Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ethyl 2-[(Z)-2-benzylhydrazin-1-ylidene]-2-bromoacetate

Qian-Jiao Yang, ${ }^{\text {a }}$ Dan Liu, ${ }^{\text {a }}$ Jian Zuo, ${ }^{\text {b }}$ Guo-Dong Hu ${ }^{\text {a }}$ and Lin-Xiang Zhao ${ }^{\text {a* }}$
${ }^{\text {a }}$ Key Laboratory of Original New Drug Design and Discovery of the Ministry of Education, College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
Correspondence e-mail: zhaolinxiang@syphu.edu.cn

Received 28 July 2010; accepted 10 August 2010
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.038 ; w R$ factor $=0.111$; data-to-parameter ratio $=15.0$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$, the dihedral angle between the phenyl ring and the almost planar (r.m.s. deviation $=0.011 \AA) \mathrm{C}-\mathrm{C}(\mathrm{Br})=\mathrm{N}-\mathrm{N}(\mathrm{H})-$ fragment is $74.94(16)^{\circ}$. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which generate $C(6)$ chains propagating in [010]. Weak aromatic $\pi-\pi$ stacking [centroid-centroid separation $=3.784(3) \AA$] may also help to consolidate the packing.

Related literature

For the use of the title compound in the preparation of heterocyclic compounds via the diploar cycloaddition of thiadiazole, see Feddouli et al. (2004); Abouricha et al. (2005); Hafez et al. (2008). For the synthesis of the title compound, see Bach et al. (1994).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$
$M_{r}=285.14$
Monoclinic, $P 2_{1} / c$
$a=9.046$ (1) \AA
$b=11.235$ (1) \AA
$c=12.326$ (2) \AA
$V=1251.1(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=3.27 \mathrm{~mm}^{-1}$
$\beta=92.935(4)^{\circ}$
$T=294 \mathrm{~K}$
$0.25 \times 0.14 \times 0.07 \mathrm{~mm}$

Data collection

Siemens APEX CCD
diffractometer
Absorption correction: multi-scan (SADABS; Siemens, 1996)
$T_{\text {min }}=0.495, T_{\text {max }}=0.803$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 146$ parameters
$w R\left(F^{2}\right)=0.111 \quad$ H-atom parameters constrained
$S=1.02$
2188 reflections

4952 measured reflections 2188 independent reflections 1475 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

$\Delta \rho_{\text {max }}=0.26 \mathrm{e}_{\AA^{-3}}$
 $\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.24	$2.965(4)$	141

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the China International Science and Technology Cooperation Plan (2009DEA31200).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5585).

References

Abouricha, S., Rakib, E., Benchat, N., Alaoui, M., Allouchi, H. \& EI-Bali, B. (2005). Synth. Commun. 35, 2213-2221.

Bach, K. K., El-Seedi, H. R., Jensen, H. M., Nielsen, H. B., Thomsen, I. \& Torssell, K. B. G. (1994). Tetrahedron, 50, 7543-7556.
Feddouli, A., Itto, M. Y. A., Hasnaoui, A., Villemin, D., Jaffrs, P. A., Santos, J. S. D. O., Riahi, A., Huet, F. \& Daran, J. C. (2004). J. Heterocycl. Chem. 41, 731-735.
Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. \& EI-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538-4543.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2010). E66, o2334 [https://doi.org/10.1107/S1600536810032071]

Ethyl 2-[(Z)-2-benzylhydrazin-1-ylidene]-2-bromoacetate

Qian-Jiao Yang, Dan Liu, Jian Zuo, Guo-Dong Hu and Lin-Xiang Zhao

S1. Comment

(Benzylhydrazono)acetate is a key intermediate in the preparation for pyrazoline compounds (Bach et al., 1994), which are selective for the NMDA receptors and show weak antagonists. In addition, it plays an important role in the synthesis of thiadiazole nucleus (Feddouli et al., 2004; Abouricha et al., 2005), which have been exhibited potential antiinflammatory and analgesic activities (Hafez et al., 2008). Herein, the structure of ethyl 2-bromo-(Z)-2-(2-benzylhydrazono)acetate has been determined.
The crystal structure of the title compound is given in Fig. 1. In the crystal, the adjacent molecules are stabilized by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, with the distance of 2.965 (4) \AA (Table 1). Molecules are linked into chain along the b axis by the above hydrogen bond (Fig. 2).

