

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 5-amino-1-(6-chloropyridazin-3-yl)-1*H*-pyrazole-4-carboxylate

Abdul Qayyum Ather,^{a,b} M. Nawaz Tahir,^c* Misbahul Ain Khan,^a Muhammad Makshoof Athar^d and Eliana Aparecida Silicz Bueno^e

^aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, ^bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, ^cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, ^dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, and ^eInstituto de Quimica, Universidade Estadual de Londrina, Londrina, Pr., Brazil Correspondence e-mail: dmntahir_uos@vahoo.com

Received 23 August 2010; accepted 25 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.035; w*R* factor = 0.101; data-to-parameter ratio = 13.0.

In the title compound, $C_{10}H_{10}ClN_5O_2$, the dihedral angle between the aromatic rings is $0.16~(9)^\circ$. Two S(6) ring motifs are formed due to intramolecular $N-H\cdots N$ and $N-H\cdots O$ hydrogen bonds. In the crystal, inversion dimers linked by pairs of $N-H\cdots N$ hydrogen bonds generate $R_2^2(14)$ [or $R_4^4(10)$ *via* the intramolecular hydrogen bonds] ring motifs. Polymeric chains propagating in [210] are formed as a result of interlinking the dimers by pairs of $C-H\cdots N$ interactions, completing $R_2^2(6)$ ring motifs.

Related literature

For biochemical background and related structures, see: Ather *et al.* (2010*a*,*b*,*c*). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{10}H_{10}CIN_5O_2$ $M_r = 267.68$ Triclinic, $P\overline{1}$ a = 5.3618 (3) Å

b = 8.6168 (4) Å

c = 13.1585 (7) Å
$\alpha = 77.734 \ (2)^{\circ}$
$\beta = 82.928 \ (1)^{\circ}$
$\gamma = 86.722 \ (2)^{\circ}$
$V = 589.24 (5) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 0.33 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.982, T_{\max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 164 parameters $wR(F^2) = 0.101$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.22$ e Å $^{-3}$ 2125 reflections $\Delta \rho_{min} = -0.16$ e Å $^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

			D (D H H
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N5-H5A\cdots N1$	0.86	2.17	2.775 (2)	127
$N5-H5B\cdots O2$	0.86	2.40	2.942 (2)	122
$N5 - H5B \cdot \cdot \cdot N2^{i}$	0.86	2.41	3.017 (2)	128
$C5 - H5 \cdots N4^{ii}$	0.93	2.53	3.313 (2)	142

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5619).

References

- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, 01327.
- Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010b). Acta Cryst. E66, o1900.
- Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, 02016.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

T = 296 K

 $R_{\rm int} = 0.032$

 $0.25 \times 0.20 \times 0.08 \text{ mm}$

8832 measured reflections 2125 independent reflections

1721 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2010). E66, o2445 [https://doi.org/10.1107/S1600536810034240]

Ethyl 5-amino-1-(6-chloropyridazin-3-yl)-1H-pyrazole-4-carboxylate

Abdul Qayyum Ather, M. Nawaz Tahir, Misbahul Ain Khan, Muhammad Makshoof Athar and Eliana Aparecida Silicz Bueno

S1. Comment

In continuation of our studies of pyrazolylpyridazine derivatives (Ather *et al.*, 2010*a*, *b*, *c*), the title compound (I, Fig. 1) is being reported here.

In (I), the 1-(6-chloropyridazin-3-yl)-1*H*-pyrazol-5-amine moiety A (C1—C7/N1—N5/CL1) and ethyl formate group B (C8—C10/O1/O2) are planar with r. m. s. deviations of 0.0026 and 0.0293 Å, respectively. The dihedral angle between A/B is 3.09 (12)°. There exist two S(6) ring motifs (Bernstein *et al.*, 1995) due to N–H…N and N—H…O types of intramolecular H-bondings (Table 1, Fig. 1). The molecules are dimerized due to N–H…N type of H-bonding (Table 2, Fig. 2) with $R_4^4(10)$ ring motifs. The dimers are interliked in the from of polymeric chains due to H-bondings of C—H…N type with $R_2^2(6)$ ring motifs (Table 2, Fig. 2).

