

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 1'-Acetyl-3-phenyl-6-oxa-4-thia-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,3'indolin]-2'-one

#### Hoong-Kun Fun,<sup>a</sup>\*<sup>‡</sup> Jia Hao Goh,<sup>a</sup>§ Yang Liu<sup>b</sup> and Yan Zhang<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: hkfun@usm.my

Received 2 August 2010; accepted 3 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.128; data-to-parameter ratio = 16.0.

In the title indoline compound,  $C_{19}H_{14}N_2O_3S$ , the pyrrolidine ring adopts an envelope conformation with the four-connected (spiro) C atom as the flap [displacement = 0.148 (3) Å]. The mean plane formed through the indoline unit is inclined at dihedral angles of 89.92 (16) and 59.54  $(12)^{\circ}$  with the thiazole and phenyl rings, respectively; the dihedral angle between the latter rings is 9.55  $(14)^{\circ}$ . In the crystal, pairs of intermolecular  $C-H \cdots O$  hydrogen bonds link neighbouring molecules into inversion dimers, producing  $R_2^2(6)$  hydrogen-bond ring motifs. Weak intermolecular  $C-H\cdots\pi$  as well as  $\pi-\pi$  interactions [centroid–centroid distance = 3.4041(15) Å] further consolidate the crystal structure.

#### **Related literature**

For general background to and applications of compounds related to the title indoline compound, see: Aanandhi et al. (2008); Crews et al. (1988); Cutignano et al. (2001); DeRoy & Charette (2003); Gao et al. (2010); Kaleta et al. (2006); Lawrence et al. (2008); Muthukumar et al. (2008); Shi et al. (2010); Tsuruni et al. (1995); Wang et al. (2005); Williams et al. (2001); Xue et al. (2000); Yoshimura et al. (1995); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Fun et al. (2010); Usman et al. (2001, 2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).



### **Experimental**

Crystal data C19H14N2O3S  $M_r = 350.38$ Triclinic,  $P\overline{1}$ a = 7.5054 (3) Å b = 9.4936 (3) Å c = 11.6359 (4) Å  $\alpha = 103.502 (3)^{\circ}$  $\beta = 91.163 (3)^{\circ}$ 

#### Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\rm min}=0.948,\;T_{\rm max}=0.989$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$  $wR(F^2) = 0.128$ S = 1.053627 reflections

10748 measured reflections

 $0.24 \times 0.10 \times 0.05 \ \mathrm{mm}$ 

 $\gamma = 100.200 \ (3)^{\circ}$ 

Z = 2

V = 791.79 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $\mu = 0.23 \text{ mm}^{-1}$ 

T = 100 K

3627 independent reflections 2548 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.062$ 

| 227 parameters                                             |
|------------------------------------------------------------|
| H-atom parameters constrained                              |
| $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C1-C6 phenyl ring.

| $D - H \cdots A$        | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------|------|-------------------------|--------------|--------------------------------------|
| $C10-H10A\cdots O1^{i}$ | 0.98 | 2.56                    | 3.261 (3)    | 129                                  |
| C14-H14A\cdots Cg1^{ii} | 0.93 | 2.67                    | 3.423 (3)    | 139                                  |

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x - 1, y - 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/ 811012). Financial support from the Ministry of Science and Technology of China of the Austria-China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

<sup>‡</sup> Thomson Reuters ResearcherID: A-3561-2009.

<sup>§</sup> Thomson Reuters ResearcherID: C-7576-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5595).

#### References

- Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588–4594.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Crews, P., Kakou, Y. & Quinoa, E. (1988). J. Am. Chem. Soc. 110, 4365–4368. Cutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-
- Paloma, L. & Riccio, R. (2001). *Eur. J. Org. Chem.* pp. 775–778.
- DeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163–4165.
- Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010). Acta Cryst. E66, 0737–0738.
   Gao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259–3266.
- Kaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628.

- Lawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948–4956.
- Muthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). *Biol. Pharm. Bull.* **31**, 1461–1464.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152–161.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066–1072.
- Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E**57**, o1070–o1072.
- Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, 037–039.
- Wang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. **70**, 3850–3858.
- Williams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463–8469.Xue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583–2586.
- Yoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073–1075.
- Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893–4895.

## supporting information

Acta Cryst. (2010). E66, o2257-o2258 [https://doi.org/10.1107/S1600536810031016] 1'-Acetyl-3-phenyl-6-oxa-4-thia-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,3'indolin]-2'-one

### Hoong-Kun Fun, Jia Hao Goh, Yang Liu and Yan Zhang

#### S1. Comment

Oxoindole and spiroindole are important heterocyclic compounds with diverse bioactivities (Aanandhi *et al.*, 2008; Muthukumar *et al.*, 2008; Lawrence *et al.*, 2008). Photoreactions of *N*-acetylisatin with alkenes or oxazoles are convenient ways to construct spiroindole frameworks (Wang *et al.*, 2005; Zhang *et al.*, 2004; Xue *et al.*, 2000). Thiazolecontaining compounds, such as the mycothiazole (Crews *et al.*, 1988; Cutignano *et al.*, 2001), cystothiazole A (Williams *et al.*, 2001; DeRoy & Charette, 2003) and WS75624 B (Yoshimura *et al.*, 1995; Tsuruni *et al.*, 1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao *et al.*, 2010; Shi *et al.*, 2010; Kaleta *et al.*, 2006). The title compound, (I), which contains spiroindole and thiazole rings is now described.

In the title indoline compound (Fig. 1), the pyrrolidine ring (C1/C6/N1/C7/C8) of the indoline moiety adopts an envelope conformation with the C8 atom as the flap atom; the puckering parameters are Q = 0.090 (3) Å and  $\varphi$  = 106.4° (Cremer & Pople, 1975). The essentially planar thiazole ring (C9/C10/S1/C11/N2) and C12-C17 phenyl ring are inclined at dihedral angles of 89.92 (16) and 59.54 (12)°, respectively, with respect to the mean plane formed through the indoline moiety (C1-C8/N1). The geometric parameters agree well with those observed in the closely related structures (Fun *et al.*, 2010; Usman *et al.*, 2001, 2002).

