organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Hydroxy-3-(3-methoxybenzoyl)-2-[(3-methoxybenzoyl)methyl]-2H-1,2-benzothiazine 1,1-dioxide

Salman Gul,^a Hamid Latif Siddigui,^a* Matloob Ahmad,^b Muhammad Nisar^c and Masood Parvez^d

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bInstitute of Chemistry, University of the Punjab, Lahore-54590, Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^cInstitute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan, and ^dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Correspondence e-mail: drhamidlatif@yahoo.com

Received 31 July 2010; accepted 6 August 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.098; data-to-parameter ratio = 15.7.

In the title compound, $C_{25}H_{21}NO_7S$, the heterocyclic thiazine ring adopts a half-chair conformation, with the S and N atoms displaced by -0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by the remaining ring atoms; the puckering parameters are: $Q = 0.4576 (13) \text{ Å}, \theta = 58.6 (2) \text{ and } \varphi =$ $34.3 (3)^{\circ}$. The structure is devoid of any classical hydrogen bonds. However, intramolecular $C-H\cdots N$ and $O-H\cdots O$ hydrogen bonds result in six-membered rings and intermolecular C-H···O interactions stabilize the crystal structure.

Related literature

For the biological applications of benzothiazines, see: Lombardino et al. (1972); Zinnes et al. (1982); Zia-ur-Rehman et al. (2005); Turck et al. (1996); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

β

C ₂₅ H ₂₁ NO ₇ S	$\gamma = 97.6128 \ (13)^{\circ}$
$M_r = 479.49$	V = 1071.22 (5) Å ²
Triclinic, $P\overline{1}$	Z = 2
a = 10.3169 (2) Å	Mo $K\alpha$ radiation
b = 10.6923 (3) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 11.6867 (3) Å	T = 173 K
$\alpha = 115.5965 \ (11)^{\circ}$	$0.24 \times 0.16 \times 0.08$
$\beta = 105.8041 \ (14)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.953, T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	310 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
4860 reflections	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.98	2.57	3.438 (2)	147
0.99	2.26	3.244 (2)	174
0.95	2.41	2.986 (2)	119
0.84	1.67	2.428 (2)	149
	<i>D</i> —Н 0.98 0.99 0.95 0.84	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.98 & 2.57 \\ 0.99 & 2.26 \\ 0.95 & 2.41 \\ 0.84 & 1.67 \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.98 2.57 3.438 (2) 0.99 2.26 3.244 (2) 0.95 2.41 2.986 (2) 0.84 1.67 2.428 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

HLS is grateful to the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2194).

References

- Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.
- Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, 04-06.

mm

9164 measured reflections

 $R_{\rm int} = 0.021$

4860 independent reflections

4419 reflections with $(I) > 2.0 \sigma(I)$

- Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.
- Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Kor. Chem. Soc. 54, 1171–1175.
- Zinnes, H., Sircar, J. C., Lindo, N., Schwartz, M. L., Fabian, A. C., Shavel, J. Jr, Kasulanis, C. F., Genzer, J. D., Lutomski, C. & DiPasquale, G. (1982). *J. Med. Chem.* **25**, 12–18.

supporting information

Acta Cryst. (2010). E66, o2314-o2315 [https://doi.org/10.1107/S1600536810031673]

4-Hydroxy-3-(3-methoxybenzoyl)-2-[(3-methoxybenzoyl)methyl]-2*H*-1,2-benzo-thiazine 1,1-dioxide

Salman Gul, Hamid Latif Siddiqui, Matloob Ahmad, Muhammad Nisar and Masood Parvez

S1. Comment

Oxicams are non steroidal anti-inflammatory drugs (NSAID's) that posses benzothiazine nucleus (Lombardino *et al.*, 1972; Zinnes *et al.*, 1982). Versatile biological activities are associated with benzothiazine derivatives, *e.g.*, anti-microbial (Zia-ur-Rehman *et al.*, 2005), analgesic (Turck *et al.*, 1996), antioxidant (Ahmad *et al.*, 2010), *etc.* In this paper, we report the synthesis and crystal structure of the title compound.