S2. Experimental

3-Chloro-6-hydrazinylpyridazine (2 g, 13.84 mmol) and ethylethoxymethylene cyanoacetate (2.35 g, 13.84 mmol) were dissolved in acetic acid (10 ml). The obtained reaction mixture was refluxed for 4 h and cooled to room temperature. The resulting product was poured in 100 ml of distiled water and the precipitates were formed. The precipitates obtained by filteration were washed three times by water. The crude material obtained was dried and purified by column chromatography. The final product was re-crystallized in benzene to obtain light brown plates of (I).

S3. Refinement

The H-atoms were positioned geometrically (N–H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = x U_{eq}(C, N)$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figure 1

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radius. The dotted lines indicate the intramolecular H-bonds.

Figure 2

Packing diagram of (I) showing that the molecules form dimers, which are interlinked in the form of polymeric chains.

Ethyl 5-amino-1-(6-chloropyridazin-3-yl)-1H-pyrazole-4-carboxylate

Crystal data	
$C_{10}H_{10}ClN_5O_2$	$\gamma = 86.722 \ (2)^{\circ}$
$M_r = 267.68$	$V = 589.24 (5) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 276
a = 5.3618 (3) Å	$D_{\rm x} = 1.509 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.6168 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 13.1585 (7) Å	Cell parameters from 1721 reflections
$\alpha = 77.734 \ (2)^{\circ}$	$\theta = 2.4 - 25.2^{\circ}$
$\beta = 82.928 (1)^{\circ}$	$\mu = 0.33 \text{ mm}^{-1}$

T = 296 KPlate, light brown

Data collection

Bruker Kappa APEXII CCD diffractometer	8832 measured reflections 2125 independent reflections
Radiation source: fine-focus sealed tube	1721 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\rm max} = 25.2^\circ, \ \theta_{\rm min} = 2.4^\circ$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(SADABS; Bruker, 2005)	$l = -15 \rightarrow 15$
$T_{\min} = 0.982, \ T_{\max} = 0.988$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
2125 reflections	$w = 1/[\sigma^2(F_o^2) + (0.049P)^2 + 0.1261P]$
164 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

 $0.25 \times 0.20 \times 0.08 \text{ mm}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.21255 (10)	0.81971 (7)	-0.39777 (4)	0.0677 (2)	
01	0.0151 (3)	0.69934 (15)	0.27701 (10)	0.0604 (4)	
O2	0.3413 (3)	0.52161 (16)	0.27988 (10)	0.0640 (5)	
N1	0.8615 (3)	0.69752 (18)	-0.12132 (12)	0.0510 (5)	
N2	1.0286 (3)	0.70752 (18)	-0.20741 (12)	0.0542 (5)	
N3	0.4983 (2)	0.78156 (16)	-0.03130 (10)	0.0431 (5)	
N4	0.2872 (3)	0.88448 (17)	-0.03037 (12)	0.0502 (5)	
N5	0.6846 (3)	0.56546 (17)	0.08430 (12)	0.0555 (5)	
C1	0.6639 (3)	0.79680 (19)	-0.12305 (13)	0.0415 (5)	
C2	0.6174 (3)	0.9141 (2)	-0.21063 (15)	0.0533 (6)	
C3	0.7854 (3)	0.9223 (2)	-0.29680 (15)	0.0561 (6)	
C4	0.9885 (3)	0.8155 (2)	-0.29040 (14)	0.0481 (6)	
C5	0.1714 (3)	0.8415 (2)	0.06357 (14)	0.0500 (6)	
C6	0.2931 (3)	0.7149 (2)	0.12671 (13)	0.0445 (5)	

supporting information

C7	0.5052 (3)	0.67718 (19)	0.06360 (13)	0.0422 (5)	
C8	0.2250 (3)	0.6341 (2)	0.23350 (14)	0.0486 (6)	
С9	-0.0707 (5)	0.6236 (3)	0.38284 (17)	0.0732 (8)	
C10	-0.2913 (4)	0.7155 (3)	0.42191 (19)	0.0806 (9)	
H2	0.47768	0.98310	-0.20953	0.0639*	
H3	0.76539	0.99675	-0.35797	0.0673*	
H5	0.02210	0.89012	0.08673	0.0600*	
H5A	0.80622	0.55512	0.03686	0.0665*	
H5B	0.67887	0.50366	0.14512	0.0665*	
H9A	0.06306	0.61935	0.42685	0.0879*	
H9B	-0.11731	0.51568	0.38514	0.0879*	
H10A	-0.42248	0.71987	0.37778	0.1208*	
H10B	-0.24295	0.82139	0.42099	0.1208*	
H10C	-0.35108	0.66460	0.49222	0.1208*	