In the crystal structure (Fig. 2), pairs of intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link neighbouring molecules into dimers incorporating  $R^2_2(6)$  hydrogen bond ring motifs (Bernstein *et al.*, 1995). The crystal structure is further stabilized by weak intermolecular C14—H14A···Cg1 (Table 1) as well as  $Cg2\cdots Cg3$  [ $Cg2\cdots Cg3$  = 3.4041 (15); symmetry code: x, y, z] interactions where Cg1, Cg2 and Cg3 are the centroids of C1-C6 phenyl, thiazole and pyrrolidine rings, respectively.

#### **S2.** Experimental

The title compound was one of the products from the photoreaction between *N*-acetylisatin and 2-phenylthiazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. Colourless blocks of (I) were obtained from slow evaporation of an acetone and petroleum ether (1:6) solution. *M.p.* 442–444 K.

#### **S3. Refinement**

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ . The rotating group model was applied to the methyl group.





The asymmetric unit of (I) with displacement ellipsoids for non-hydrogen atoms are drawn at the 50 % probability level.



### Figure 2

The crystal structure of (I), viewed along the b axis, showing adjacent molecules being linked into dimers. Intermolecular hydrogen bonds are shown as dashed lines.

1'-Acetyl-3-phenyl-6-oxa-4-thia-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,3'-indolin]-2'-one

| Crystal data                     |                                                       |
|----------------------------------|-------------------------------------------------------|
| $C_{19}H_{14}N_2O_3S$            | $\gamma = 100.200 \ (3)^{\circ}$                      |
| $M_r = 350.38$                   | V = 791.79 (5) Å <sup>3</sup>                         |
| Triclinic, $P\overline{1}$       | Z = 2                                                 |
| Hall symbol: -P 1                | F(000) = 364                                          |
| a = 7.5054 (3) Å                 | $D_{\rm x} = 1.470 {\rm ~Mg} {\rm ~m}^{-3}$           |
| b = 9.4936 (3) Å                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| c = 11.6359 (4) Å                | Cell parameters from 2361 reflections                 |
| $\alpha = 103.502 \ (3)^{\circ}$ | $\theta = 2.5 - 29.9^{\circ}$                         |
| $\beta = 91.163 \ (3)^{\circ}$   | $\mu = 0.23 \text{ mm}^{-1}$                          |

#### T = 100 KBlock, colourless

Data collection

| Bruker SMART APEXII CCD<br>diffractometer | 10748 measured reflections<br>3627 independent reflections          |
|-------------------------------------------|---------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube  | 2548 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                    | $R_{\rm int} = 0.062$                                               |
| $\varphi$ and $\omega$ scans              | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$ |
| Absorption correction: multi-scan         | $h = -9 \rightarrow 9$                                              |
| (SADABS; Bruker, 2009)                    | $k = -12 \rightarrow 10$                                            |
| $T_{\min} = 0.948, \ T_{\max} = 0.989$    | $l = -15 \rightarrow 15$                                            |
| Refinement                                |                                                                     |
| Refinement on $F^2$                       | Secondary atom site location: difference Fourier                    |
| Least-squares matrix: full                | map                                                                 |

 $0.24 \times 0.10 \times 0.05 \text{ mm}$ 

| Least-squares matrix. Tun                       | пар                                                          |
|-------------------------------------------------|--------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.058$                 | Hydrogen site location: inferred from                        |
| $wR(F^2) = 0.128$                               | neighbouring sites                                           |
| S = 1.05                                        | H-atom parameters constrained                                |
| 3627 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0437P)^2 + 0.6382P]$            |
| 227 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                               |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                          |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$        |
| direct methods                                  | $\Delta  ho_{ m min} = -0.42  \mathrm{e}  \mathrm{\AA}^{-3}$ |

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative F<sup>2</sup>. The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|--------------|--------------|-----------------------------|--|
| <b>S</b> 1 | 0.31424 (10) | 0.63788 (7)  | 0.48799 (6)  | 0.01816 (18)                |  |
| 01         | 0.5459 (3)   | 0.90182 (19) | 0.58975 (16) | 0.0190 (4)                  |  |
| O2         | 0.6257 (3)   | 0.7176 (2)   | 0.74453 (17) | 0.0244 (5)                  |  |
| 03         | 0.8183 (3)   | 0.9955 (2)   | 1.07309 (17) | 0.0229 (5)                  |  |
| N1         | 0.6758 (3)   | 0.9398 (2)   | 0.89013 (19) | 0.0156 (5)                  |  |
| N2         | 0.2265 (3)   | 0.7250 (2)   | 0.70929 (19) | 0.0158 (5)                  |  |
| C1         | 0.5502 (4)   | 1.0821 (3)   | 0.7864 (2)   | 0.0161 (6)                  |  |
| C2         | 0.5067 (4)   | 1.2098 (3)   | 0.7631 (2)   | 0.0186 (6)                  |  |
| H2A        | 0.4462       | 1.2074       | 0.6919       | 0.022*                      |  |
| C3         | 0.5566 (4)   | 1.3413 (3)   | 0.8498 (3)   | 0.0204 (6)                  |  |
| H3A        | 0.5333       | 1.4291       | 0.8358       | 0.025*                      |  |
| C4         | 0.6407 (4)   | 1.3411 (3)   | 0.9567 (3)   | 0.0212 (6)                  |  |
|            |              |              |              |                             |  |