S2. Experimental

To a stirred solution of ethyl 2,2-diethoxyacetate ($1 \mathrm{ml}, 5.6 \mathrm{mmol}$) and acetyl chloride ($0.8 \mathrm{ml}, 11.2 \mathrm{mmol}$) was added iodine ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$). After the mixture was stirred for overnight, excess acetyl chloride was removed in vacuo, the residue in 1,4-dioxane (25 ml) was treated with benzylhydrazine dihydrochloride ($1.09 \mathrm{~g}, 5.6 \mathrm{mmol}$) in water (10 ml), then the mixture was adjusted to pH 4 . After 1 h the mixture was neutralized to pH 8 with saturated NaOH and evaporated in vacuo. The residue was added water and extracted with CH 2 Cl 2 , the organic layer was dried over MgSO 4 , filtered and concentrated. The crude compound was dissolved in AcOEt (8 ml), which was reacted with NBS $(1.1 \mathrm{~g}, 6.2$ mmol) for 2 h . After evaporation of the solvent, the residue was dissolved in CH 2 Cl 2 and filtered, the filtrate was concentrated and purified by column chromatography (eluent: $\mathrm{PE} / \mathrm{AcOEt}=28 / 1$) to give the title compound ($0.67 \mathrm{~g}, 2.35$ mmol) as a white solid. Colorless blocks of (I) were grown in PE/AcOEt (14/0.5, V/V) solution by slow evaporation at room temperature.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ (methyl), $0.97 \AA$ (methenyl), $0.93 \AA$ (aromatic), and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The structure of (I) showing 30\% probability displacement ellipsoids.

Figure 2
A view of the crystal structure of (I) showing chain to the b linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contact.
Ethyl 2-[(Z)-2-benzylhydrazin-1-ylidene]-2-bromoacetate

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$

$$
F(000)=576
$$

$M_{r}=285.14$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=9.046$ (1) \AA
$b=11.235$ (1) \AA
$c=12.326$ (2) \AA
$\beta=92.935(4)^{\circ}$
$V=1251.1$ (3) \AA^{3}
$Z=4$

$$
D_{\mathrm{x}}=1.514 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1479 reflections
$\theta=2.3-24.8^{\circ}$
$\mu=3.27 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Block, colorless
$0.25 \times 0.14 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEX CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
$T_{\min }=0.495, T_{\text {max }}=0.803$

> 4952 measured reflections
> 2188 independent reflections
> 1475 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-13 \rightarrow 7$
> $l=-7 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.111$
$S=1.02$
2188 reflections
146 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0656 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.26$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.61 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.44688(4)$	$0.25237(4)$	$0.31304(3)$	$0.0668(2)$
O1	$0.3161(3)$	$0.0317(2)$	$0.2073(2)$	$0.0755(8)$
O2	$0.3458(2)$	$0.0749(2)$	$0.03230(18)$	$0.0534(6)$
N1	$0.5769(3)$	$0.3675(3)$	$0.1176(2)$	$0.0501(7)$
H1	0.5721	0.3973	0.1815	0.060^{*}
N2	$0.5071(3)$	$0.2673(2)$	$0.0922(2)$	$0.0424(7)$
C1	$0.8144(3)$	$0.3760(3)$	$0.0231(3)$	$0.0436(8)$
C2	$0.8605(4)$	$0.3447(4)$	$-0.0771(3)$	$0.0726(11)$
H2	0.7946	0.3505	-0.1374	0.087^{*}
C3	$1.0035(5)$	$0.3045(4)$	$-0.0906(4)$	$0.0852(13)$
H3	1.0321	0.2834	-0.1594	0.102^{*}
C4	$1.1013(4)$	$0.2958(4)$	$-0.0045(4)$	$0.0696(11)$
H4	1.1976	0.2700	-0.0136	0.083^{*}
C5	$1.0569(4)$	$0.3253(4)$	$0.0954(4)$	$0.0830(13)$
H5	1.1234	0.3182	0.1551	0.100^{*}
C6	$0.9142(4)$	$0.3659(4)$	$0.1105(3)$	$0.0721(11)$