Atomic displacement parameters (\mathring{A}^2)

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0694 (3)	0.0765 (4)	0.0499 (3)	0.0052 (3)	0.0126 (2)	-0.0098 (3)
01	0.0675 (8)	0.0591 (8)	0.0434 (7)	0.0132 (6)	0.0109 (6)	0.0005 (6)
O2	0.0691 (9)	0.0651 (9)	0.0483 (8)	0.0172 (7)	-0.0037 (7)	0.0029 (6)
N1	0.0510 (8)	0.0536 (9)	0.0424 (8)	0.0121 (7)	0.0004 (7)	-0.0037 (7)
N2	0.0530 (9)	0.0583 (10)	0.0457 (9)	0.0122 (7)	0.0024 (7)	-0.0064 (8)
N3	0.0442 (8)	0.0407 (8)	0.0398 (8)	0.0096 (6)	-0.0023 (6)	-0.0027 (6)
N4	0.0469 (8)	0.0485 (8)	0.0486 (9)	0.0168 (7)	-0.0014 (7)	-0.0022 (7)
N5	0.0544 (9)	0.0579 (10)	0.0445 (9)	0.0196 (7)	-0.0021 (7)	0.0032 (7)
C1	0.0422 (9)	0.0420 (9)	0.0395 (9)	0.0041 (7)	-0.0040 (7)	-0.0085 (7)
C2	0.0535 (10)	0.0515 (10)	0.0480 (11)	0.0137 (8)	-0.0039 (8)	-0.0003 (8)
C3	0.0608 (11)	0.0570 (11)	0.0428 (10)	0.0081 (9)	-0.0026 (9)	0.0026 (9)
C4	0.0512 (10)	0.0512 (10)	0.0403 (10)	0.0011 (8)	-0.0008(8)	-0.0093 (8)
C5	0.0472 (9)	0.0500 (10)	0.0479 (10)	0.0106 (8)	0.0013 (8)	-0.0064 (8)
C6	0.0462 (9)	0.0451 (9)	0.0390 (9)	0.0058 (7)	-0.0027 (7)	-0.0050 (8)
C7	0.0441 (9)	0.0404 (9)	0.0400 (9)	0.0047 (7)	-0.0058 (7)	-0.0050 (7)
C8	0.0526 (10)	0.0482 (10)	0.0429 (10)	0.0042 (8)	-0.0034 (8)	-0.0073 (8)
C9	0.0894 (15)	0.0670 (13)	0.0492 (12)	0.0089 (11)	0.0189 (11)	0.0010 (10)
C10	0.0777 (15)	0.0906 (17)	0.0658 (15)	0.0008 (13)	0.0197 (12)	-0.0161 (13)

Geometric parameters (Å, °)

Cl1—C4	1.7337 (18)	C2—C3	1.351 (3)	_
O1—C8	1.348 (2)	C3—C4	1.384 (2)	
01—С9	1.438 (3)	C5—C6	1.405 (2)	
O2—C8	1.214 (2)	C6—C7	1.389 (2)	
N1—N2	1.346 (2)	C6—C8	1.442 (2)	
N1—C1	1.323 (2)	C9—C10	1.486 (4)	
N2-C4	1.307 (2)	C2—H2	0.9300	
N3—N4	1.398 (2)	С3—Н3	0.9300	
N3—C1	1.395 (2)	С5—Н5	0.9300	

