organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide-benzoic acid (1/1)

Hadi D. Arman,^a Trupta Kaulgud^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 24 August 2010; accepted 24 August 2010

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.003 Å; R factor = 0.065; wR factor = 0.159; data-to-parameter ratio = 16.5.

The constituents of the title co-crystal, $C_{12}H_{14}N_4O_2S \cdot C_7H_6O_2$, are connected by an eight-membered hetero-synthon $\{\cdots NCNH \cdots OCOH\}$, whereby the carboxylic acid forms donor and acceptor hydrogen bonds with a pyrimidine N atom and the adjacent amine, respectively. The dimeric aggregates thus formed are arranged in rows with their terminal NH₂ groups forming $N-H \cdots O$ hydrogen bonds with neighbouring aggregates to form a two-dimensional array in the ac plane with an overall T-shaped topology. Layers interdigitate along the b axis being connected by $C-H\cdots O$, $C-H \cdots \pi$ and $\pi -\pi$ [centroid–centroid distance 3.6316 (19) Å] interactions.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007); Ellis et al. (2009); Arman et al. (2010). For related structures of carboxylic acids with 4-amino-N-(4,6dimethylpyrimidin-2-yl)benzene-1-sulfonamide, see: Caira (1991, 1992).

Experimental

Crystal data

$V = 3836 (2) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.20 \text{ mm}^{-1}$
$T = 98 { m K}$
$0.35 \times 0.23 \times 0.10 \text{ mm}$

Data collection

Rigaku AFC12/SATURN724 30274 measured reflections diffractometer 4404 independent reflections Absorption correction: multi-scan 4137 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.073$ (ABSCOR: Higashi, 1995) $T_{\min} = 0.828, T_{\max} = 1$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	H atoms treated by a mixture of
$wR(F^2) = 0.159$	independent and constrained
S = 1.17	refinement
4404 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
267 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e} \text{ Å}^{-3}$
5 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13-C18 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4-H4o···N4	0.85 (2)	1.79 (2)	2.639 (3)	177 (3)
N2-H3n···O3	0.89 (2)	1.90 (2)	2.787 (3)	176 (3)
$N1 - H1n \cdot \cdot \cdot O1^i$	0.89 (2)	2.07 (2)	2.952 (3)	173 (3)
$N1 - H2n \cdot \cdot \cdot O3^{ii}$	0.88(2)	2.31 (3)	3.073 (3)	144 (2)
C12-H12c···O1 ⁱⁱⁱ	0.98	2.58	3.455 (3)	149
$C11 - H11c \cdots Cg1^{iv}$	0.98	2.76	3.672 (3)	155
	a 1	. 4	2	2 1

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2707).

References

Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109. Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641-648. Caira, M. R. (1992). J. Crystallogr. Spectrosc. Res. 22, 193-200.

Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, o2430 [https://doi.org/10.1107/S1600536810034094]

4-Amino-*N*-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide-benzoic acid (1/1)

Hadi D. Arman, Trupta Kaulgud and Edward R. T. Tiekink

S1. Comment

In continuation of co-crystallization experiments of molecules related to pharmaceuticals (Broker & Tiekink, 2007; Ellis *et al.*, 2009; Arman *et al.*, 2010), the title co-crystal containing a 1:1 ratio of 4-amino-*N*-(4,6-dimethylpyrimidin-2-yl)benzene-1-sulfonamide and benzoic acid was isolated, (I). Co-crystals of the sulfonamide with various substituted benzoic acid derivatives have been investigated previously (Caira, 1991; Caira, 1992).

A single molecule of each component comprises the asymmetric unit of (I), Fig. 1. These are connected into dimeric aggregates by an eight membered hetero-synthon {…NCNH…OCOH} involving the O3-carboxylic acid-H donating to the pyrimidine-N4 and the carbonyl-O4 accepting a hydrogen bond from the adjacent N2-amine-H. Such synthons are common to related co-crystals (Caira, 1991; Caira, 1992).

