Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-bromopyridinium 6-oxo-1,6dihydropyridine-2-carboxylate monohydrate

Madhukar Hemamalini and Hoong-Kun Fun*‡

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 29 July 2010; accepted 3 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.097; data-to-parameter ratio = 21.6.

In the crystal structure of the title salt, $C_5H_6BrN_2^{+}$. $C_6H_4NO_3^{-}\cdot H_2O$, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxylate O atoms of the anion *via* a pair of N-H···O hydrogen bonds, forming an $R_2^2(8)$ ring motif. The ion pairs are further connected *via* O-H···O, N-H···O, N-H···Br and C-H···O hydrogen bonds, forming a two-dimensional network parallel to the *bc* plane. The water molecules self-assemble through O-H···O hydrogen bonds, forming one-dimensional supramolecular chains along the *a* axis, with graph-set notation $C_2^2(4)$.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski *et al.* (1997); Katritzky *et al.* (1996). For details of 6hydroxypicolinic acid, see: Sun *et al.* (2004); Soares-Santos *et al.* (2003). For a related structure, see: Sawada & Ohashi (1998). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogenbond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data	
$C_5H_6BrN_2^+ \cdot C_6H_4NO_3^- \cdot H_2O$	b = 15.8227 (2) Å
$M_r = 330.15$	c = 20.8961 (3) Å
Orthorhombic, $P2_12_12_1$	V = 1276.77 (4) Å ³
a = 3.8616 (1) Å	Z = 4

‡ Thomson Reuters ResearcherID: A-3561-2009.

Mo $K\alpha$ radiation $\mu = 3.23 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.400, T_{max} = 0.694$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.097$ S = 1.093718 reflections 172 parameters 3 restraints 8884 measured reflections

 $0.35 \times 0.18 \times 0.12 \text{ mm}$

T = 296 K

3718 independent reflections 3105 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

 $\begin{array}{l} H\mbox{-}atom\ parameters\ constrained} \\ \Delta \rho_{max} = 0.37\ e\ {\mbox{\AA}^{-3}} \\ \Delta \rho_{min} = -0.32\ e\ {\mbox{\AA}^{-3}} \\ Absolute\ structure:\ Flack\ (1983), \\ 1482\ Friedel\ pairs \\ Flack\ parameter:\ 0.011\ (12) \end{array}$

Table 1	
Hydrogen-bond	geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O2^{i}$	0.86	1.79	2.640 (4)	171
$O1W - H1W \cdot \cdot \cdot O2^{n}$	0.94	2.17	2.730 (5)	117
$N2-H2A\cdots O3^{i}$	0.86	2.04	2.896 (4)	172
$N2-H2B\cdotsO1^{iii}$	0.86	1.96	2.819 (4)	173
$O1W - H2W \cdots O1W^{ii}$	0.94	2.02	2.782 (9)	137
$N3-H3B\cdots Br1$	0.86	2.84	3.681 (3)	168
$C3-H3A\cdots O1$	0.93	2.44	3.351 (4)	167
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2.$	$-x + \frac{3}{2}, -y, z$	$+\frac{1}{2}$; (ii)	$x + \frac{1}{2}, -y + \frac{1}{2}, -z$	z + 1; (iii)

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2585).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford: Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). *Heterocycles in Life and Society*. New York: Wiley.
- Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491-1493.
- Scheiner, S. (1997). *Hydrogen Bonding. A Theoretical Perspective*. Oxford University Press.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Soares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529-3539.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Sun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem. 630, 1342– 1347.

supporting information

Acta Cryst. (2010). E66, o2246–o2247 [https://doi.org/10.1107/S1600536810030916] 2-Amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate

Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski *et al.*, 1997; Katritzky *et al.*, 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). 6-hydroxypioclinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto tautomerism due to the labile hydrogen atom of -OH group in α -position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun *et al.*, 2004; Soares-Santos *et al.*, 2003). In order to study some interesting hydrogen bonding interactions of these compounds, the synthesis and structure of the title salt is presented here.