# supporting information

| H4A  | 0.6693      | 1.4293     | 1.0143     | 0.025*     |
|------|-------------|------------|------------|------------|
| C5   | 0.6845 (4)  | 1.2135 (3) | 0.9816 (2) | 0.0180 (6) |
| H5A  | 0.7404      | 1.2149     | 1.0540     | 0.022*     |
| C6   | 0.6399 (4)  | 1.0849 (3) | 0.8924 (2) | 0.0159 (6) |
| C7   | 0.6062 (4)  | 0.8429 (3) | 0.7805 (2) | 0.0173 (6) |
| C8   | 0.5034 (4)  | 0.9279 (3) | 0.7127 (2) | 0.0161 (6) |
| C9   | 0.2983 (4)  | 0.8603 (3) | 0.6760 (2) | 0.0156 (6) |
| H9A  | 0.2192      | 0.9334     | 0.6934     | 0.019*     |
| C10  | 0.3596 (4)  | 0.8344 (3) | 0.5480 (2) | 0.0168 (6) |
| H10A | 0.3038      | 0.8885     | 0.4995     | 0.020*     |
| C11  | 0.2314 (4)  | 0.6112 (3) | 0.6260 (2) | 0.0156 (6) |
| C12  | 0.1634 (4)  | 0.4594 (3) | 0.6374 (2) | 0.0157 (6) |
| C13  | 0.0699 (4)  | 0.4403 (3) | 0.7366 (2) | 0.0180 (6) |
| H13A | 0.0553      | 0.5223     | 0.7949     | 0.022*     |
| C14  | -0.0011 (4) | 0.3003 (3) | 0.7486 (2) | 0.0198 (6) |
| H14A | -0.0637     | 0.2881     | 0.8148     | 0.024*     |
| C15  | 0.0213 (4)  | 0.1773 (3) | 0.6613 (3) | 0.0213 (6) |
| H15A | -0.0262     | 0.0829     | 0.6691     | 0.026*     |
| C16  | 0.1142 (4)  | 0.1963 (3) | 0.5632 (3) | 0.0217 (6) |
| H16A | 0.1287      | 0.1142     | 0.5050     | 0.026*     |
| C17  | 0.1866 (4)  | 0.3371 (3) | 0.5504 (2) | 0.0181 (6) |
| H17A | 0.2497      | 0.3491     | 0.4844     | 0.022*     |
| C18  | 0.7757 (4)  | 0.9051 (3) | 0.9798 (2) | 0.0170 (6) |
| C19  | 0.8273 (4)  | 0.7560 (3) | 0.9534 (3) | 0.0240 (7) |
| H19D | 0.8923      | 0.7446     | 1.0216     | 0.036*     |
| H19A | 0.9029      | 0.7467     | 0.8875     | 0.036*     |
| H19B | 0.7197      | 0.6812     | 0.9343     | 0.036*     |
|      |             |            |            |            |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|------------|-------------|-------------|-------------|-------------|--------------|-------------|
| <b>S</b> 1 | 0.0253 (4)  | 0.0130 (3)  | 0.0158 (3)  | 0.0014 (3)  | 0.0011 (3)   | 0.0044 (3)  |
| 01         | 0.0228 (11) | 0.0163 (9)  | 0.0174 (10) | 0.0026 (8)  | 0.0010 (8)   | 0.0037 (8)  |
| O2         | 0.0338 (13) | 0.0134 (10) | 0.0266 (11) | 0.0091 (9)  | -0.0044 (9)  | 0.0030 (8)  |
| O3         | 0.0289 (12) | 0.0223 (10) | 0.0180 (10) | 0.0053 (9)  | 0.0006 (9)   | 0.0060 (9)  |
| N1         | 0.0201 (13) | 0.0111 (10) | 0.0167 (11) | 0.0030 (9)  | 0.0020 (9)   | 0.0054 (9)  |
| N2         | 0.0177 (12) | 0.0115 (11) | 0.0184 (12) | 0.0027 (9)  | 0.0012 (9)   | 0.0042 (9)  |
| C1         | 0.0174 (15) | 0.0109 (12) | 0.0202 (14) | 0.0008 (11) | 0.0042 (11)  | 0.0052 (11) |
| C2         | 0.0188 (15) | 0.0152 (13) | 0.0237 (14) | 0.0041 (11) | -0.0008 (12) | 0.0081 (11) |
| C3         | 0.0198 (15) | 0.0101 (13) | 0.0332 (16) | 0.0044 (11) | 0.0041 (12)  | 0.0074 (12) |
| C4         | 0.0237 (17) | 0.0133 (13) | 0.0241 (15) | 0.0022 (12) | 0.0052 (12)  | 0.0002 (11) |
| C5         | 0.0167 (15) | 0.0166 (13) | 0.0196 (14) | 0.0016 (11) | 0.0023 (11)  | 0.0034 (11) |
| C6         | 0.0167 (15) | 0.0125 (12) | 0.0204 (14) | 0.0027 (11) | 0.0025 (11)  | 0.0075 (11) |
| C7         | 0.0210 (16) | 0.0120 (13) | 0.0192 (14) | 0.0026 (11) | 0.0010 (11)  | 0.0050 (11) |
| C8         | 0.0226 (16) | 0.0111 (12) | 0.0151 (13) | 0.0020 (11) | 0.0023 (11)  | 0.0049 (11) |
| C9         | 0.0196 (15) | 0.0118 (12) | 0.0162 (13) | 0.0018 (11) | 0.0015 (11)  | 0.0055 (11) |
| C10        | 0.0193 (15) | 0.0116 (12) | 0.0202 (14) | 0.0018 (11) | -0.0006 (11) | 0.0062 (11) |
| C11        | 0.0160 (14) | 0.0149 (13) | 0.0180 (13) | 0.0045 (11) | 0.0003 (11)  | 0.0066 (11) |
|            |             |             |             |             |              |             |