In the crystal packing, the benzoic acid and pyrimidine residues lie parallel to the *ac* plane and are arranged in a row along the *a* axis as highlighted in Fig. 2. The sulfonamide-N1-amine-H atoms bridge successive dimeric aggregates of an adjacent row. This occurs by the formation of hydrogen bonds to the carbonyl-O3 of one dimeric aggregate and a second N–H···O interaction involving the sulfonamide-O1 atom of another. This establishes a two-dimensional array, Fig. 3, that has an overall T-shaped topology. As shown in Fig. 4, the global crystal packing comprises the inter-digitation of successive rows of T-shaped and inverted T-shaped molecules. The interactions between the inter-digitated residues are of the type C—H···O and C—H··· π , Table 1, and π – π [*Cg*(N3,N4,C7—C10)···*Cg*(C13—C18) = 3.6316 (19) Å for *i*: 1/2 + *x*, 11/2 - *y*, 1 - *z*].

S2. Experimental

Colourless crystals of (I) were isolated from the 1/1 co-crystallization of 4-amino-*N*-(4,6-dimethylpyrimidin-2yl)benzene-1- sulfonamide (ACROS, 0.11 mmol) and benzoic acid (ACROS, 0.11 mmol) in acetone; m. pt. 481–493 K.

S3. Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The N– and O-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H = 0.84 ± 0.01 Å and N–H = 0.88 ± 0.01 Å, and with $U_{iso}(H) = xU_{eq}(\text{carrier atom})$, where x = 1.5 for O and x = 1.2 for N.

Figure 1

Molecular structure of the constituents of co-crystal (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The O—H…N and N—H…O hydrogen bonds are shown as dashed lines.

Figure 2

View of the supramolecular layer in projection down the *b* axis highlighting the rows of benzoic acid and pyrimidine residues connected *via* { \cdots NCNH \cdots OCOH} synthons (orange dashed lines). The amino-H \cdots O hydrogen bonds are shown as blue dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for reasons of clarity.

Figure 3

Side-on view of the projection shown in Fig. 2 highlighting the two-dimensional array. Colour code for hydrogen bonds and atom omissions as for Fig. 2.

Figure 4

Unit-cell contents of (I) shown in projection down the *a* axis, highlighting the inter-digitation of rows of T-shaped and inverted T-shaped molecules.

4-Amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide-benzoic acid (1/1)

F(000) = 1680

 $\theta = 2.3 - 40.5^{\circ}$

 $\mu = 0.20 \text{ mm}^{-1}$ T = 98 K

Block. colourless

 $0.35 \times 0.23 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.387 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 16577 reflections

Crystal data

C₁₂H₁₄N₄O₂S·C₇H₆O₂ $M_r = 400.45$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 15.203 (6) Å b = 14.006 (5) Å c = 18.015 (7) Å V = 3836 (2) Å³ Z = 8

Data collection

Rigaku AFC12K/SATURN724 diffractometer	30274 measured reflections 4404 independent reflections
Radiation source: fine-focus sealed tube	4137 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.073$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(ABSCOR; Higashi, 1995)	$k = -16 \rightarrow 18$
$T_{\min} = 0.828, \ T_{\max} = 1$	$l = -23 \rightarrow 23$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.159$	neighbouring sites
S = 1.17	H atoms treated by a mixture of independent
4404 reflections	and constrained refinement
267 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 3.1388P]$
5 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.41 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.55 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.54508 (4)	0.60684 (4)	0.73129 (3)	0.02568 (16)	
01	0.60107 (11)	0.68686 (12)	0.74705 (9)	0.0323 (4)	
02	0.45840 (11)	0.60392 (12)	0.76309 (9)	0.0310 (4)	
03	0.35026 (10)	0.58510(12)	0.59738 (9)	0.0304 (4)	

