)	0.0086 (8)
C9	0.0523 (12)	0.0435 (12)	0.0434 (11)	0.0232 (10)	0.0105 (9)	0.0067 (9)
C10	0.0349 (10)	0.0374 (10)	0.0373 (10)	0.0095 (8)	0.0082 (7)	0.0107 (8)
C12	0.0501 (12)	0.0532 (13)	0.0444 (12)	0.0134 (10)	0.0153 (9)	0.0179 (10)
C14	0.0548 (12)	0.0391 (11)	0.0396 (11)	0.0107 (9)	0.0063 (9)	0.0120 (9)
C15	0.0516 (12)	0.0363 (11)	0.0581 (13)	0.0090 (10)	0.0085 (10)	0.0148 (10)
C17	0.0777 (17)	0.0590 (14)	0.0781 (17)	0.0410 (13)	0.0208 (13)	0.0175 (13)
C18	0.0584 (13)	0.0500 (13)	0.0570 (14)	0.0249 (11)	0.0082 (10)	0.0210 (11)
C19	0.0625 (14)	0.0696 (15)	0.0463 (13)	0.0101 (12)	0.0208 (10)	0.0184 (12)
C20	0.0465 (12)	0.0539 (13)	0.0569 (13)	0.0255 (10)	0.0160 (9)	0.0195 (11)
C21	0.0892 (18)	0.0648 (15)	0.0485 (13)	0.0162 (14)	0.0222 (12)	0.0289 (12)
C23	0.0826 (17)	0.0534 (14)	0.0500 (13)	0.0206 (12)	0.0130 (12)	0.0233 (11)

Geometric parameters (Å, °)

Cu1—O ⁱ	1.8837 (12)	C8—C14	1.417 (3)
Cu1—O	1.8837 (12)	C8—C10	1.452 (3)
Cu1—N	1.9848 (14)	C9—C15	1.382 (3)
Cu1—N ⁱ	1.9848 (14)	C9—C17	1.515 (2)
O—C2	1.302 (2)	C12—C19	1.373 (3)
NC1	1.307 (2)	C12—H12	0.9300
N—C	1.434 (2)	C14—C23	1.414 (3)
С—С7	1.382 (2)	C14—C18	1.417 (3)
C—C5	1.384 (2)	C15—H15	0.9300
C1—C10	1.420 (2)	C17—H17A	0.9600

supporting information

C1—H1	0 9300	С17—Н17В	0 9600
C_2 — C_{10}	1408(2)	C17 - H17C	0.9600
C_2 C_2	1.100(2) 1.431(2)	C18 - C20	1.343(3)
C5 C6	1.491(2) 1 385(2)	C18 H18	0.0300
C5 H5	0.0300	C_{10} C_{21}	1 300 (3)
	1 279 (2)	$C_{10} = 0.000000000000000000000000000000000$	0.0300
C6 H6	0.0200	C19—1119 C20 H20	0.9300
$C_0 = H_0$	1,280 (2)	C20—H20	0.9300
C7C13	1.380(2)	$C_{21} = C_{23}$	1.550 (5)
$C = H / C^2$	0.9300	C21—H21	0.9300
C8-C12	1.411 (3)	C23—H23	0.9300
O ⁱ —Cu1—O	180	C2—C10—C1	120.13 (16)
O ⁱ —Cu1—N	89.58 (5)	C2-C10-C8	119.57 (16)
O—Cu1—N	90.42 (5)	C1-C10-C8	119.94 (16)
O^{i} — $Cu1$ — N^{i}	90.42 (5)	C19 - C12 - C8	121 51 (19)
O — $Cu1$ — N^i	89.58 (5)	C19—C12—H12	119.2
$N - Cu1 - N^i$	180	C8-C12-H12	119.2
C_{2} C_{1} C_{1}	128 62 (11)	C^{23} C^{14} C^{8}	119.42 (19)
$C_1 = N = C$	115 44 (14)	C_{23} C_{14} C_{18}	121 54 (18)
C1 - N - Cu1	12254(12)	C_{8} C_{14} C_{18}	119.03 (18)
C = N = Cul	122.94(12) 121.94(11)	C7-C15-C9	121 53 (18)
C^{-}	118.92 (16)	C7 - C15 - H15	119.2
C7 C N	110.92(10) 120.13(15)	$C_{1}^{0} = C_{1}^{0} = H_{1}^{0}$	119.2
$C_{1} = C_{1}$	120.13(15) 120.05(16)	$C_{9} = C_{13} = H_{13}$	119.2
C_{3}	120.93(10) 127.07(17)	$C_{9} = C_{17} = H_{17} R_{17}$	109.5
N = CI = CIO	127.97 (17)	C_{9} C_{17} H_{17} H_{17}	109.5
	110.0	HI/A = CI/=HI/B	109.5
CIO - CI - HI	110.0	C9—C17—H17C	109.5
0	124.11 (16)	HI/A—CI/—HI/C	109.5
0	116.69 (16)	HI/B = CI/= HI/C	109.5
C10-C2-C20	119.19 (17)	C20—C18—C14	122.24 (18)
C—C5—C6	119.60 (17)	C20—C18—H18	118.9
С—С5—Н5	120.2	C14—C18—H18	118.9
С6—С5—Н5	120.2	C12—C19—C21	120.4 (2)
C9—C6—C5	122.15 (17)	С12—С19—Н19	119.8
С9—С6—Н6	118.9	С21—С19—Н19	119.8
С5—С6—Н6	118.9	C18—C20—C2	120.91 (19)
C15—C7—C	120.38 (17)	C18—C20—H20	119.5
С15—С7—Н7	119.8	C2—C20—H20	119.5
С—С7—Н7	119.8	C23—C21—C19	120.0 (2)
C12—C8—C14	117.34 (17)	C23—C21—H21	120.0
C12—C8—C10	123.66 (17)	C19—C21—H21	120.0
C14—C8—C10	118.99 (17)	C21—C23—C14	121.4 (2)
C6—C9—C15	117.32 (17)	C21—C23—H23	119.3
C6—C9—C17	121.49 (18)	С14—С23—Н23	119.3
C15—C9—C17	121.16 (19)		
O'-Cul-O-C2	-71(100)	C20—C2—C10—C8	-3.0(3)
N-Cul-O-C2	25.66 (16)	N	11.9 (3)