# supporting information

| C12 | 0.0145 (14) | 0.0134 (12) | 0.0191 (14) | 0.0012 (11) | -0.0019 (11) | 0.0049 (11) |  |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|--|
| C13 | 0.0235 (16) | 0.0155 (13) | 0.0149 (13) | 0.0045 (12) | 0.0013 (11)  | 0.0027 (11) |  |
| C14 | 0.0211 (16) | 0.0212 (14) | 0.0193 (14) | 0.0032 (12) | 0.0025 (12)  | 0.0100 (12) |  |
| C15 | 0.0213 (16) | 0.0119 (13) | 0.0314 (16) | 0.0016 (11) | 0.0001 (13)  | 0.0079 (12) |  |
| C16 | 0.0244 (17) | 0.0136 (13) | 0.0256 (15) | 0.0046 (12) | 0.0013 (13)  | 0.0011 (12) |  |
| C17 | 0.0175 (15) | 0.0171 (14) | 0.0197 (14) | 0.0044 (11) | 0.0029 (11)  | 0.0033 (11) |  |
| C18 | 0.0166 (15) | 0.0184 (13) | 0.0178 (14) | 0.0017 (11) | 0.0025 (11)  | 0.0086 (11) |  |
| C19 | 0.0275 (17) | 0.0188 (14) | 0.0282 (16) | 0.0086 (12) | -0.0068 (13) | 0.0083 (12) |  |
|     |             |             |             |             |              |             |  |

Geometric parameters (Å, °)

| S1—C11     | 1.790 (3)  | С7—С8       | 1.538 (4)   |
|------------|------------|-------------|-------------|
| S1—C10     | 1.801 (3)  | C8—C9       | 1.568 (4)   |
| O1—C8      | 1.446 (3)  | C9—C10      | 1.544 (4)   |
| O1—C10     | 1.452 (3)  | С9—Н9А      | 0.9800      |
| O2—C7      | 1.201 (3)  | C10—H10A    | 0.9800      |
| O3—C18     | 1.212 (3)  | C11—C12     | 1.479 (4)   |
| N1—C18     | 1.406 (3)  | C12—C17     | 1.390 (4)   |
| N1—C7      | 1.415 (3)  | C12—C13     | 1.393 (4)   |
| N1—C6      | 1.444 (3)  | C13—C14     | 1.382 (4)   |
| N2—C11     | 1.278 (3)  | C13—H13A    | 0.9300      |
| N2—C9      | 1.444 (3)  | C14—C15     | 1.396 (4)   |
| C1—C6      | 1.385 (4)  | C14—H14A    | 0.9300      |
| C1—C2      | 1.393 (3)  | C15—C16     | 1.380 (4)   |
| C1—C8      | 1.490 (4)  | C15—H15A    | 0.9300      |
| C2—C3      | 1.396 (4)  | C16—C17     | 1.394 (4)   |
| C2—H2A     | 0.9300     | C16—H16A    | 0.9300      |
| C3—C4      | 1.383 (4)  | C17—H17A    | 0.9300      |
| С3—НЗА     | 0.9300     | C18—C19     | 1.498 (4)   |
| C4—C5      | 1.400 (4)  | C19—H19D    | 0.9600      |
| C4—H4A     | 0.9300     | C19—H19A    | 0.9600      |
| C5—C6      | 1.389 (4)  | C19—H19B    | 0.9600      |
| C5—H5A     | 0.9300     |             |             |
|            |            |             |             |
| C11—S1—C10 | 90.03 (12) | С8—С9—Н9А   | 113.1       |
| C8—O1—C10  | 92.80 (19) | O1—C10—C9   | 91.54 (19)  |
| C18—N1—C7  | 126.1 (2)  | O1—C10—S1   | 116.58 (17) |
| C18—N1—C6  | 124.7 (2)  | C9—C10—S1   | 106.43 (17) |
| C7—N1—C6   | 109.1 (2)  | O1—C10—H10A | 113.4       |
| C11—N2—C9  | 112.1 (2)  | C9—C10—H10A | 113.4       |
| C6—C1—C2   | 121.3 (2)  | S1-C10-H10A | 113.4       |
| C6—C1—C8   | 110.1 (2)  | N2-C11-C12  | 122.6 (2)   |
| C2—C1—C8   | 128.5 (2)  | N2-C11-S1   | 118.4 (2)   |
| C1—C2—C3   | 117.9 (3)  | C12—C11—S1  | 118.90 (19) |
| C1—C2—H2A  | 121.0      | C17—C12—C13 | 120.0 (2)   |
| С3—С2—Н2А  | 121.0      | C17—C12—C11 | 121.5 (2)   |
| C4—C3—C2   | 120.0 (2)  | C13—C12—C11 | 118.5 (2)   |
| С4—С3—НЗА  | 120.0      | C14—C13—C12 | 120.3 (2)   |