04	0.38399 (11)	0.61521 (13)	0.47864 (9)	0.0334(4)
H4O	0.4377 (9)	0.615 (2)	0.4912 (18)	0.050*
N1	0.72042 (15)	0.23929 (16)	0.79698 (14)	0.0402(5)
HIN	0.7731 (10)	0.2262 (19)	0.7781 (16)	0.048*
H2N	0.6859 (14)	0.1909 (14)	0.8089 (16)	0.048*
N2	0.52506 (13)	0.60582 (14)	0.64115 (10)	0.0277(4)
H3N	0.4698 (9)	0.5961 (19)	0.6277 (15)	0.033*
N3	0.67129 (12)	0.61923 (13)	0.60236 (10)	0.0258 (4)
N4	0.55167 (12)	0.62139 (13)	0.51621 (10)	0.0249 (4)
C1	0.68116 (15)	0.32487 (17)	0.78271 (12)	0.0296 (5)
C2	0.72999 (15)	0.40339 (17)	0.75643 (12)	0.0289 (5)
H2	0.7915	0.3965	0.7487	0.035*
C3	0.69052 (15)	0.49023 (17)	0.74168 (12)	0.0279 (5)
H3	0.7246	0.5424	0.7241	0.033*
C4	0.59970 (14)	0.50071 (16)	0.75289 (12)	0.0254 (4)
C5	0.55028 (15)	0.42415 (17)	0.78067 (12)	0.0292 (5)
Н5	0.4889	0.4315	0.7889	0.035*
C6	0.59063 (16)	0.33828 (17)	0.79608 (13)	0.0317 (5)
H6	0.5569	0.2873	0.8160	0.038*
C7	0.58666 (14)	0.61564 (15)	0.58457 (12)	0.0241 (4)
C8	0.72783 (15)	0.63113 (16)	0.54554 (13)	0.0277 (5)
С9	0.69815 (16)	0.63989 (17)	0.47292 (13)	0.0307 (5)
Н9	0.7385	0.6494	0.4333	0.037*
C10	0.60877 (15)	0.63456 (16)	0.45948 (12)	0.0276 (5)
C11	0.82379 (15)	0.63460 (18)	0.56559 (14)	0.0342 (5)
H11A	0.8301	0.6532	0.6178	0.051*
H11B	0.8538	0.6814	0.5340	0.051*
H11C	0.8501	0.5715	0.5581	0.051*
C12	0.57027 (17)	0.64250 (19)	0.38306 (13)	0.0358 (5)
H12A	0.5063	0.6351	0.3858	0.054*
H12B	0.5949	0.5924	0.3513	0.054*
H12C	0.5845	0.7052	0.3621	0.054*
C13	0.23390 (14)	0.60650 (15)	0.51020 (12)	0.0253 (4)
C14	0.21086 (15)	0.63324 (16)	0.43783 (12)	0.0268 (4)
H14	0.2553	0.6452	0.4019	0.032*
C15	0.12273 (15)	0.64217 (17)	0.41883 (13)	0.0300 (5)
H15	0.1069	0.6609	0.3700	0.036*
C16	0.05768 (16)	0.62377 (17)	0.47104 (14)	0.0320 (5)
H16	-0.0025	0.6294	0.4576	0.038*
C17	0.08033 (16)	0.59699 (18)	0.54334 (14)	0.0329 (5)
H17	0.0358	0.5848	0.5791	0.039*
C18	0.16840 (16)	0.58838 (17)	0.56251 (13)	0.0301 (5)
H18	0.1841	0.5700	0.6115	0.036*
C19	0.32779 (15)	0.60083 (15)	0.53280 (12)	0.0262 (4)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0240 (3)	0.0291 (3)	0.0240 (3)	0.0018 (2)	-0.00015 (18)	-0.00016 (19)