supporting information

N3—C7	1.378 (2)	С9—Н9А	0.9700
N4—C5	1.301 (2)	C9—H9B	0.9700
N5—C7	1.332 (2)	C10—H10A	0.9600
N5—H5A	0.8600	C10—H10B	0.9600
N5—H5B	0.8600	C10-H10C	0.9600
C1-C2	1400(2)		0.9000
01 02	1.400 (2)		
C8—O1—C9	115.59 (16)	N3-C7-N5	124.20 (15)
N2—N1—C1	119.35 (15)	N3—C7—C6	105.71 (14)
N1—N2—C4	118 42 (16)	01 - C8 - 02	123 39 (16)
N4—N3—C1	118 30 (13)	01 - C8 - C6	111 74 (15)
N4—N3—C7	111 47 (12)	$0^{2}-C^{8}-C^{6}$	124 87 (16)
C1 - N3 - C7	130.23(13)	01 - C9 - C10	1091(2)
$N_3 - N_4 - C_5$	$104\ 02\ (14)$	C1-C2-H2	122.00
H5A—N5—H5B	120.00	$C_3 - C_2 - H_2$	122.00
C7—N5—H5A	120.00	C2-C3-H3	121.00
C7—N5—H5B	120.00	C4—C3—H3	121.00
N1-C1-N3	116.76 (15)	N4-C5-H5	121.00
N1-C1-C2	123 38 (16)	С6—С5—Н5	123.00
$N_3 - C_1 - C_2$	119.86 (15)	01 - C9 - H9A	110.00
C1 - C2 - C3	116.75 (16)	01 - C9 - H9B	110.00
$C_2 - C_3 - C_4$	117 32 (17)	C10-C9-H9A	110.00
$N_{2}^{-}C_{4}^{-}C_{3}^{-}$	117.32(17) 124 78 (17)	C10-C9-H9B	110.00
$C_{11} - C_{4} - C_{3}$	119.87(14)	$H_{0}A = C_{0} = H_{0}B$	108.00
$C_1 = C_4 = C_3$	115.35 (13)	C9-C10-H10A	100.00
N4-C5-C6	113.70 (15)	C9-C10-H10B	109.00
114 - 05 - 00	105.11(15)	C_{2}	109.00
C_{5}	130 39 (16)	H_{10A} C_{10} H_{10B}	109.00
C_{7} C_{6} C_{8}	124 51 (15)	H_{10A} $-C_{10}$ H_{10C}	109.00
$N_{2} = C_{1} = C_{2}$	124.51(15) 130.09(16)	H10B-C10-H10C	109.00
	150.09 (10)	mob ero moe	109.00
C9-01-C8-02	-2.0(3)	C1—N3—C7—C6	-179.82 (16)
C9—O1—C8—C6	178.45 (17)	N3—N4—C5—C6	0.2 (2)
C8—O1—C9—C10	176.03 (17)	N1—C1—C2—C3	0.6 (3)
C1—N1—N2—C4	-0.3 (2)	N3—C1—C2—C3	179.95 (16)
N2—N1—C1—N3	-179.52 (15)	C1—C2—C3—C4	-0.6 (2)
N2—N1—C1—C2	-0.1 (3)	C2—C3—C4—Cl1	-179.69 (14)
N1—N2—C4—C11	-179.85 (13)	C2-C3-C4-N2	0.2 (3)
N1—N2—C4—C3	0.2 (3)	N4—C5—C6—C7	-0.2(2)
C1—N3—N4—C5	179.72 (14)	N4—C5—C6—C8	-179.72 (17)
C7—N3—N4—C5	0.00 (18)	C5—C6—C7—N3	0.21 (18)
N4—N3—C1—N1	-179.93 (15)	C5—C6—C7—N5	-179.42 (18)
N4—N3—C1—C2	0.6 (2)	C8—C6—C7—N3	179.73 (16)
C7—N3—C1—N1	-0.3 (3)	C8—C6—C7—N5	0.1 (3)
C7—N3—C1—C2	-179.69 (16)	C5-C6-C8-01	-2.9(3)
N4—N3—C7—N5	179.53 (15)	C5—C6—C8—O2	177.57 (18)
N4—N3—C7—C6	-0.13 (18)	C7—C6—C8—O1	177.73 (16)
C1—N3—C7—N5	-0.2 (3)	C7—C6—C8—O2	-1.8 (3)
	× /		× /

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N5—H5A…N1	0.86	2.17	2.775 (2)	127
N5—H5 <i>B</i> ···O2	0.86	2.40	2.942 (2)	122
N5—H5 B ····N2 ⁱ	0.86	2.41	3.017 (2)	128
C5—H5…N4 ⁱⁱ	0.93	2.53	3.313 (2)	142

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*, -*y*+2, -*z*.