| С2—С3—НЗА                                                                                                                                                                                                                            | 120.0                                                                                                                                                                                                                       | C14—C13—H13A                                                                                                                                                                                                                                                                                                                                                 | 119.8                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C3—C4—C5                                                                                                                                                                                                                             | 122.7 (3)                                                                                                                                                                                                                   | C12—C13—H13A                                                                                                                                                                                                                                                                                                                                                 | 119.8                                                                                                                                                                                                                                        |
| C3—C4—H4A                                                                                                                                                                                                                            | 118.7                                                                                                                                                                                                                       | C13—C14—C15                                                                                                                                                                                                                                                                                                                                                  | 119.9 (3)                                                                                                                                                                                                                                    |
| C5—C4—H4A                                                                                                                                                                                                                            | 118.7                                                                                                                                                                                                                       | C13—C14—H14A                                                                                                                                                                                                                                                                                                                                                 | 120.0                                                                                                                                                                                                                                        |
| C6—C5—C4                                                                                                                                                                                                                             | 116.4 (3)                                                                                                                                                                                                                   | C15—C14—H14A                                                                                                                                                                                                                                                                                                                                                 | 120.0                                                                                                                                                                                                                                        |
| С6—С5—Н5А                                                                                                                                                                                                                            | 121.8                                                                                                                                                                                                                       | C16-C15-C14                                                                                                                                                                                                                                                                                                                                                  | 119.7 (2)                                                                                                                                                                                                                                    |
| C4—C5—H5A                                                                                                                                                                                                                            | 121.8                                                                                                                                                                                                                       | C16—C15—H15A                                                                                                                                                                                                                                                                                                                                                 | 120.2                                                                                                                                                                                                                                        |
| C1 - C6 - C5                                                                                                                                                                                                                         | 121.6 (2)                                                                                                                                                                                                                   | C14—C15—H15A                                                                                                                                                                                                                                                                                                                                                 | 120.2                                                                                                                                                                                                                                        |
| C1 - C6 - N1                                                                                                                                                                                                                         | 1094(2)                                                                                                                                                                                                                     | C15-C16-C17                                                                                                                                                                                                                                                                                                                                                  | 120.2<br>120.8(3)                                                                                                                                                                                                                            |
| $C_{5}$ $C_{6}$ $N_{1}$                                                                                                                                                                                                              | 109.1(2)<br>128.9(2)                                                                                                                                                                                                        | C15 - C16 - H16A                                                                                                                                                                                                                                                                                                                                             | 119.6                                                                                                                                                                                                                                        |
| 02 - C7 - N1                                                                                                                                                                                                                         | 126.9(2)                                                                                                                                                                                                                    | C17 - C16 - H16A                                                                                                                                                                                                                                                                                                                                             | 119.6                                                                                                                                                                                                                                        |
| 02 - C7 - C8                                                                                                                                                                                                                         | 125.5(2)                                                                                                                                                                                                                    | $C_{12}$ $C_{17}$ $C_{16}$ $C_{16}$                                                                                                                                                                                                                                                                                                                          | 119.3 (3)                                                                                                                                                                                                                                    |
| $N_{1} = C_{7} = C_{8}$                                                                                                                                                                                                              | 123.3(2)<br>107.6(2)                                                                                                                                                                                                        | $C_{12} = C_{17} = C_{10}$                                                                                                                                                                                                                                                                                                                                   | 120.3                                                                                                                                                                                                                                        |
| $N_{1} = C_{7} = C_{8}$                                                                                                                                                                                                              | 107.0(2)<br>117.7(2)                                                                                                                                                                                                        | $C_{12}$ $C_{17}$ $H_{17A}$                                                                                                                                                                                                                                                                                                                                  | 120.3                                                                                                                                                                                                                                        |
| 01 - 02 - 01                                                                                                                                                                                                                         | 117.7(2)                                                                                                                                                                                                                    | C10 - C12 - H1/A                                                                                                                                                                                                                                                                                                                                             | 120.3                                                                                                                                                                                                                                        |