The structure of the title compound contains independent molecules separated by normal van der Waals distances (Fig. 1). The heterocyclic thiazine ring adopts a half-chair conformation, with atoms S1 and N1 displaced by -0.284 (3) and 0.411 (3) Å, respectively, from the plane formed by atoms C1/C6/C7/C8; the puckering parameters (Cremer & Pople, 1975) are: Q = 0.4576 (13) Å, $\theta = 58.6$ (2)° and $\varphi = 34.3$ (3)°. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui *et al.*, 2008). The carbon fragments C1–C15 and C17–C24 are more or less planar individually and lie at an angle 77.17 (2)° with rest to each other.

The structure is devoid of any classical hydrogen bonds. However, intramolecular interactions C15—H15…N1 and O3 —H3O…O4 resulting in six membered rings and intermolecular interactions of the type C—H…O are present (Tab. 1).

S2. Experimental

4-Hydroxy-1,1-dioxido-2*H*-1,2-benzothiazin-3-yl)(3-methoxyphenyl) methanone (2 g, 6.0 mmol), K_2CO_3 (1.24 g, 9.0 mmol), 3-methoxyphenacyl bromide (1.42 g, 6.2 mmol) and acetonitrile (25 ml) were refluxed for 6 h. The completion of reaction was monitored by TLC. After cooling to room temperature, the reaction mixture was poured into ice cold water. Yellow precipitates obtained were filtered, washed with cold water and dried. The crystals suitable for crystallographic study were grown from a solution of methanol and chloroform (1:1).

S3. Refinement

The H-atoms were located from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with O—H = 0.84 Å and C—H = 0.95–0.99 Å; the $U_{iso}(H)$ were allowed at $1.2U_{eq}(C)$ or $1.5U_{eq}(O)$. The final difference map was essentially featurless.

The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).

4-Hydroxy-3-(3-methoxybenzoyl)-2-[(3-methoxybenzoyl)methyl]-2H-1,2-benzothiazine 1,1-dioxide

Z = 2

F(000) = 500

 $\theta = 1.0-27.5^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$

T = 173 KPrism, yellow

 $D_{\rm x} = 1.487 \text{ Mg m}^{-3}$

 $0.24\times0.16\times0.08~mm$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4699 reflections

Crystal data

 $C_{25}H_{21}NO_7S$ $M_r = 479.49$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.3169 (2) Å b = 10.6923 (3) Å c = 11.6867 (3) Å a = 115.5965 (11)° $\beta = 105.8041$ (14)° $\gamma = 97.6128$ (13)° V = 1071.22 (5) Å³

Data collection

Nonius KappaCCD	9164 measured reflections
diffractometer	4860 independent reflections
Radiation source: fine-focus sealed tube	4419 reflections with (<i>I</i>) > 2.0 σ (<i>I</i>)
Graphite monochromator	$R_{\rm int} = 0.021$
ω and φ scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SORTAV; Blessing, 1997)	$k = -13 \rightarrow 13$
$T_{\min} = 0.953, \ T_{\max} = 0.984$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0352P)^2 + 0.7607P]$
4860 reflections	where $P = (F_o^2 + 2F_c^2)/3$
310 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$
direct methods	