01	0.0319 (9)	0.0304 (8)	0.0346 (8)	-0.0011 (7)	-0.0027 (7)	-0.0038 (7)
02	0.0234 (8)	0.0397 (10)	0.0299 (8)	0.0061 (7)	0.0035 (6)	0.0030 (7)
O3	0.0270 (8)	0.0375 (9)	0.0268 (8)	-0.0004 (7)	-0.0025 (6)	0.0013 (7)
O4	0.0222 (8)	0.0476 (10)	0.0303 (8)	0.0011 (7)	-0.0003 (6)	0.0051 (7)
N1	0.0340 (11)	0.0322 (11)	0.0544 (13)	0.0047 (9)	0.0073 (10)	0.0061 (10)
N2	0.0212 (9)	0.0359 (10)	0.0259 (9)	-0.0016 (8)	-0.0031 (7)	0.0042 (7)
N3	0.0224 (9)	0.0256 (9)	0.0294 (9)	-0.0004 (7)	0.0004 (7)	0.0013 (7)
N4	0.0263 (9)	0.0235 (9)	0.0249 (9)	-0.0001 (7)	0.0007 (7)	0.0027 (7)
C1	0.0294 (11)	0.0307 (11)	0.0288 (10)	0.0018 (9)	-0.0012 (9)	-0.0004 (9)
C2	0.0226 (10)	0.0366 (12)	0.0275 (10)	0.0012 (9)	-0.0010 (8)	0.0002 (9)
C3	0.0240 (10)	0.0329 (11)	0.0266 (10)	-0.0035 (9)	-0.0011 (8)	0.0022 (9)
C4	0.0263 (11)	0.0276 (10)	0.0225 (9)	0.0005 (9)	-0.0015 (8)	-0.0013 (8)
C5	0.0245 (11)	0.0336 (12)	0.0295 (10)	-0.0020 (9)	0.0017 (8)	-0.0014 (9)
C6	0.0284 (11)	0.0303 (12)	0.0363 (12)	-0.0040 (9)	0.0020 (9)	0.0014 (9)
C7	0.0232 (10)	0.0223 (10)	0.0269 (10)	-0.0009 (8)	-0.0009 (8)	0.0016 (8)
C8	0.0244 (10)	0.0233 (10)	0.0354 (11)	-0.0019 (9)	0.0027 (9)	-0.0003 (9)
С9	0.0298 (11)	0.0310 (11)	0.0311 (11)	-0.0032 (9)	0.0070 (9)	0.0021 (9)
C10	0.0302 (11)	0.0241 (10)	0.0285 (10)	0.0000 (9)	0.0015 (8)	0.0006 (8)
C11	0.0239 (11)	0.0374 (13)	0.0413 (13)	-0.0013 (10)	0.0009 (9)	0.0018 (10)
C12	0.0367 (12)	0.0425 (14)	0.0280 (11)	-0.0014 (11)	0.0012 (10)	0.0046 (10)
C13	0.0251 (10)	0.0227 (10)	0.0281 (10)	0.0014 (8)	-0.0019 (8)	-0.0029 (8)
C14	0.0273 (11)	0.0262 (10)	0.0270 (10)	-0.0008 (9)	0.0000 (8)	-0.0008 (8)
C15	0.0298 (11)	0.0294 (11)	0.0308 (11)	-0.0012 (9)	-0.0075 (9)	-0.0019 (9)
C16	0.0260 (11)	0.0348 (12)	0.0353 (12)	0.0010 (9)	-0.0030 (9)	-0.0028 (10)
C17	0.0253 (11)	0.0388 (13)	0.0346 (12)	-0.0002 (10)	0.0016 (9)	0.0009 (10)
C18	0.0291 (11)	0.0331 (12)	0.0281 (11)	-0.0007 (9)	-0.0012 (9)	0.0008 (9)
C19	0.0264 (11)	0.0242 (10)	0.0280 (10)	0.0002 (8)	-0.0015 (8)	-0.0006 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

