Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Chlorophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one

Meng Guo

Microscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 24 July 2010; accepted 9 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.061; wR factor = 0.188; data-to-parameter ratio = 18.3.

The title compound, C₁₇H₁₅ClO, was prepared from 3,4dimethylbenzaldehyde and 4-chlorohypnone by Aldol condensation. The dihedral angle formed by the two benzene rings is 48.91 (8)°. Only van der Waals forces affect the packing.

Related literature

For background to the aplications of chalcones, see: Anto et al. (1994); Hsieh et al. (1998). For a related structure, see: Zhou (2010).

Experimental

Crystal data

2	
C ₁₇ H ₁₅ ClO	$\gamma = 95.23 \ (3)^{\circ}$
$M_r = 270.74$	V = 692.5 (2) Å ³
Triclinic, P1	Z = 2
a = 5.9621 (12) Å	Mo $K\alpha$ radiation
b = 7.7369 (15) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 15.513 (3) Å	T = 293 K
$\alpha = 98.30 \ (3)^{\circ}$	$0.25 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 99.96 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer 6689 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$
$wR(F^2) = 0.188$
S = 1.08
3141 reflections

2643 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$

3141 independent reflections

172 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author thanks the National Natural Science Foundation of Shandong (Y2008B29) and Weifang University for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5576).

References

Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhou, Y. (2010). Acta Cryst. E66, 01412.

supporting information

Acta Cryst. (2010). E66, o2302 [https://doi.org/10.1107/S1600536810031880]

1-(4-Chlorophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one

Meng Guo

S1. Comment

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological actions which include antiinflammatory (Hsieh *et al.*,1998) and antioxidant (Anto *et al.*,1994). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

In the crystal structure of compound(I)(Fig.1), the dihedral angle between the two benzene rings(C1—C6) and (C10—C15) is $48.91 (8)^{\circ}$. All of the bond lengths and bond angles are in normal ranges and comparable to those in a related structure (Zhou, 2010).

S2. Experimental

A mixture of the 4-chlorohypnone (0.01 mol) and 3,4-dimethylbenzaldehyde(0.01 mol) and 10% NaOH (10 ml) was stirred in ethanol (30 ml) for 3 h to afford the title compound (yield 65%). Yellow bars of (I) were obtailed by recrystallization from ethyl acetate at room temperature.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with $U_{iso}(H) = 1.2-1.5U_{eq}$ of the parent atoms.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

1-(4-Chlorophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one

Crystal data

C₁₇H₁₅ClO $M_r = 270.74$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.9621 (12) Å b = 7.7369 (15) Å c = 15.513 (3) Å $a = 98.30 (3)^{\circ}$ $\beta = 99.96 (3)^{\circ}$ $\gamma = 95.23 (3)^{\circ}$ $V = 692.5 (2) \text{ Å}^3$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
6689 measured reflections
3141 independent reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.188$	neighbouring sites
S = 1.08	H-atom parameters constrained
3141 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1287P)^2 + 0.0873P]$
172 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 284 $D_x = 1.299 \text{ Mg m}^{-3}$

 $\theta = 3.2 - 27.5^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

 $0.25 \times 0.20 \times 0.18 \text{ mm}$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$

2643 reflections with $I > 2\sigma(I)$

T = 293 K

Bar, yellow

 $R_{\rm int} = 0.030$

 $h = -7 \rightarrow 7$ $k = -10 \rightarrow 10$ $l = -20 \rightarrow 18$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2643 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.06653 (10)	0.43200 (7)	-0.40023 (3)	0.0645 (2)	
C2	0.2286 (3)	0.4248 (2)	-0.22733 (12)	0.0442 (4)	
H2A	0.3675	0.4759	-0.2370	0.053*	
C15	0.3097 (3)	0.2253 (2)	0.26373 (11)	0.0398 (4)	