H6	0.8863	0.3862	0.1797	0.087^{*}
C7	$0.6617(3)$	$0.4268(3)$	$0.0367(3)$	$0.0475(8)$
H7A	0.6717	0.5101	0.0563	0.057^{*}
H7B	0.6064	0.4228	-0.0327	0.057^{*}
C8	$0.4424(3)$	$0.2069(3)$	$0.1640(3)$	$0.0432(7)$
C9	$0.3625(3)$	$0.0958(3)$	$0.1382(3)$	$0.0508(8)$
C10	$0.2617(4)$	$-0.0317(4)$	$0.0018(3)$	$0.0722(11)$
H10A	0.1758	-0.0378	0.0454	0.087^{*}
H10B	0.3226	-0.1017	0.0151	0.087^{*}
C11	$0.2142(5)$	$-0.0254(4)$	$-0.1139(3)$	$0.0950(15)$
H11A	0.1489	0.0412	-0.1259	0.142^{*}
H11B	0.1632	-0.0974	-0.1349	0.142^{*}
H11C	0.2993	-0.0159	-0.1565	0.142^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0724(3)$	$0.0882(4)$	$0.0405(3)$	$-0.00890(18)$	$0.00985(18)$	$-0.00325(18)$
O1	$0.1002(19)$	$0.0639(19)$	$0.0630(17)$	$-0.0140(15)$	$0.0091(14)$	$0.0199(14)$
O2	$0.0622(13)$	$0.0418(15)$	$0.0561(14)$	$-0.0035(11)$	$0.0025(11)$	$-0.0015(11)$
N1	$0.0508(14)$	$0.0531(19)$	$0.0473(16)$	$-0.0048(13)$	$0.0106(12)$	$-0.0090(14)$
N2	$0.0409(13)$	$0.0448(19)$	$0.0414(15)$	$0.0058(12)$	$0.0014(12)$	$-0.0029(12)$
C1	$0.0470(16)$	$0.0314(19)$	$0.053(2)$	$-0.0016(13)$	$0.0059(15)$	$0.0020(16)$
C2	$0.063(2)$	$0.099(3)$	$0.056(2)$	$0.012(2)$	$0.0053(18)$	$0.000(2)$
C3	$0.080(3)$	$0.104(4)$	$0.074(3)$	$0.021(3)$	$0.024(2)$	$-0.012(3)$
C4	$0.055(2)$	$0.057(3)$	$0.099(4)$	$0.0130(18)$	$0.022(2)$	$0.011(2)$
C5	$0.059(2)$	$0.110(4)$	$0.079(3)$	$0.022(2)$	$-0.005(2)$	$0.015(3)$
C6	$0.061(2)$	$0.099(3)$	$0.056(2)$	$0.013(2)$	$0.0058(19)$	$0.001(2)$
C7	$0.0470(17)$	$0.041(2)$	$0.055(2)$	$0.0042(14)$	$0.0064(15)$	$0.0036(16)$
C8	$0.0423(16)$	$0.048(2)$	$0.0393(18)$	$0.0079(14)$	$0.0031(14)$	$0.0039(15)$
C9	$0.0520(18)$	$0.049(2)$	$0.051(2)$	$0.0064(15)$	$0.0036(15)$	$0.0049(18)$
C10	$0.090(3)$	$0.046(3)$	$0.080(3)$	$-0.014(2)$	$0.003(2)$	$-0.009(2)$
C11	$0.114(4)$	$0.069(3)$	$0.099(4)$	$-0.014(3)$	$-0.026(3)$	$-0.008(3)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 8$	$1.906(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.355(6)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.207(4)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{O} 2-\mathrm{C} 9$	$1.328(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.391(5)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.457(4)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{~N} 1-\mathrm{N} 2$	$1.320(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{C} 7$	$1.451(4)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{H} 1$	0.8600	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 8$	$1.280(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.468(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.370(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.470(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.374(5)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 7$	$1.512(4)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.388(5)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600

$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.350(6)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 10$	$115.5(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7$	$119.5(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1$	120.2
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	120.2
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$121.2(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$117.9(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$121.2(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.7(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.3(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.5(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.9(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.5(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.3
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.3
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.9(4)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.1
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 1$	$114.9(3)$

C11-H11B	0.9600
C11-H11C	0.9600

N1—C7—H7A 108.5
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \quad 108.5$
N1—C7—H7B 108.5
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \quad 108.5$
H7A-C7-H7B 107.5
N2-C8-C9 122.6 (3)
$\mathrm{N} 2-\mathrm{C} 8 — \mathrm{Br} 122.4$ (3)
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{Br} 1 \quad 115.0$ (2)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 2 \quad 124.2$ (3)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8 \quad 122.7$ (3)
O2-C9-C8 113.1 (3)
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11 \quad 109.5$ (3)
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 109.8$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 109.8$
O2—C10—H10B 109.8
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.8$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 108.2$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \quad 109.5$
C10-C11—H11B 109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
H11B-C11—H11C 109.5

Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.24	$2.965(4)$	141

Symmetry code: (i) $-x+1, y+1 / 2,-z+1 / 2$.

