Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2-(Pyrimidin-2-yloxy)phenol

Shah Bakhtiar Nasir, Zanariah Abdullah, \ddagger Zainal A. Fairuz, Seik Weng Ng and Edward R. T. Tiekink*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 30 July 2010; accepted 30 July 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.112$; data-to-parameter ratio $=15.8$.

The pyrimidine and benzene rings in the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, form a dihedral angle of $71.03(7)^{\circ}$, with the roughly orthogonal benzene ring being folded towards one of the pyrimidine N atoms. In the crystal, pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds connect molecules related by twofold symmetry into dimeric aggregates. These associate into a supramolecular chain propagating along the b axis by way of $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts. The chains are cross-linked by $\pi-\pi$ interactions that occur between pyrimidine rings [ring centroid-centroid distances $=3.5393$ (9) and 3.5697 (9) \AA] .

Related literature

For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001); Abdullah (2005). For a related structure, see: Nasir et al. (2010).

Experimental

Crystal data

[^0]$Z=8$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$

Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.901, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.112$
$S=1.01$
2048 reflections
130 parameters
1 restraint
$T=293 \mathrm{~K}$
$0.32 \times 0.30 \times 0.10 \mathrm{~mm}$

8265 measured reflections 2048 independent reflections 1569 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{C} 5-\mathrm{C} 10$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 o \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.85(2)$	$2.21(1)$	$3.0292(16)$	$163(2)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots C g 1^{\text {ii }}$	0.93	2.62	$3.4424(16)$	148

Symmetry codes: (i) $-x+1, y,-z+\frac{3}{2}$; (ii) $x, y+1, z$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Z Abdullah thanks the Ministry of Higher Education, Malaysia, for research grants (PS341/2010, FP047/2008 C and RG027/09AFR). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5592).

References

Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kawai, M., Lee, M. J., Evans, K. O. \& Norlund, T. (2001). J. Fluoresc. 11, $23-32$.
Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. \& Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[^1]
supporting information

Acta Cryst. (2010). E66, o2212 [https://doi.org/10.1107/S1600536810030448]
2-(Pyrimidin-2-yloxy)phenol

Shah Bakhtiar Nasir, Zanariah Abdullah, Zainal A. Fairuz, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Interest in the title compound relates to screening for useful fluorescence properties as seen in related compounds (Kawai et al. 2001; Abdullah, 2005). The molecule of (I), Fig. 1, is bent with the dihedral angle formed between the pyrimidine and benzene rings being 71.03 (7) ${ }^{\circ}$. The plane through the pyrimidine ring cuts through the orthogonal plane through the benzene ring, which is folded to be disposed towards the N1 atom. The overall conformation resembles that reported recently for 2-(3-methoxyphenoxy)pyrimidine (Nasir et al., 2010). The hydroxy group is directed away from the pyrimidine ring, an orientation that facilitates the formation of a $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with a molecule related by $2-$ fold symmetry, Table 1 . The dimeric aggregates are linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions occurring between a pyrimidine- H and the benzene ring. The result of these interactions is the formation of a supramolecular chain along the b axis, Fig. 2 and Table 1. The chains thus formed are consolidated into the crystal structure by $\pi-\pi$ interactions occurring between the pyrimidine rings that stack along the c axis [ring centroid(N1,N2, $\mathrm{C} 1-\mathrm{C} 4) \cdots$ ring centroid $(\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 1-\mathrm{C} 4)^{\mathrm{i}, \mathrm{ii}}=3.5393$ (9) and 3.5697 (9) \AA, respectively, with inclination angles $=16$ and 0°, respectively, for $i: 1-x, y, 3 / 2-z$ and $i i: 3 / 2+x, 3 / 2$ $+y, 1+z]$; Fig. 3 .

S2. Experimental

1,2-Dihydroxybenzene ($12 \mathrm{~g}, 108 \mathrm{mmol}$) was mixed with sodium hydroxide ($4.32 \mathrm{~g}, 108 \mathrm{mmol}$) in several drops of water. The water was then evaporated and the resulting paste heated with 2 -chloropyrimidine ($2 \mathrm{~g}, 18 \mathrm{mmol}$) at 423-433 K for 5 h . The product was dissolved in water and the solution extracted with chloroform. The chloroform phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped colourless blocks of (I).