The asymmetric unit, (Fig. 1), contains a 2-amino-5-bromopyridinium cation, a 6-oxo-1,6-dihydropyridine-2-carboxylate anion and a water molecule. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.019 (3) Å for atom N1. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C1—N1—C5 = 122.7 (3)°] is subtented at the protonated N1 atom. The anion exists in the keto-enol tautomerism of the -CONH moiety. Similar form is also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal packing, (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) *via* a pair of intermolecular N—H···O hydrogen bonds, forming a ring motif $R_2^2(8)$ (Bernstein *et al.*, 1995). The ion pairs are further connected via O—H···O, N—H···O, N—H···Br and C—H···O (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the *bc* plane. The water molecules self-assemble through O1W—H2W···O1W hydrogen bonds, forming one-dimensional supramolecular chains along the *a* axis, with graph-set notation $C_2^2(4)$ (Fig. 3).

S2. Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and 6-hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

S3. Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.9404–0.9428 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C, N, O)$. 1482 Friedel pairs were used to determine the absolute configuration.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the *bc*-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.

Figure 3

One-dimensional supramolecular chain made up of water molecules.

2-Amino-5-bromopyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate monohydrate

Crystal data

$C_5H_6BrN_2^+ \cdot C_6H_4NO_3^- \cdot H_2O$	
$M_r = 330.15$	
Orthorhombic, $P2_12_12_1$	
Hall symbol: P 2ac 2ab	
a = 3.8616(1) Å	
b = 15.8227 (2) Å	
c = 20.8961 (3) Å	
V = 1276.77 (4) Å ³	
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector8884 mdiffractometer3718 mRadiation source: fine-focus sealed tube3105 mGraphite monochromator $R_{int} = 0$ φ and ω scans $\theta_{max} =$ Absorption correction: multi-scanh = -5(SADABS; Bruker, 2009)k = -2 $T_{min} = 0.400, T_{max} = 0.694$ l = -2

F(000) = 664 $D_x = 1.718 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4297 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 3.23 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.18 \times 0.12 \text{ mm}$

8884 measured reflections 3718 independent reflections 3105 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 30.1^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -5 \rightarrow 5$ $k = -22 \rightarrow 19$ $l = -20 \rightarrow 29$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.036P)^2 + 0.5546P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
3718 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
172 parameters	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1482 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.011 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.68523 (9)	0.02155 (2)	0.832419 (15)	0.04315 (11)
N1	0.9529 (7)	0.01356 (17)	1.02199 (12)	0.0358 (5)
H1B	1.0573	-0.0221	1.0463	0.043*
N2	0.8795 (10)	0.09857 (18)	1.10959 (13)	0.0490 (8)
H2A	0.9800	0.0609	1.1327	0.059*
H2B	0.8067	0.1446	1.1268	0.059*
C1	0.9123 (9)	-0.00566 (19)	0.95935 (15)	0.0357 (7)
H1A	0.9939	-0.0570	0.9437	0.043*
C2	0.7526 (7)	0.04972 (19)	0.91899 (14)	0.0347 (7)
C3	0.6342 (9)	0.1270 (2)	0.94344 (16)	0.0408 (7)
H3A	0.5271	0.1657	0.9164	0.049*
C4	0.6750 (10)	0.14591 (18)	1.00655 (15)	0.0384 (7)
H4A	0.5981	0.1974	1.0227	0.046*
C5	0.8371 (10)	0.08579 (19)	1.04763 (14)	0.0363 (6)
O1	0.1449 (9)	0.24380 (15)	0.84486 (11)	0.0517 (7)
O2	0.1646 (8)	0.08864 (15)	0.59255 (11)	0.0525 (6)
O3	0.3456 (8)	0.03807 (15)	0.68650 (11)	0.0529 (7)
N3	0.1458 (8)	0.17784 (15)	0.74829 (11)	0.0337 (5)
H3B	0.2465	0.1354	0.7660	0.040*
C6	0.0674 (9)	0.24462 (19)	0.78634 (16)	0.0374 (7)
C7	-0.0997 (9)	0.3135 (2)	0.75378 (17)	0.0427 (8)
H7A	-0.1583	0.3621	0.7764	0.051*
C8	-0.1722 (11)	0.3084 (2)	0.69074 (17)	0.0438 (7)