Special details

Experimental. Yield: 2.44 g, 85%, m.p. 434–435 K, IR (KBr, v_{max}): 2972, 1708, 1331, 1172 cm⁻¹, EI—MS (*m/z*): 479.0 **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	V	Z	$U_{\rm iso}^*/U_{\rm eq}$
S1	0.29020 (4)	0.27269 (4)	0.29750 (3)	0.01827 (10)
01	0.23063 (12)	0.17819 (13)	0.33899 (11)	0.0256 (2)
O2	0.33929 (12)	0.42553 (12)	0.39028 (11)	0.0259 (2)
03	0.23349 (13)	-0.08669 (12)	-0.08736 (11)	0.0273 (3)
H3O	0.2898	-0.1328	-0.0726	0.041*
O4	0.42851 (13)	-0.14158 (13)	0.03455 (12)	0.0320 (3)
05	0.70078 (13)	0.17729 (14)	0.64535 (12)	0.0310 (3)
O6	0.42789 (11)	0.38168 (13)	0.12184 (12)	0.0281 (3)
O7	1.04913 (12)	0.66025 (14)	0.44194 (12)	0.0313 (3)
N1	0.41973 (12)	0.22081 (13)	0.25537 (12)	0.0175 (2)
C1	0.16599 (15)	0.23577 (16)	0.14140 (15)	0.0195 (3)
C2	0.07019 (16)	0.31470 (18)	0.14134 (17)	0.0251 (3)
H2	0.0773	0.3954	0.2236	0.030*
C3	-0.03709 (17)	0.27353 (19)	0.01822 (18)	0.0277 (3)
H3	-0.1043	0.3261	0.0163	0.033*
C4	-0.04588 (16)	0.15639 (18)	-0.10117 (16)	0.0260 (3)
H4	-0.1208	0.1274	-0.1842	0.031*
C5	0.05357 (16)	0.08082 (17)	-0.10094 (15)	0.0231 (3)
H5	0.0480	0.0024	-0.1840	0.028*
C6	0.16194 (15)	0.11974 (16)	0.02119 (15)	0.0193 (3)
C8	0.38133 (15)	0.07832 (15)	0.14093 (14)	0.0185 (3)
C7	0.26316 (15)	0.03505 (16)	0.02289 (15)	0.0198 (3)
C9	0.45739 (16)	-0.02239 (16)	0.14564 (15)	0.0219 (3)
C10	0.56820 (16)	-0.00465 (16)	0.26834 (16)	0.0218 (3)

~				
C11	0.65958 (18)	-0.09010 (18)	0.24566 (18)	0.0278 (3)
H11	0.6521	-0.1530	0.1552	0.033*
C12	0.76153 (19)	-0.0826(2)	0.35613 (19)	0.0337 (4)
H12	0.8241	-0.1403	0.3408	0.040*
C13	0.77297 (18)	0.0075 (2)	0.48786 (18)	0.0311 (4)
H13	0.8431	0.0116	0.5626	0.037*
C14	0.68140 (17)	0.09261 (17)	0.51133 (16)	0.0245 (3)
C15	0.57875 (16)	0.08652 (16)	0.40222 (16)	0.0223 (3)
H15	0.5159	0.1438	0.4180	0.027*
C16	0.6187 (2)	0.2765 (2)	0.67580 (18)	0.0354 (4)
H16A	0.6443	0.3321	0.7749	0.043*
H16B	0.5186	0.2226	0.6324	0.043*
H16C	0.6370	0.3429	0.6410	0.043*
C17	0.54988 (15)	0.32707 (16)	0.29135 (15)	0.0194 (3)
H17A	0.6254	0.2789	0.2869	0.023*
H17B	0.5774	0.4045	0.3870	0.023*
C18	0.54062 (15)	0.39652 (16)	0.20087 (15)	0.0194 (3)
C19	0.67638 (15)	0.48054 (16)	0.21338 (15)	0.0199 (3)
C20	0.79776 (16)	0.53606 (16)	0.33060 (15)	0.0216 (3)
H20	0.7942	0.5258	0.4066	0.026*
C21	0.92400 (15)	0.60661 (16)	0.33434 (16)	0.0222 (3)
C22	0.92881 (17)	0.62253 (17)	0.22334 (17)	0.0250 (3)
H22	1.0154	0.6691	0.2257	0.030*
C23	0.80723 (17)	0.57047 (18)	0.10920 (17)	0.0263 (3)
H23	0.8104	0.5839	0.0347	0.032*
C24	0.68086 (16)	0.49892 (17)	0.10313 (16)	0.0233 (3)
H24	0.5980	0.4627	0.0245	0.028*
C25	1.04318 (18)	0.7108 (2)	0.57431 (17)	0.0323 (4)
H25A	1.1368	0.7708	0.6436	0.039*
H25B	1.0120	0.6279	0.5859	0.039*
H25C	0.9767	0.7687	0.5845	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.01845 (17)	0.01876 (18)	0.01474 (17)	0.00516 (13)	0.00559 (13)	0.00620 (14)
01	0.0246 (5)	0.0319 (6)	0.0240 (6)	0.0064 (5)	0.0112 (4)	0.0160 (5)
02	0.0275 (6)	0.0205 (6)	0.0193 (5)	0.0081 (4)	0.0047 (4)	0.0030 (4)
03	0.0335 (6)	0.0221 (6)	0.0177 (5)	0.0075 (5)	0.0065 (5)	0.0045 (5)
04	0.0389 (7)	0.0217 (6)	0.0249 (6)	0.0131 (5)	0.0092 (5)	0.0028 (5)
05	0.0354 (6)	0.0343 (7)	0.0230 (6)	0.0139 (5)	0.0076 (5)	0.0147 (5)
06	0.0193 (5)	0.0358 (7)	0.0315 (6)	0.0052 (5)	0.0049 (5)	0.0220 (5)
07	0.0183 (5)	0.0408 (7)	0.0251 (6)	0.0006 (5)	0.0046 (5)	0.0123 (5)
N1	0.0169 (6)	0.0149 (6)	0.0167 (6)	0.0026 (4)	0.0053 (5)	0.0056 (5)
C1	0.0163 (6)	0.0218 (7)	0.0184 (7)	0.0026 (5)	0.0047 (5)	0.0101 (6)
C2	0.0231 (7)	0.0268 (8)	0.0246 (8)	0.0079 (6)	0.0087 (6)	0.0117 (7)
C3	0.0218 (7)	0.0316 (9)	0.0335 (9)	0.0092 (6)	0.0082 (7)	0.0200 (7)
C4	0.0201 (7)	0.0302 (8)	0.0246 (8)	0.0003 (6)	0.0017 (6)	0.0166 (7)