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.93 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {equiv }}(\mathrm{C})$. The O -bound H -atom was located in a difference Fourier map, and was refined with a distance restraint of $\mathrm{O}-\mathrm{H} 0.84 \pm 0.01 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {equiv }}(\mathrm{O})$.

Figure 1
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Figure 2
Supramolecular chain along the b axis in (I) mediated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, shown as orange and purple dashed lines, respectively.

Figure 3
Unit-cell contents shown in projection down the b axis in (I), highlighting the connections, via $\pi-\pi$ interactions, between supramolecular chains. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\pi-\pi$ interactions are shown as orange and purple dashed lines, respectively.

2-(Pyrimidin-2-yloxy)phenol

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=188.18$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=18.0849$ (18) \AA
$b=7.3293$ (8) \AA
$c=13.3983$ (14) \AA
$\beta=92.521(1)^{\circ}$
$V=1774.2(3) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.901, T_{\text {max }}=1.000$
$F(000)=784$
$D_{\mathrm{x}}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2567 reflections
$\theta=3.0-26.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.32 \times 0.30 \times 0.10 \mathrm{~mm}$

8265 measured reflections
2048 independent reflections
1569 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-23 \rightarrow 23$
$k=-9 \rightarrow 9$
$l=-17 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.112$
$S=1.01$
2048 reflections
130 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0586 P)^{2}+0.4928 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.17 \mathrm{e}^{-3}$
> $\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.44378(5)$	$0.18501(12)$	$0.65018(7)$	$0.0445(3)$
O2	$0.38586(6)$	$0.06384(16)$	$0.82550(8)$	$0.0622(3)$
H2o	$0.4144(10)$	$0.156(2)$	$0.8229(16)$	0.093^{*}
N1	$0.39630(6)$	$0.47232(14)$	$0.61828(9)$	$0.0431(3)$
N2	$0.52544(6)$	$0.41044(15)$	$0.63993(8)$	$0.0423(3)$
C1	$0.45408(7)$	$0.36583(16)$	$0.63476(9)$	$0.0356(3)$
C2	$0.41257(8)$	$0.64865(19)$	$0.60601(12)$	$0.0523(4)$
H2	0.3740	0.7306	0.5935	0.063^{*}
C3	$0.48369(9)$	$0.71379(19)$	$0.61104(12)$	$0.0542(4)$
H3	0.4940	0.8371	0.6031	0.065^{*}
C4	$0.53883(8)$	$0.5881(2)$	$0.62839(10)$	$0.0491(3)$
H4	0.5877	0.6283	0.6323	0.059^{*}
C5	$0.37173(7)$	$0.11373(16)$	$0.64788(10)$	$0.0396(3)$
C6	$0.33142(8)$	$0.09337(19)$	$0.55923(12)$	$0.0537(4)$
H6	0.3495	0.1381	0.5001	0.064^{*}
C7	$0.26364(9)$	$0.0057(2)$	$0.55871(14)$	$0.0651(5)$
H7	0.2356	-0.0076	0.4993	0.078^{*}
C8	$0.23810(8)$	$-0.0614(2)$	$0.64619(15)$	$0.0653(5)$
H8	0.1927	-0.1212	0.6456	0.078^{*}
C9	$0.27880(8)$	$-0.0416(2)$	$0.73537(13)$	$0.0575(4)$
H9	0.2609	-0.0885	0.7941	0.069^{*}
C10	$0.34627(7)$	$0.04819(17)$	$0.73708(11)$	$0.0438(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O1	$0.0343(5)$	$0.0366(5)$	$0.0623(6)$	$0.0010(4)$	$-0.0025(4)$	$0.0077(4)$
O2	$0.0621(7)$	$0.0705(7)$	$0.0534(6)$	$-0.0158(5)$	$-0.0041(5)$	$0.0089(5)$
N1	$0.0372(6)$	$0.0360(6)$	$0.0557(7)$	$0.0015(4)$	$-0.0036(5)$	$-0.0019(5)$
N2	$0.0337(6)$	$0.0490(6)$	$0.0441(6)$	$-0.0023(5)$	$0.0010(4)$	$0.0043(5)$
C1	$0.0352(6)$	$0.0372(6)$	$0.0343(6)$	$-0.0008(5)$	$-0.0012(5)$	$0.0006(5)$
C2	$0.0516(8)$	$0.0359(7)$	$0.0686(10)$	$0.0031(6)$	$-0.0070(7)$	$-0.0024(6)$
C3	$0.0606(9)$	$0.0385(7)$	$0.0634(9)$	$-0.0089(6)$	$0.0005(7)$	$0.0007(6)$
C4	$0.0423(7)$	$0.0553(8)$	$0.0499(8)$	$-0.0131(6)$	$0.0026(6)$	$0.0023(6)$
C5	$0.0336(6)$	$0.0292(6)$	$0.0554(8)$	$0.0001(5)$	$-0.0040(5)$	$0.0032(5)$
C6	$0.0587(9)$	$0.0440(8)$	$0.0570(9)$	$-0.0057(6)$	$-0.0124(7)$	$0.0083(6)$
C7	$0.0621(10)$	$0.0485(8)$	$0.0818(12)$	$-0.0098(7)$	$-0.0306(9)$	$0.0079(8)$
C8	$0.0411(8)$	$0.0475(8)$	$0.1058(14)$	$-0.0096(6)$	$-0.0125(8)$	$0.0084(9)$