N ⁱ —Cu1—O—C2	-154.34 (16)	N-C1-C10-C8	-174.99 (17)
O ⁱ —Cu1—N—C1	159.10 (14)	C12—C8—C10—C2	-177.19 (18)
O—Cu1—N—C1	-20.90 (14)	C14—C8—C10—C2	1.7 (3)
N ⁱ —Cu1—N—C1	-22 (100)	C12—C8—C10—C1	9.7 (3)
O ⁱ —Cu1—N—C	-17.40 (13)	C14—C8—C10—C1	-171.42 (16)
O—Cu1—N—C	162.60 (13)	C14—C8—C12—C19	-0.9 (3)
N ⁱ —Cu1—N—C	162 (100)	C10-C8-C12-C19	178.02 (18)
C1—N—C—C7	127.26 (18)	C12—C8—C14—C23	1.0 (3)
Cu1—N—C—C7	-56.0 (2)	C10-C8-C14-C23	-177.99 (17)
C1—N—C—C5	-52.6 (2)	C12-C8-C14-C18	179.69 (18)
Cu1—N—C—C5	124.13 (16)	C10-C8-C14-C18	0.7 (3)
C-N-C1-C10	-176.06 (16)	C—C7—C15—C9	-1.4 (3)
Cu1—N—C1—C10	7.2 (3)	C6—C9—C15—C7	-1.2 (3)
Cu1—O—C2—C10	-15.1 (3)	C17—C9—C15—C7	176.7 (2)
Cu1—O—C2—C20	166.16 (12)	C23-C14-C18-C20	176.8 (2)
C7—C—C5—C6	-2.8 (3)	C8—C14—C18—C20	-1.9 (3)
N—C—C5—C6	177.08 (17)	C8—C12—C19—C21	-0.3 (3)
C—C5—C6—C9	0.2 (3)	C14—C18—C20—C2	0.6 (3)
C5—C—C7—C15	3.4 (3)	O-C2-C20-C18	-179.34 (18)
N—C—C7—C15	-176.46 (17)	C10-C2-C20-C18	1.9 (3)
C5—C6—C9—C15	1.8 (3)	C12—C19—C21—C23	1.5 (4)
C5—C6—C9—C17	-176.09 (19)	C19—C21—C23—C14	-1.5 (4)
O-C2-C10-C1	-8.6 (3)	C8—C14—C23—C21	0.2 (3)
C20-C2-C10-C1	170.11 (16)	C18—C14—C23—C21	-178.5 (2)
O-C2-C10-C8	178.34 (16)		

Symmetry code: (i) -x+1, -y, -z.