supporting information

C5	0.0225 (7)	0.0236 (8)	0.0176 (7)	-0.0006 (6)	0.0041 (6)	0.0093 (6)
C6	0.0187 (7)	0.0188 (7)	0.0179 (7)	0.0007 (5)	0.0052 (5)	0.0091 (6)
C8	0.0202 (7)	0.0164 (7)	0.0174 (7)	0.0035 (5)	0.0080 (5)	0.0068 (6)
C7	0.0231 (7)	0.0180 (7)	0.0169 (7)	0.0028 (6)	0.0085 (6)	0.0077 (6)
C9	0.0241 (7)	0.0189 (7)	0.0212 (7)	0.0043 (6)	0.0093 (6)	0.0084 (6)
C10	0.0236 (7)	0.0190 (7)	0.0257 (8)	0.0066 (6)	0.0101 (6)	0.0126 (6)
C11	0.0347 (9)	0.0244 (8)	0.0300 (8)	0.0136 (7)	0.0163 (7)	0.0141 (7)
C12	0.0360 (9)	0.0369 (10)	0.0411 (10)	0.0229 (8)	0.0188 (8)	0.0237 (8)
C13	0.0301 (9)	0.0352 (9)	0.0335 (9)	0.0148 (7)	0.0087 (7)	0.0218 (8)
C14	0.0261 (8)	0.0243 (8)	0.0262 (8)	0.0070 (6)	0.0095 (6)	0.0151 (7)
C15	0.0236 (7)	0.0208 (7)	0.0260 (8)	0.0081 (6)	0.0095 (6)	0.0137 (6)
C16	0.0469 (11)	0.0305 (9)	0.0256 (8)	0.0165 (8)	0.0121 (8)	0.0103 (7)
C17	0.0167 (6)	0.0182 (7)	0.0192 (7)	0.0012 (5)	0.0037 (5)	0.0085 (6)
C18	0.0193 (7)	0.0175 (7)	0.0190 (7)	0.0049 (5)	0.0060 (5)	0.0076 (6)
C19	0.0197 (7)	0.0177 (7)	0.0227 (7)	0.0056 (5)	0.0085 (6)	0.0099 (6)
C20	0.0217 (7)	0.0208 (7)	0.0210 (7)	0.0048 (6)	0.0074 (6)	0.0099 (6)
C21	0.0191 (7)	0.0197 (7)	0.0238 (7)	0.0046 (6)	0.0065 (6)	0.0086 (6)
C22	0.0244 (8)	0.0224 (7)	0.0302 (8)	0.0053 (6)	0.0129 (6)	0.0134 (7)
C23	0.0306 (8)	0.0274 (8)	0.0276 (8)	0.0084 (7)	0.0144 (7)	0.0169 (7)
C24	0.0236 (7)	0.0245 (8)	0.0230 (7)	0.0071 (6)	0.0074 (6)	0.0133 (6)
C25	0.0263 (8)	0.0363 (9)	0.0233 (8)	0.0068 (7)	0.0041 (6)	0.0090 (7)