| 01 - 08 - 07                                                                                                                                                                                                                         | 111.3(2)<br>102.8(2)                                                                                                                                                                                                        | 03 - 018 - 010                                                                                                                                                                                                                                                                                                                                               | 119.7(2)                                                                                                                                                                                                                                     |
| $C_1 = C_2 = C_1$                                                                                                                                                                                                                    | 102.8(2)                                                                                                                                                                                                                    | 03-018-019                                                                                                                                                                                                                                                                                                                                                   | 123.0 (2)                                                                                                                                                                                                                                    |
| 01 - 03 - 09                                                                                                                                                                                                                         | 90.84 (19)                                                                                                                                                                                                                  | NI-C18-C19                                                                                                                                                                                                                                                                                                                                                   | 117.2(2)                                                                                                                                                                                                                                     |
| C1 - C8 - C9                                                                                                                                                                                                                         | 118.2 (2)                                                                                                                                                                                                                   | C18—C19—H19D                                                                                                                                                                                                                                                                                                                                                 | 109.5                                                                                                                                                                                                                                        |
| C/C8C9                                                                                                                                                                                                                               | 116.3 (2)                                                                                                                                                                                                                   | С18—С19—Н19А                                                                                                                                                                                                                                                                                                                                                 | 109.5                                                                                                                                                                                                                                        |
| N2-C9-C10                                                                                                                                                                                                                            | 113.0 (2)                                                                                                                                                                                                                   | H19D—C19—H19A                                                                                                                                                                                                                                                                                                                                                | 109.5                                                                                                                                                                                                                                        |
| N2—C9—C8                                                                                                                                                                                                                             | 116.6 (2)                                                                                                                                                                                                                   | C18—C19—H19B                                                                                                                                                                                                                                                                                                                                                 | 109.5                                                                                                                                                                                                                                        |
| C10—C9—C8                                                                                                                                                                                                                            | 84.8 (2)                                                                                                                                                                                                                    | H19D—C19—H19B                                                                                                                                                                                                                                                                                                                                                | 109.5                                                                                                                                                                                                                                        |
| N2—C9—H9A                                                                                                                                                                                                                            | 113.1                                                                                                                                                                                                                       | H19A—C19—H19B                                                                                                                                                                                                                                                                                                                                                | 109.5                                                                                                                                                                                                                                        |
| С10—С9—Н9А                                                                                                                                                                                                                           | 113.1                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                      | 0.1.(4)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
| $C_{6} - C_{1} - C_{2} - C_{3}$                                                                                                                                                                                                      | 0.1(4)                                                                                                                                                                                                                      | C11 - N2 - C9 - C8                                                                                                                                                                                                                                                                                                                                           | -94.8 (3)                                                                                                                                                                                                                                    |
| $C_8 - C_1 - C_2 - C_3$                                                                                                                                                                                                              | 176.1 (3)                                                                                                                                                                                                                   | 01 - C8 - C9 - N2                                                                                                                                                                                                                                                                                                                                            | 114.4 (2)                                                                                                                                                                                                                                    |
| C1—C2—C3—C4                                                                                                                                                                                                                          | -2.3 (4)                                                                                                                                                                                                                    | C1—C8—C9—N2                                                                                                                                                                                                                                                                                                                                                  | -123.2 (2)                                                                                                                                                                                                                                   |
| C2—C3—C4—C5                                                                                                                                                                                                                          | 2.1 (4)                                                                                                                                                                                                                     | C7—C8—C9—N2                                                                                                                                                                                                                                                                                                                                                  | 0.0 (3)                                                                                                                                                                                                                                      |
| C3—C4—C5—C6                                                                                                                                                                                                                          | 0.4 (4)                                                                                                                                                                                                                     | O1—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                 | 1.18 (17)                                                                                                                                                                                                                                    |
| C2-C1-C6-C5                                                                                                                                                                                                                          | 2.4 (4)                                                                                                                                                                                                                     | C1—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                 | 123.6 (2)                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |
| C8—C1—C6—C5                                                                                                                                                                                                                          | -174.2 (3)                                                                                                                                                                                                                  | C7—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                 | -113.2 (2)                                                                                                                                                                                                                                   |
| C8-C1-C6-C5<br>C2-C1-C6-N1                                                                                                                                                                                                           | -174.2 (3)<br>-177.0 (3)                                                                                                                                                                                                    | C7—C8—C9—C10<br>C8—O1—C10—C9                                                                                                                                                                                                                                                                                                                                 | -113.2 (2)<br>1.27 (18)                                                                                                                                                                                                                      |
| C8—C1—C6—C5<br>C2—C1—C6—N1<br>C8—C1—C6—N1                                                                                                                                                                                            | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)                                                                                                                                                                                         | C7—C8—C9—C10<br>C8—O1—C10—C9<br>C8—O1—C10—S1                                                                                                                                                                                                                                                                                                                 | -113.2 (2)<br>1.27 (18)<br>-107.98 (19)                                                                                                                                                                                                      |
| C8—C1—C6—C5<br>C2—C1—C6—N1<br>C8—C1—C6—N1<br>C4—C5—C6—C1                                                                                                                                                                             | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)<br>-2.6 (4)                                                                                                                                                                             | C7—C8—C9—C10<br>C8—O1—C10—C9<br>C8—O1—C10—S1<br>N2—C9—C10—O1                                                                                                                                                                                                                                                                                                 | -113.2 (2)<br>1.27 (18)<br>-107.98 (19)<br>-117.9 (2)                                                                                                                                                                                        |
| C8—C1—C6—C5<br>C2—C1—C6—N1<br>C8—C1—C6—N1<br>C4—C5—C6—C1<br>C4—C5—C6—N1                                                                                                                                                              | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)<br>-2.6 (4)<br>176.7 (3)                                                                                                                                                                | C7—C8—C9—C10<br>C8—O1—C10—C9<br>C8—O1—C10—S1<br>N2—C9—C10—O1<br>C8—C9—C10—O1                                                                                                                                                                                                                                                                                 | -113.2 (2)<br>1.27 (18)<br>-107.98 (19)<br>-117.9 (2)<br>-1.18 (17)                                                                                                                                                                          |
| C8—C1—C6—C5<br>C2—C1—C6—N1<br>C8—C1—C6—N1<br>C4—C5—C6—C1<br>C4—C5—C6—N1<br>C18—N1—C6—C1                                                                                                                                              | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)<br>-2.6 (4)<br>176.7 (3)<br>175.4 (3)                                                                                                                                                   | C7—C8—C9—C10<br>C8—O1—C10—C9<br>C8—O1—C10—S1<br>N2—C9—C10—O1<br>C8—C9—C10—O1<br>N2—C9—C10—S1                                                                                                                                                                                                                                                                 | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \end{array}$                                                                                                                                |
| C8—C1—C6—C5<br>C2—C1—C6—N1<br>C8—C1—C6—N1<br>C4—C5—C6—C1<br>C4—C5—C6—N1<br>C18—N1—C6—C1<br>C7—N1—C6—C1                                                                                                                               | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)<br>-2.6 (4)<br>176.7 (3)<br>175.4 (3)<br>-0.3 (3)                                                                                                                                       | C7-C8-C9-C10<br>C8-O1-C10-C9<br>C8-O1-C10-S1<br>N2-C9-C10-O1<br>C8-C9-C10-O1<br>N2-C9-C10-S1<br>C8-C9-C10-S1                                                                                                                                                                                                                                                 | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \end{array}$                                                                                                                 |
| C8—C1—C6—C5<br>C2—C1—C6—N1<br>C8—C1—C6—N1<br>C4—C5—C6—C1<br>C4—C5—C6—N1<br>C18—N1—C6—C1<br>C7—N1—C6—C1<br>C18—N1—C6—C5                                                                                                               | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)<br>-2.6 (4)<br>176.7 (3)<br>175.4 (3)<br>-0.3 (3)<br>-3.9 (4)                                                                                                                           | C7-C8-C9-C10<br>C8-O1-C10-C9<br>C8-O1-C10-S1<br>N2-C9-C10-O1<br>C8-C9-C10-O1<br>N2-C9-C10-S1<br>C8-C9-C10-S1<br>C11-S1-C10-O1                                                                                                                                                                                                                                | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \end{array}$                                                                                                     |
| C8-C1-C6-C5<br>C2-C1-C6-N1<br>C8-C1-C6-N1<br>C4-C5-C6-C1<br>C4-C5-C6-C1<br>C18-N1-C6-C1<br>C7-N1-C6-C1<br>C18-N1-C6-C5<br>C7-N1-C6-C5                                                                                                | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \end{array}$                                                                              | C7-C8-C9-C10<br>C8-O1-C10-C9<br>C8-O1-C10-S1<br>N2-C9-C10-O1<br>C8-C9-C10-O1<br>N2-C9-C10-S1<br>C8-C9-C10-S1<br>C11-S1-C10-O1<br>C11-S1-C10-C9                                                                                                                                                                                                               | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \end{array}$                                                                                       |
| C8-C1-C6-C5 $C2-C1-C6-N1$ $C8-C1-C6-N1$ $C4-C5-C6-C1$ $C4-C5-C6-N1$ $C18-N1-C6-C1$ $C7-N1-C6-C1$ $C18-N1-C6-C5$ $C7-N1-C6-C5$ $C18-N1-C7-O2$                                                                                         | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \\ -2.6 (5) \end{array}$                                                                  | C7-C8-C9-C10<br>C8-O1-C10-C9<br>C8-O1-C10-S1<br>N2-C9-C10-O1<br>C8-C9-C10-O1<br>N2-C9-C10-S1<br>C8-C9-C10-S1<br>C11-S1-C10-O1<br>C11-S1-C10-C9<br>C9-N2-C11-C12                                                                                                                                                                                              | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \end{array}$                                                                         |
| C8-C1-C6-C5<br>C2-C1-C6-N1<br>C8-C1-C6-N1<br>C4-C5-C6-C1<br>C4-C5-C6-N1<br>C18-N1-C6-C1<br>C7-N1-C6-C1<br>C18-N1-C6-C5<br>C7-N1-C6-C5<br>C18-N1-C7-O2<br>C6-N1-C7-O2                                                                 | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \\ -2.6 (5) \\ 173.1 (3) \end{array}$                                                     | C7-C8-C9-C10<br>C8-O1-C10-C9<br>C8-O1-C10-S1<br>N2-C9-C10-O1<br>C8-C9-C10-O1<br>N2-C9-C10-S1<br>C8-C9-C10-S1<br>C11-S1-C10-O1<br>C11-S1-C10-C9<br>C9-N2-C11-C12<br>C9-N2-C11-S1                                                                                                                                                                              | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \\ -2.2 (3) \end{array}$                                                             |
| C8-C1-C6-C5<br>C2-C1-C6-N1<br>C8-C1-C6-N1<br>C4-C5-C6-C1<br>C4-C5-C6-N1<br>C18-N1-C6-C1<br>C7-N1-C6-C1<br>C18-N1-C6-C5<br>C7-N1-C6-C5<br>C18-N1-C7-O2<br>C6-N1-C7-O2<br>C18-N1-C7-C8                                                 | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \\ -2.6 (5) \\ 173.1 (3) \\ 178.8 (2) \end{array}$                                        | $\begin{array}{c} C7 &C8 &C9 &C10 \\ C8 &O1 &C10 &C9 \\ C8 &O1 &C10 &S1 \\ N2 &C9 &C10 &O1 \\ C8 &C9 &C10 &O1 \\ N2 &C9 &C10 &S1 \\ C8 &C9 &C10 &S1 \\ C11 &S1 &C10 &O1 \\ C11 &S1 &C12 \\ C9 &N2 &C11 &S1 \\ C10 &S1 &C11 &N2 \end{array}$                                                                                                                  | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \\ -2.2 (3) \\ 2.1 (2) \end{array}$                                                  |
| C8-C1-C6-C5 $C2-C1-C6-N1$ $C8-C1-C6-N1$ $C4-C5-C6-C1$ $C4-C5-C6-C1$ $C18-N1-C6-C1$ $C18-N1-C6-C5$ $C7-N1-C6-C5$ $C18-N1-C7-O2$ $C6-N1-C7-O2$ $C18-N1-C7-C8$ $C6-N1-C7-C8$                                                            | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \\ -2.6 (5) \\ 173.1 (3) \\ 178.8 (2) \\ -5.6 (3) \end{array}$                            | $\begin{array}{c} C7 &C8 &C9 &C10 \\ C8 &O1 &C10 &C9 \\ C8 &O1 &C10 &S1 \\ N2 &C9 &C10 &O1 \\ C8 &C9 &C10 &S1 \\ C8 &C9 &C10 &S1 \\ C11 &S1 &C10 &O1 \\ C11 &S1 &C10 &C9 \\ C9 &N2 &C11 &S1 \\ C10 &S1 &C11 &N2 \\ C10 &S1 &C11 &C12 \end{array}$                                                                                                            | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \\ -2.2 (3) \\ 2.1 (2) \\ 179.2 (2) \end{array}$                                     |
| C8-C1-C6-C5 $C2-C1-C6-N1$ $C8-C1-C6-N1$ $C4-C5-C6-C1$ $C4-C5-C6-C1$ $C18-N1-C6-C1$ $C18-N1-C6-C5$ $C7-N1-C6-C5$ $C18-N1-C7-O2$ $C6-N1-C7-O2$ $C18-N1-C7-C8$ $C6-N1-C7-C8$ $C10-O1-C8-C1$                                             | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \\ -2.6 (5) \\ 173.1 (3) \\ 178.8 (2) \\ -5.6 (3) \\ -124.1 (2) \end{array}$              | $\begin{array}{c} C7 &C8 &C9 &C10 \\ C8 &O1 &C10 &C9 \\ C8 &O1 &C10 &S1 \\ N2 &C9 &C10 &O1 \\ N2 &C9 &C10 &S1 \\ C8 &C9 &C10 &S1 \\ C11 &S1 &C10 &O1 \\ C11 &S1 &C10 &C9 \\ C9 &N2 &C11 &C12 \\ C9 &N2 &C11 &S1 \\ C10 &S1 &C11 &N2 \\ C10 &S1 &C11 &C12 \\ N2 &C11 &C12 &C17 \end{array}$                                                                   | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \\ -2.2 (3) \\ 2.1 (2) \\ 179.2 (2) \\ -173.5 (3) \end{array}$                       |
| C8-C1-C6-C5 $C2-C1-C6-N1$ $C8-C1-C6-N1$ $C4-C5-C6-C1$ $C4-C5-C6-C1$ $C18-N1-C6-C1$ $C18-N1-C6-C5$ $C7-N1-C6-C5$ $C18-N1-C7-O2$ $C6-N1-C7-O2$ $C18-N1-C7-C8$ $C6-N1-C7-C8$ $C10-O1-C8-C1$ $C10-O1-C8-C7$                              | $\begin{array}{c} -174.2 (3) \\ -177.0 (3) \\ 6.4 (3) \\ -2.6 (4) \\ 176.7 (3) \\ 175.4 (3) \\ -0.3 (3) \\ -3.9 (4) \\ -179.7 (3) \\ -2.6 (5) \\ 173.1 (3) \\ 178.8 (2) \\ -5.6 (3) \\ -124.1 (2) \\ 117.6 (2) \end{array}$ | $\begin{array}{c} C7 &C8 &C9 &C10 \\ C8 &O1 &C10 &C9 \\ C8 &O1 &C10 &S1 \\ N2 &C9 &C10 &O1 \\ N2 &C9 &C10 &S1 \\ C8 &C9 &C10 &S1 \\ C11 &S1 &C10 &O1 \\ C11 &S1 &C10 &C9 \\ C9 &N2 &C11 &C12 \\ C9 &N2 &C11 &S1 \\ C10 &S1 &C11 &N2 \\ C10 &S1 &C11 &C12 \\ N2 &C11 &C12 &C17 \\ S1 &C11 &C12 &C17 \\ \end{array}$                                           | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \\ -2.2 (3) \\ 2.1 (2) \\ 179.2 (2) \\ -173.5 (3) \\ 9.6 (3) \end{array}$            |
| C8-C1-C6-C5 $C2-C1-C6-N1$ $C8-C1-C6-N1$ $C4-C5-C6-C1$ $C4-C5-C6-N1$ $C18-N1-C6-C1$ $C7-N1-C6-C1$ $C18-N1-C6-C5$ $C7-N1-C6-C5$ $C18-N1-C7-O2$ $C6-N1-C7-O2$ $C18-N1-C7-C8$ $C6-N1-C7-C8$ $C10-O1-C8-C1$ $C10-O1-C8-C7$ $C10-O1-C8-C9$ | -174.2 (3)<br>-177.0 (3)<br>6.4 (3)<br>-2.6 (4)<br>176.7 (3)<br>175.4 (3)<br>-0.3 (3)<br>-3.9 (4)<br>-179.7 (3)<br>-2.6 (5)<br>173.1 (3)<br>178.8 (2)<br>-5.6 (3)<br>-124.1 (2)<br>117.6 (2)<br>-1.26 (18)                  | $\begin{array}{c} C7 &C8 &C9 &C10 \\ C8 &O1 &C10 &C9 \\ C8 &O1 &C10 &S1 \\ N2 &C9 &C10 &O1 \\ C8 &C9 &C10 &O1 \\ C10 &C9 &C10 &S1 \\ C11 &S1 &C10 &O1 \\ C11 &S1 &C10 &C9 \\ C9 &N2 &C11 &C12 \\ C9 &N2 &C11 &S1 \\ C10 &S1 &C11 &N2 \\ C10 &S1 &C11 &N2 \\ C10 &S1 &C11 &C12 \\ N2 &C11 &C12 &C17 \\ S1 &C11 &C12 &C17 \\ N2 &C11 &C12 &C13 \\ \end{array}$ | $\begin{array}{c} -113.2 (2) \\ 1.27 (18) \\ -107.98 (19) \\ -117.9 (2) \\ -1.18 (17) \\ 0.4 (3) \\ 117.15 (17) \\ 99.1 (2) \\ -1.19 (19) \\ -179.1 (2) \\ -2.2 (3) \\ 2.1 (2) \\ 179.2 (2) \\ -173.5 (3) \\ 9.6 (3) \\ 8.2 (4) \end{array}$ |