<u>S1—01</u>	1.4358 (18)	С6—Н6	0.9500
S1—O2	1.4375 (17)	C8—C9	1.389 (3)
S1—N2	1.652 (2)	C8—C11	1.504 (3)
S1—C4	1.747 (2)	C9—C10	1.382 (3)
O3—C19	1.232 (3)	С9—Н9	0.9500
O4—C19	1.313 (3)	C10—C12	1.500 (3)
O4—H4O	0.848 (10)	C11—H11A	0.9800
N1-C1	1.364 (3)	C11—H11B	0.9800
N1—H1N	0.889 (9)	C11—H11C	0.9800
N1—H2N	0.88 (2)	C12—H12A	0.9800
N2—C7	1.391 (3)	C12—H12B	0.9800
N2—H3N	0.886 (10)	C12—H12C	0.9800
N3—C7	1.327 (3)	C13—C18	1.394 (3)
N3—C8	1.347 (3)	C13—C14	1.401 (3)

N4—C7	1.344 (3)	C13—C19	1.486 (3)
N4—C10	1.353 (3)	C14—C15	1.388 (3)
C1—C2	1.409 (3)	C14—H14	0.9500
C1—C6	1410(3)	C15—C16	1 389 (3)
$C^2 - C^3$	1 382 (3)	C15H15	0.9500
C2 H2	0.0500	C16 C17	1.208(2)
$C_2 = C_4$	0.9300		1.398 (3)
C3-C4	1.403 (3)		0.9500
С3—Н3	0.9500		1.388 (3)
C4—C5	1.402 (3)	С17—Н17	0.9500
C5—C6	1.378 (3)	C18—H18	0.9500
С5—Н5	0.9500		
O1—S1—O2	119.14 (10)	C10-C9-C8	118.6 (2)
O1—S1—N2	108.07 (10)	С10—С9—Н9	120.7
O2 - S1 - N2	102.86 (10)	С8—С9—Н9	120.7
01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	109 78 (11)	N4-C10-C9	1204(2)
02-51-C4	108 84 (10)	N4-C10-C12	116.9(2)
$N_2 = S_1 = C_4$	107.40(10)	C_{0} C_{10} C_{12}	110.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.40(10) 115(2)	$C_{9} = C_{10} = C_{12}$	122.7(2)
C19 - 04 - H40	113(2)		109.5
CI—NI—HIN	120.3 (18)	C8—CII—HIIB	109.5
CI—NI—H2N	117.5 (18)	HIIA—CII—HIIB	109.5
H1N—N1—H2N	117.9 (14)	C8—C11—H11C	109.5
C7—N2—S1	126.54 (16)	H11A—C11—H11C	109.5
C7—N2—H3N	117.0 (18)	H11B—C11—H11C	109.5
S1—N2—H3N	116.4 (18)	C10-C12-H12A	109.5
C7—N3—C8	116.1 (2)	C10-C12-H12B	109.5
C7—N4—C10	116.50 (19)	H12A—C12—H12B	109.5
N1—C1—C2	121.3 (2)	C10—C12—H12C	109.5
N1-C1-C6	120.8(2)	H12A - C12 - H12C	109 5
C_{2} C_{1} C_{6}	117.9(2)	H12B-C12-H12C	109.5
$C_2 C_1 C_0$	121.5(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.9 110.0(2)
$C_2 = C_2 = C_1$	121.5 (2)	$C_{10} = C_{12} = C_{10}$	119.9(2)
$C_3 = C_2 = H_2$	119.2	C18 - C13 - C19	119.4(2)
C1 - C2 - H2	119.2		120.6 (2)
C2—C3—C4	119.4 (2)	C15—C14—C13	119.7 (2)
С2—С3—Н3	120.3	C15—C14—H14	120.2
С4—С3—Н3	120.3	C13—C14—H14	120.2
C5—C4—C3	119.9 (2)	C14—C15—C16	120.2 (2)
C5—C4—S1	118.40 (17)	C14—C15—H15	119.9
C3—C4—S1	121.66 (17)	C16—C15—H15	119.9
C6—C5—C4	120.1 (2)	C15—C16—C17	120.3 (2)
С6—С5—Н5	120.0	C15—C16—H16	119.8
C4—C5—H5	120.0	C17—C16—H16	119.8
C5-C6-C1	1211(2)	C_{18} $-C_{17}$ $-C_{16}$	1195(2)
C5-C6-H6	119.5	C18 - C17 - H17	120.2
$C_1 C_6 H_6$	110.5	$C_{16} = C_{17} = H_{17}$	120.2
1 - 0 - 10 N2 C7 N4	117.3	$C_{10} - C_{17} - C_{12}$	120.2
1N3 - C / - 1N4	127.1(2)	C17 = C18 = U18	120.3 (2)
N3	118.66 (19)	C1/C18H18	119.8
N4—C7—N2	114.27 (19)	C13—C18—H18	119.8