supporting information

H8A	-0.2841	0.3532	0.6708	0.053*	
C9	-0.0818 (10)	0.2363 (2)	0.65430 (15)	0.0398 (7)	
H9A	-0.1321	0.2333	0.6108	0.048*	
C10	0.0787 (9)	0.1721 (2)	0.68434 (14)	0.0351 (7)	
C11	0.2065 (10)	0.09186 (19)	0.65253 (14)	0.0378 (7)	
O1W	0.5862 (19)	0.3110 (3)	0.51273 (19)	0.133 (2)	
H1W	0.4451	0.3496	0.4906	0.159*	
H2W	0.7111	0.2778	0.4832	0.159*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04628 (18)	0.04800 (18)	0.03519 (15)	-0.00207 (15)	-0.00408 (15)	-0.00074 (15)
N1	0.0457 (14)	0.0297 (12)	0.0319 (11)	0.0062 (12)	-0.0001 (11)	0.0035 (11)
N2	0.076 (2)	0.0353 (13)	0.0355 (13)	0.0094 (15)	-0.0032 (15)	0.0006 (12)
C1	0.0412 (16)	0.0307 (15)	0.0353 (14)	0.0010 (12)	0.0025 (13)	-0.0024 (12)
C2	0.0359 (19)	0.0369 (14)	0.0312 (13)	-0.0034 (12)	0.0007 (12)	-0.0003 (12)
C3	0.0340 (18)	0.0442 (17)	0.0443 (16)	0.0034 (14)	-0.0016 (15)	0.0061 (14)
C4	0.0444 (16)	0.0276 (13)	0.0432 (16)	0.0049 (14)	0.0015 (17)	0.0124 (12)
C5	0.0387 (16)	0.0338 (14)	0.0365 (14)	0.0010 (14)	0.0007 (15)	-0.0001 (12)
01	0.0781 (19)	0.0436 (13)	0.0334 (11)	-0.0015 (14)	-0.0032 (13)	-0.0099 (10)
O2	0.0727 (17)	0.0530 (13)	0.0318 (10)	0.0202 (14)	-0.0018 (13)	-0.0070 (10)
O3	0.0790 (19)	0.0410 (13)	0.0388 (11)	0.0190 (13)	-0.0049 (13)	-0.0051 (10)
N3	0.0465 (15)	0.0257 (11)	0.0288 (11)	0.0039 (11)	-0.0007 (12)	0.0035 (9)
C6	0.0464 (18)	0.0300 (15)	0.0357 (15)	-0.0040 (13)	0.0034 (14)	-0.0069 (13)
C7	0.044 (2)	0.0346 (16)	0.0492 (18)	0.0092 (14)	0.0090 (16)	-0.0031 (14)
C8	0.0439 (18)	0.0401 (16)	0.0475 (17)	0.0097 (17)	0.0011 (17)	0.0005 (14)
C9	0.0464 (18)	0.0403 (17)	0.0327 (15)	0.0047 (14)	0.0000 (13)	0.0055 (13)
C10	0.0374 (16)	0.0370 (15)	0.0308 (14)	0.0004 (13)	0.0030 (12)	-0.0009 (12)
C11	0.0475 (18)	0.0330 (14)	0.0329 (14)	0.0045 (14)	0.0000 (14)	-0.0007 (11)
O1W	0.216 (7)	0.109 (3)	0.074 (2)	-0.002 (4)	-0.033 (4)	0.026 (2)

Geometric parameters (Å, °)

Br1—C2	1.881 (3)	O2—C11	1.265 (4)
N1C5	1.339 (4)	O3—C11	1.231 (4)
N1-C1	1.353 (4)	N3—C6	1.356 (4)
N1—H1B	0.8600	N3—C10	1.364 (4)
N2—C5	1.321 (4)	N3—H3B	0.8600
N2—H2A	0.8600	C6—C7	1.438 (5)
N2—H2B	0.8600	C7—C8	1.349 (5)
C1—C2	1.364 (4)	С7—Н7А	0.9300
C1—H1A	0.9300	C8—C9	1.415 (5)
C2—C3	1.402 (5)	C8—H8A	0.9300
C3—C4	1.361 (5)	C9—C10	1.345 (5)
С3—НЗА	0.9300	С9—Н9А	0.9300
C4—C5	1.426 (4)	C10—C11	1.516 (4)
C4—H4A	0.9300	O1W—H1W	0.9404