C9	$0.0461(8)$	$0.0508(9)$	$0.0759(11)$	$-0.0063(6)$	$0.0066(7)$	$0.0076(7)$
C10	$0.0397(7)$	$0.0364(6)$	$0.0550(8)$	$0.0006(5)$	$-0.0014(6)$	$0.0018(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C1	1.3554 (15)	C4-H4	0.9300
O1-C5	1.4029 (14)	C5-C6	1.3741 (18)
$\mathrm{O} 2-\mathrm{C} 10$	1.3619 (17)	C5-C10	1.385 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{o}$	0.852 (16)	C6-C7	1.384 (2)
N1-C1	1.3151 (16)	C6-H6	0.9300
N1-C2	1.3372 (17)	C7-C8	1.370 (3)
N2-C1	1.3302 (16)	C7-H7	0.9300
N2-C4	1.3347 (18)	C8-C9	1.383 (2)
C2-C3	1.371 (2)	C8-H8	0.9300
C2-H2	0.9300	C9-C10	1.3857 (19)
C3-C4	1.370 (2)	C9-H9	0.9300
C3-H3	0.9300		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5$	119.64 (9)	C6-C5-O1	121.09 (12)
$\mathrm{C} 10-\mathrm{O} 2-\mathrm{H} 2 \mathrm{o}$	109.1 (15)	C10-C5-O1	116.98 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	114.63 (11)	C5-C6-C7	119.40 (14)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	114.48 (11)	C5-C6-H6	120.3
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	128.66 (12)	C7-C6-H6	120.3
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	119.50 (11)	C8-C7-C6	119.62 (15)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	111.84 (10)	C8-C7-H7	120.2
N1-C2-C3	122.80 (13)	C6-C7-H7	120.2
N1-C2-H2	118.6	C7-C8-C9	120.99 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.6	C7-C8-H8	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	116.65 (13)	C9-C8-H8	119.5
C4-C3-H3	121.7	C8-C9-C10	119.92 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.7	C8-C9-H9	120.0
N2-C4-C3	122.77 (13)	C10-C9-H9	120.0
N2-C4-H4	118.6	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 5$	122.64 (12)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	118.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$121.62(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$-0.6(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$178.72(12)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$1.30(19)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	$-178.02(11)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$0.31(17)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	$179.70(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.7(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-1.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$0.1(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$73.64(16)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 10$	$-112.73(13)$

$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$118.89(13)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$118.44(13)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.1(2)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$173.48(13)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.8(2)$
$\mathrm{C} 6-\mathrm{C}-\mathrm{C} 8-\mathrm{C} 9$	$0.5(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.4(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{O} 2$	$178.77(13)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 10-\mathrm{O} 2$	$5.17(18)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$0.8(2)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-172.84(12)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$	$-179.10(14)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-1.0(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 5-\mathrm{C} 10$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 o \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.85(2)$	$2.21(1)$	$3.0292(16)$	$163(2)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots C g 1^{\mathrm{ii}}$	0.93	2.62	$3.4424(16)$	148

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $x, y+1, z$.

[^0]: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
 $M_{r}=188.18$
 Monoclinic, $C 2 / c$
 $a=18.0849$ (18) \AA

[^1]: \ddagger Additional correspondence author, e-mail: zana@um.edu.my.