Geometric parameters (Å, °)

S1—O2	1.4329 (11)	C10—C15	1.404 (2)
S1—O1	1.4334 (11)	C11—C12	1.389 (2)
S1—N1	1.6294 (12)	C11—H11	0.9500
S1—C1	1.7597 (15)	C12—C13	1.379 (3)
O3—C7	1.2956 (18)	C12—H12	0.9500
O3—H3O	0.8400	C13—C14	1.396 (2)
O4—C9	1.2875 (19)	C13—H13	0.9500
O5—C14	1.367 (2)	C14—C15	1.388 (2)
O5—C16	1.430 (2)	C15—H15	0.9500
O6—C18	1.2126 (18)	C16—H16A	0.9800
O7—C21	1.3686 (18)	C16—H16B	0.9800
O7—C25	1.424 (2)	C16—H16C	0.9800
N1-C8	1.4344 (18)	C17—C18	1.523 (2)
N1-C17	1.4651 (17)	C17—H17A	0.9900
C1—C2	1.382 (2)	C17—H17B	0.9900
C1—C6	1.401 (2)	C18—C19	1.494 (2)
C2—C3	1.395 (2)	C19—C24	1.396 (2)
С2—Н2	0.9500	C19—C20	1.401 (2)
C3—C4	1.384 (2)	C20—C21	1.396 (2)
С3—Н3	0.9500	C20—H20	0.9500
C4—C5	1.388 (2)	C21—C22	1.392 (2)
C4—H4	0.9500	C22—C23	1.387 (2)
C5—C6	1.398 (2)	C22—H22	0.9500
С5—Н5	0.9500	C23—C24	1.389 (2)