supporting information

O1—C6	1.259 (4)	O1W—H2W	0.9428
C5—N1—C1	122.7 (3)	C6—N3—H3B	117.2
C5—N1—H1B	118.6	C10—N3—H3B	117.2
C1—N1—H1B	118.6	O1—C6—N3	120.5 (3)
C5—N2—H2A	120.0	O1—C6—C7	125.0 (3)
C5—N2—H2B	120.0	N3—C6—C7	114.4 (3)
H2A—N2—H2B	120.0	C8—C7—C6	120.6 (3)
N1—C1—C2	120.4 (3)	С8—С7—Н7А	119.7
N1—C1—H1A	119.8	С6—С7—Н7А	119.7
C2—C1—H1A	119.8	C7—C8—C9	121.5 (3)
C1—C2—C3	118.9 (3)	С7—С8—Н8А	119.2
C1—C2—Br1	120.3 (2)	С9—С8—Н8А	119.2
C3—C2—Br1	120.8 (2)	C10—C9—C8	118.1 (3)
C4—C3—C2	120.4 (3)	С10—С9—Н9А	121.0
С4—С3—НЗА	119.8	С8—С9—Н9А	121.0
С2—С3—НЗА	119.8	C9—C10—N3	119.7 (3)
C3—C4—C5	119.2 (3)	C9—C10—C11	125.3 (3)
C3—C4—H4A	120.4	N3—C10—C11	115.0 (3)
C5—C4—H4A	120.4	O3—C11—O2	126.8 (3)
N2—C5—N1	118.8 (3)	O3—C11—C10	117.9 (3)
N2—C5—C4	122.9 (3)	O2—C11—C10	115.3 (3)
N1—C5—C4	118.4 (3)	H1W—O1W—H2W	109.7
C6—N3—C10	125.7 (3)		
C5—N1—C1—C2	0.9 (5)	01—C6—C7—C8	180.0 (4)
N1—C1—C2—C3	0.6 (5)	N3—C6—C7—C8	1.1 (5)
N1—C1—C2—Br1	-178.3 (2)	C6—C7—C8—C9	-1.1 (6)
C1—C2—C3—C4	-0.7 (5)	C7—C8—C9—C10	0.2 (6)
Br1—C2—C3—C4	178.1 (3)	C8—C9—C10—N3	0.7 (5)
C2—C3—C4—C5	-0.5 (5)	C8—C9—C10—C11	-177.5 (3)
C1—N1—C5—N2	178.2 (3)	C6—N3—C10—C9	-0.8 (5)
C1—N1—C5—C4	-2.2 (5)	C6—N3—C10—C11	177.6 (3)
C3—C4—C5—N2	-178.5 (4)	C9—C10—C11—O3	-179.1 (4)
C3—C4—C5—N1	1.9 (5)	N3—C10—C11—O3	2.6 (5)
C10—N3—C6—O1	-179.1 (4)	C9—C10—C11—O2	2.6 (6)
C10—N3—C6—C7	-0.1 (5)	N3—C10—C11—O2	-175.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N1—H1 <i>B</i> ····O2 ⁱ	0.86	1.79	2.640 (4)	171	
O1 <i>W</i> —H1 <i>W</i> ···O2 ⁱⁱ	0.94	2.17	2.730 (5)	117	
N2—H2A···O3 ⁱ	0.86	2.04	2.896 (4)	172	
N2—H2B····O1 ⁱⁱⁱ	0.86	1.96	2.819 (4)	173	
$O1W - H2W - O1W^{ii}$	0.94	2.02	2.782 (9)	137	

			supporting information		
N3—H3 <i>B</i> …Br1	0.86	2.84	3.681 (3)	168	
С3—Н3А…О1	0.93	2.44	3.351 (4)	167	

Symmetry codes: (i) -x+3/2, -y, z+1/2; (ii) x+1/2, -y+1/2, -z+1; (iii) x+1/2, -y+1/2, -z+2.