supporting information

H15A	0.1822	0.2763	0.2774	0.048*
C10	0.3326 (3)	0.1916 (2)	0.17512 (11)	0.0372 (4)
C1	0.0394 (3)	0.3865 (2)	-0.29529 (11)	0.0419 (4)
C9	0.1543 (3)	0.2354 (2)	0.10668 (11)	0.0405 (4)
H9A	0.0194	0.2644	0.1245	0.049*
C7	-0.0361 (3)	0.2764 (2)	-0.04009 (11)	0.0417 (4)
C6	-0.1707 (3)	0.3131 (2)	-0.28266 (12)	0.0476 (4)
H6A	-0.2959	0.2877	-0.3293	0.057*
01	-0.2265 (2)	0.2775 (2)	-0.02091 (9)	0.0582 (4)
C11	0.5261 (3)	0.1151 (2)	0.15544 (12)	0.0425 (4)
H11A	0.5490	0.0942	0.0972	0.051*
C8	0.1647 (3)	0.2382 (2)	0.02181 (12)	0.0449 (4)
H8A	0.2987	0.2161	0.0013	0.054*
C4	-0.0022 (3)	0.3133 (2)	-0.12946 (10)	0.0369 (4)
C3	0.2072 (3)	0.3857 (2)	-0.14451 (11)	0.0425 (4)
H3A	0.3340	0.4081	-0.0985	0.051*
C12	0.6825 (3)	0.0710(2)	0.22314 (12)	0.0445 (4)
H12A	0.8084	0.0181	0.2092	0.053*
C14	0.4693 (3)	0.1859 (2)	0.33241 (11)	0.0412 (4)
C13	0.6579 (3)	0.1031 (2)	0.31155 (12)	0.0417 (4)
C5	-0.1902 (3)	0.2784 (2)	-0.19930 (12)	0.0441 (4)
H5A	-0.3309	0.2311	-0.1895	0.053*
C17	0.4398 (4)	0.2300 (4)	0.42722 (13)	0.0626 (6)
H17A	0.5647	0.1938	0.4657	0.094*
H17B	0.2977	0.1697	0.4343	0.094*
H17C	0.4381	0.3546	0.4422	0.094*
C16	0.8291 (4)	0.0483 (3)	0.38260 (15)	0.0594 (5)
H16A	0.9448	-0.0063	0.3562	0.089*
H16B	0.7525	-0.0338	0.4119	0.089*
H16C	0.8994	0.1499	0.4250	0.089*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0855 (4)	0.0709 (4)	0.0412 (3)	0.0036 (3)	0.0171 (2)	0.0203 (2)
C2	0.0418 (8)	0.0477 (9)	0.0442 (9)	-0.0002 (7)	0.0126 (7)	0.0093 (7)
C15	0.0371 (7)	0.0445 (8)	0.0399 (8)	0.0054 (6)	0.0118 (6)	0.0086 (7)
C10	0.0372 (7)	0.0368 (7)	0.0384 (8)	0.0012 (6)	0.0094 (6)	0.0085 (6)
C1	0.0527 (9)	0.0393 (8)	0.0353 (8)	0.0056 (7)	0.0108 (7)	0.0087 (6)
C9	0.0418 (8)	0.0423 (8)	0.0391 (8)	0.0037 (6)	0.0106 (6)	0.0094 (6)
C7	0.0433 (8)	0.0462 (8)	0.0369 (8)	0.0062 (6)	0.0105 (6)	0.0067 (7)
C6	0.0450 (8)	0.0537 (10)	0.0407 (9)	0.0009 (7)	-0.0002 (7)	0.0092 (7)
O1	0.0451 (7)	0.0882 (10)	0.0464 (7)	0.0088 (6)	0.0163 (5)	0.0177 (7)
C11	0.0449 (8)	0.0433 (8)	0.0411 (9)	0.0041 (7)	0.0150 (7)	0.0052 (7)
C8	0.0457 (8)	0.0541 (10)	0.0383 (8)	0.0103 (7)	0.0119 (7)	0.0116 (7)
C4	0.0385 (7)	0.0377 (7)	0.0353 (8)	0.0056 (6)	0.0084 (6)	0.0058 (6)
C3	0.0371 (7)	0.0493 (9)	0.0390 (8)	0.0010 (6)	0.0049 (6)	0.0053 (7)
C12	0.0410 (8)	0.0414 (8)	0.0527 (10)	0.0064 (6)	0.0139 (7)	0.0056 (7)