N3—C8—C9	121.3 (2)	O3—C19—O4	123.3 (2)
N3—C8—C11	116.1 (2)	O3—C19—C13	122.3 (2)
C9—C8—C11	122.6 (2)	O4—C19—C13	114.41 (19)
O1—S1—N2—C7	47.5 (2)	S1—N2—C7—N3	5.5 (3)
O2—S1—N2—C7	174.35 (18)	S1—N2—C7—N4	-173.94 (16)
C4—S1—N2—C7	-70.9 (2)	C7—N3—C8—C9	0.6 (3)
N1—C1—C2—C3	179.8 (2)	C7—N3—C8—C11	-179.64 (19)
C6—C1—C2—C3	-2.1 (3)	N3—C8—C9—C10	-1.1 (3)
C1—C2—C3—C4	-0.2 (3)	C11—C8—C9—C10	179.1 (2)
C2—C3—C4—C5	1.7 (3)	C7—N4—C10—C9	1.1 (3)
C2—C3—C4—S1	-177.03 (17)	C7—N4—C10—C12	-179.1 (2)
O1—S1—C4—C5	145.66 (18)	C8—C9—C10—N4	0.2 (3)
O2—S1—C4—C5	13.6 (2)	C8—C9—C10—C12	-179.6 (2)
N2—S1—C4—C5	-97.07 (19)	C18—C13—C14—C15	0.5 (3)
O1—S1—C4—C3	-35.6 (2)	C19—C13—C14—C15	-177.2 (2)
O2—S1—C4—C3	-167.67 (17)	C13-C14-C15-C16	-0.6 (3)
N2—S1—C4—C3	81.6 (2)	C14-C15-C16-C17	0.6 (4)
C3—C4—C5—C6	-0.8 (3)	C15—C16—C17—C18	-0.4 (4)
S1—C4—C5—C6	177.91 (17)	C16—C17—C18—C13	0.2 (4)
C4—C5—C6—C1	-1.5 (4)	C14—C13—C18—C17	-0.2 (3)
N1-C1-C6-C5	-179.0 (2)	C19—C13—C18—C17	177.4 (2)
C2-C1-C6-C5	3.0 (3)	C18—C13—C19—O3	-3.6 (3)
C8—N3—C7—N4	0.9 (3)	C14—C13—C19—O3	174.0 (2)
C8—N3—C7—N2	-178.43 (19)	C18—C13—C19—O4	177.3 (2)
C10—N4—C7—N3	-1.7 (3)	C14—C13—C19—O4	-5.1 (3)
C10—N4—C7—N2	177.64 (19)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H···A	D—H	H···A	D··· A	D—H··· A
O4—H4o…N4	0.85 (2)	1.79 (2)	2.639 (3)	177 (3)
N2—H3n···O3	0.89 (2)	1.90 (2)	2.787 (3)	176 (3)
N1—H1n···O1 ⁱ	0.89 (2)	2.07 (2)	2.952 (3)	173 (3)
N1—H2n···O3 ⁱⁱ	0.88 (2)	2.31 (3)	3.073 (3)	144 (2)
C12—H12c····O1 ⁱⁱⁱ	0.98	2.58	3.455 (3)	149
C11—H11c···· $Cg1^{iv}$	0.98	2.76	3.672 (3)	155

Symmetry codes: (i) -*x*+3/2, *y*-1/2, *z*; (ii) -*x*+1, *y*-1/2, -*z*+3/2; (iii) *x*, -*y*+3/2, *z*-1/2; (iv) -*x*+1, -*y*+1, -*z*+1.