supporting information

C6—C7	1 472 (2)	С23—Н23	0.9500
C_{8} C_{7}	1.172(2) 1 409(2)	C24—H24	0.9500
C8-C9	1.105(2) 1.425(2)	C_{25} H25A	0.9800
C_{0} C_{10}	1.425(2) 1.488(2)	C25 H25R	0.9800
C_{10}	1.400(2) 1.206(2)	C25_H25C	0.9800
00-011	1.390 (2)	C23—H23C	0.9800
O2—S1—O1	118.83 (7)	C12—C13—C14	119.97 (16)
O2—S1—N1	108.34 (7)	C12—C13—H13	120.0
O1—S1—N1	108.04 (7)	C14—C13—H13	120.0
O2—S1—C1	110.07 (7)	O5—C14—C15	124.51 (15)
01—S1—C1	107.34 (7)	O5—C14—C13	115.40 (14)
N1—S1—C1	103.07 (7)	C15—C14—C13	120.08 (15)
С7—03—Н30	109.5	C14—C15—C10	119.71 (14)
C14 - 05 - C16	117.64 (13)	C14—C15—H15	120.1
$C_{21} = 07 = C_{25}$	117.12 (13)	C10-C15-H15	120.1
C_{8} N1 $-C_{17}$	119 25 (11)	05-C16-H16A	109 5
C8-N1-S1	115.44 (9)	05-C16-H16B	109.5
C17 N1 S1	120.85(10)	H16A C16 H16B	109.5
$C_{1} = N_{1} = S_{1}$	120.03(10) 122.10(14)	05 C16 H16C	109.5
$C_2 = C_1 = C_0$	122.10(14) 110.57(12)		109.5
$C_2 = C_1 = S_1$	119.37(12)	H10A - C10 - H10C	109.5
$C_0 = C_1 = S_1$	118.19 (11)	H10B - C10 - H10C	109.5
C1 - C2 - C3	118./3 (15)		114.76(12)
C1 = C2 = H2	120.6		108.6
С3—С2—Н2	120.6	С18—С17—Н17А	108.6
C4—C3—C2	120.18 (15)	N1—C17—H17B	108.6
С4—С3—Н3	119.9	C18—C17—H17B	108.6
С2—С3—Н3	119.9	H17A—C17—H17B	107.6
C3—C4—C5	120.69 (14)	O6—C18—C19	122.43 (14)
C3—C4—H4	119.7	O6—C18—C17	120.85 (13)
C5—C4—H4	119.7	C19—C18—C17	116.71 (12)
C4—C5—C6	120.20 (15)	C24—C19—C20	120.41 (14)
С4—С5—Н5	119.9	C24—C19—C18	118.28 (13)
С6—С5—Н5	119.9	C20—C19—C18	121.27 (13)
C5—C6—C1	118.03 (14)	C21—C20—C19	119.16 (14)
C5—C6—C7	120.31 (14)	C21—C20—H20	120.4
C1—C6—C7	121.57 (13)	C19—C20—H20	120.4
C7—C8—C9	119.14 (13)	O7—C21—C22	115.97 (14)
C7—C8—N1	119.46 (13)	O7—C21—C20	123.67 (14)
C9—C8—N1	121.37 (13)	C22—C21—C20	120.34 (14)
03	121.27 (14)	C23—C22—C21	120.02 (14)
03-07-06	116 54 (13)	C23—C22—H22	120.0
C8-C7-C6	122.05(13)	$C_{21} - C_{22} - H_{22}$	120.0
04-09-08	118 14 (14)	C^{22} C^{23} C^{24}	120.0 120.47(15)
04-09-010	115 58 (14)	C22—C23—H23	119.8
C_{8} C_{9} C_{10}	126 27 (14)	C24_C23_H23	119.8
C_{11} C_{10} C_{15}	120.27(17) 110 87 (14)	C_{23} C_{23} C_{23} C_{24} C_{19}	119.57 (14)
$C_{11} - C_{10} - C_{9}$	116.04 (14)	$C_{23} = C_{24} = C_{13}$	120.2
$C_{11} = C_{10} = C_{2}$	110.97(17) 122.00(14)	$C_{23} = C_{24} = 1124$	120.2
U1J-U10-U7	123.07 (14)	017-024-1124	120.2