supporting information

C14	0.0397 (8)	0.0463 (8)	0.0387 (8)	0.0012 (6)	0.0108 (6)	0.0090 (7)
C13	0.0384 (8)	0.0386 (8)	0.0475 (9)	0.0010 (6)	0.0058 (7)	0.0102 (7)
C5	0.0374 (8)	0.0494 (9)	0.0443 (9)	-0.0002 (7)	0.0058 (7)	0.0093 (7)
C17	0.0549 (10)	0.0958 (16)	0.0399 (9)	0.0154 (10)	0.0116 (8)	0.0130 (10)
C16	0.0561 (10)	0.0655 (12)	0.0585 (12)	0.0147 (9)	0.0040 (9)	0.0194 (10)

Geometric parameters (Å, °)

Cl1—C1	1.7455 (17)	C11—H11A	0.9300
C2—C1	1.382 (3)	C8—H8A	0.9300
C2—C3	1.386 (3)	C4—C3	1.392 (2)
C2—H2A	0.9300	C4—C5	1.394 (2)
C15—C14	1.389 (2)	С3—НЗА	0.9300
C15—C10	1.394 (2)	C12—C13	1.394 (2)
C15—H15A	0.9300	C12—H12A	0.9300
C10—C11	1.403 (2)	C14—C13	1.406 (2)
С10—С9	1.467 (2)	C14—C17	1.505 (3)
C1—C6	1.385 (3)	C13—C16	1.504 (2)
C9—C8	1.332 (2)	C5—H5A	0.9300
С9—Н9А	0.9300	C17—H17A	0.9600
C7—O1	1.222 (2)	C17—H17B	0.9600
C7—C8	1.481 (2)	C17—H17C	0.9600
C7—C4	1.499 (2)	C16—H16A	0.9600
C6—C5	1.380 (3)	C16—H16B	0.9600
С6—Н6А	0.9300	C16—H16C	0.9600
C11—C12	1.383 (3)		
C1—C2—C3	118.67 (15)	C5—C4—C7	118.34 (15)
C1—C2—H2A	120.7	C2—C3—C4	120.69 (15)
C3—C2—H2A	120.7	С2—С3—НЗА	119.7
C14—C15—C10	122.73 (15)	C4—C3—H3A	119.7
C14—C15—H15A	118.6	C11—C12—C13	122.25 (15)
C10-C15-H15A	118.6	C11—C12—H12A	118.9
C15—C10—C11	118.03 (15)	C13—C12—H12A	118.9
C15—C10—C9	119.14 (14)	C15—C14—C13	118.70 (15)
C11—C10—C9	122.83 (15)	C15—C14—C17	120.56 (15)
C2—C1—C6	122.03 (16)	C13—C14—C17	120.74 (16)
C2C1Cl1	118.89 (13)	C12—C13—C14	118.63 (15)
C6—C1—Cl1	119.08 (13)	C12—C13—C16	120.30 (16)
C8—C9—C10	127.04 (15)	C14—C13—C16	121.07 (16)
С8—С9—Н9А	116.5	C6—C5—C4	121.01 (16)
С10—С9—Н9А	116.5	C6—C5—H5A	119.5
O1—C7—C8	122.36 (16)	C4—C5—H5A	119.5
O1—C7—C4	119.56 (16)	C14—C17—H17A	109.5
C8—C7—C4	118.08 (14)	C14—C17—H17B	109.5
C5—C6—C1	118.51 (15)	H17A—C17—H17B	109.5
С5—С6—Н6А	120.7	C14—C17—H17C	109.5
C1—C6—H6A	120.7	H17A—C17—H17C	109.5

C12-C11-C10	119.58 (15)	H17B—C17—H17C	109.5
C12—C11—H11A	120.2	C13—C16—H16A	109.5
C10-C11-H11A	120.2	C13—C16—H16B	109.5
C9—C8—C7	120.28 (16)	H16A—C16—H16B	109.5
С9—С8—Н8А	119.9	C13—C16—H16C	109.5
С7—С8—Н8А	119.9	H16A—C16—H16C	109.5
C3—C4—C5	119.06 (15)	H16B—C16—H16C	109.5
C3—C4—C7	122.57 (14)		