| G <b>0</b> G1 G0 01 |            |                 |            |
|---------------------|------------|-----------------|------------|
| C2-C1-C8-O1         | 51.7 (4)   | C17—C12—C13—C14 | -0.5 (4)   |
| C6—C1—C8—C7         | -9.3 (3)   | C11—C12—C13—C14 | 177.8 (3)  |
| C2-C1-C8-C7         | 174.4 (3)  | C12—C13—C14—C15 | 0.2 (4)    |
| C6—C1—C8—C9         | 120.4 (3)  | C13—C14—C15—C16 | -0.1 (4)   |
| C2—C1—C8—C9         | -55.9 (4)  | C14—C15—C16—C17 | 0.2 (4)    |
| O2—C7—C8—O1         | -42.9 (4)  | C13—C12—C17—C16 | 0.6 (4)    |
| N1-C7-C8-O1         | 135.8 (2)  | C11—C12—C17—C16 | -177.7 (3) |
| O2—C7—C8—C1         | -169.8 (3) | C15—C16—C17—C12 | -0.4 (4)   |
| N1-C7-C8-C1         | 8.9 (3)    | C7—N1—C18—O3    | -175.5 (3) |
| 02—C7—C8—C9         | 59.3 (4)   | C6—N1—C18—O3    | 9.5 (4)    |
| N1—C7—C8—C9         | -122.0 (2) | C7—N1—C18—C19   | 5.5 (4)    |
| C11—N2—C9—C10       | 1.1 (3)    | C6—N1—C18—C19   | -169.5 (2) |
|                     |            |                 |            |

## Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 phenyl ring.

| D—H···A                     | <i>D</i> —Н | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------|-------------|------|-----------|-------------------------|
| C10—H10A…O1 <sup>i</sup>    | 0.98        | 2.56 | 3.261 (3) | 129                     |
| C14—H14 $A$ ···· $Cg1^{ii}$ | 0.93        | 2.67 | 3.423 (3) | 139                     |

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) *x*-1, *y*-1, *z*.