C12 - C11 - C10	119 58 (16)	O7—C25—H25A	109.5
C12—C11—H11	120.2	07—C25—H25B	109.5
C10-C11-H11	120.2	H25A—C25—H25B	109.5
C13 - C12 - C11	120.78 (16)	$07 - C^{25} - H^{25}C$	109.5
C13—C12—H12	119.6	$H_{25A} - C_{25} - H_{25C}$	109.5
$C_{11} - C_{12} - H_{12}$	119.6	$H_{25R} = C_{25} = H_{25C}$	109.5
	117.0	11250 025 11250	109.5
O2—S1—N1—C8	-166.79 (10)	N1—C8—C9—C10	8.9 (2)
O1—S1—N1—C8	63.25 (12)	O4—C9—C10—C11	20.3 (2)
C1—S1—N1—C8	-50.17 (12)	C8—C9—C10—C11	-160.34 (15)
O2—S1—N1—C17	-10.66 (13)	O4—C9—C10—C15	-156.17 (15)
O1—S1—N1—C17	-140.62 (11)	C8—C9—C10—C15	23.2 (2)
C1—S1—N1—C17	105.97 (11)	C15—C10—C11—C12	-0.9(2)
O2—S1—C1—C2	-38.43 (14)	C9—C10—C11—C12	-177.40 (15)
O1—S1—C1—C2	92.25 (13)	C10-C11-C12-C13	0.4 (3)
N1—S1—C1—C2	-153.82 (12)	C11—C12—C13—C14	0.0 (3)
O2—S1—C1—C6	145.82 (11)	C16—O5—C14—C15	-6.3 (2)
O1—S1—C1—C6	-83.50 (12)	C16—O5—C14—C13	174.28 (15)
N1—S1—C1—C6	30.43 (13)	C12—C13—C14—O5	179.53 (16)
C6—C1—C2—C3	2.6 (2)	C12—C13—C14—C15	0.1 (3)
S1—C1—C2—C3	-172.99 (12)	O5—C14—C15—C10	-179.92 (14)
C1—C2—C3—C4	-0.5(2)	C13—C14—C15—C10	-0.5 (2)
C2—C3—C4—C5	-1.7 (2)	C11—C10—C15—C14	0.9 (2)
C3—C4—C5—C6	1.9 (2)	C9—C10—C15—C14	177.24 (14)
C4—C5—C6—C1	0.2 (2)	C8—N1—C17—C18	77.60 (17)
C4—C5—C6—C7	176.77 (13)	S1—N1—C17—C18	-77.64 (15)
C2-C1-C6-C5	-2.4(2)	N1—C17—C18—O6	11.8 (2)
S1—C1—C6—C5	173.19 (11)	N1—C17—C18—C19	-167.24(12)
C2-C1-C6-C7	-178.99 (14)	O6—C18—C19—C24	-22.8(2)
S1—C1—C6—C7	-3.36(19)	C17—C18—C19—C24	156.26 (14)
C17—N1—C8—C7	-111.52(15)	O6—C18—C19—C20	159.16 (15)
S1—N1—C8—C7	45.01 (16)	C17—C18—C19—C20	-21.8(2)
C17—N1—C8—C9	70.61 (18)	C24—C19—C20—C21	-1.7(2)
S1—N1—C8—C9	-132.85 (12)	C18—C19—C20—C21	176.33 (14)
C9–C8–C7–O3	-9.2 (2)	C25-07-C21-C22	150.29 (15)
N1—C8—C7—O3	172.85 (13)	C25-07-C21-C20	-31.4(2)
C9—C8—C7—C6	166.26 (13)	C19-C20-C21-O7	-177.72(14)
N1—C8—C7—C6	-11.6(2)	C19-C20-C21-C22	0.5 (2)
$C_{5}-C_{6}-C_{7}-O_{3}$	-103(2)	07 - C21 - C22 - C23	17953(15)
C1 - C6 - C7 - O3	166 13 (13)	C_{20} C_{21} C_{22} C_{23}	1 2 (2)
C5—C6—C7—C8	173.95 (13)	$C_{21} - C_{22} - C_{23} - C_{24}$	-1.7(2)
C1 - C6 - C7 - C8	-96(2)	$C_{22} = C_{23} = C_{24} = C_{19}$	0.5(2)
C7 - C8 - C9 - O4	104(2)	C_{20} C_{19} C_{24} C_{23}	12(2)
N1 - C8 - C9 - O4	-171 74 (13)	C18 - C19 - C24 - C23	-176.90(14)
C7 C8 C9 C10	-160 00 (14)	010 - 017 - 027 - 025	170.70 (14)
$C_{1} - C_{0} - C_{7} - C_{10}$	107.00 (14)		

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C25—H25C…O1 ⁱ	0.98	2.57	3.438 (2)	147
C17—H17 <i>B</i> ····O2 ⁱ	0.99	2.26	3.244 (2)	174
C17—H17 <i>B</i> ···O2	0.99	2.51	2.844 (2)	100
C15—H15…N1	0.95	2.41	2.986 (2)	119
O3—H3 <i>O</i> ···O4	0.84	1.67	2.428 (2)	149

Hydrogen-bond geometry (Å, °)

Symmetry code: (i) -x+1, -y+1, -z+1.