organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

10,12-Dimethylpteridino[6,7-f][1,10]phenanthroline-11,13(10H,12H)-dionechloroform (1/1)

Waynie Olaprath, Jennifer Roden, Kraig A. Wheeler and Mark E. McGuire*

Department of Chemistry, Eastern Illinois University, 600 Lincoln Ave., Charleston, IL 61920, USA

Correspondence e-mail: memcguire@eiu.edu

Received 22 July 2010; accepted 5 August 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.095; data-to-parameter ratio = 12.3.

In the title co-crystal, $C_{18}H_{12}N_6O_2$ ·CHCl₃, intramolecular $Cl_3C-H\cdots N$ hydrogen-bonding interactions occur between a single CHCl₃ and both N atoms at the 1,10-positions on the phenanthroline portion of the molecule. The interplanar distance between inversion-related molecules is 3.241 (2) Å.

Related literature

For the synthesis, see: Black *et al.* (1993). For the possible use of metal complexes of this ligand as DNA probes, see: Gao *et al.* (2007); Lawrence *et al.* (2006). For studies involving the non-methylated analog of the title compound, see: Chen *et al.* (2010); Dalton *et al.* (2008); Ozawa *et al.* (2006). For a related stucture, see: Ton & Bolte (2005). For $Cl_3C-H\cdots$ N hydrogen bonding, see: Fan *et al.* (2009); Li & Wang (2007).

Experimental

Crystal data

 $C_{18}H_{12}N_6O_2 \cdot CHCl_3$ $M_r = 463.70$ Monoclinic, $P2_1/n$

a = 8.9043 (2) Å
b = 16.4009 (4) Å
c = 13.4872 (4) Å

$\beta = 108.058 \ (1)^{\circ}$
V = 1872.63 (8) Å ³
Z = 4
Cu $K\alpha$ radiation

Data collection

Bruker APEXII CCD	15543 measured reflections
diffractometer	3370 independent reflections
Absorption correction: numerical	3115 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.033$
$T_{\min} = 0.224, \ T_{\max} = 0.508$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 273 parameters $wR(F^2) = 0.095$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.37$ e Å⁻³3370 reflections $\Delta \rho_{min} = -0.26$ e Å⁻³

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C19−H19· · ·N1	1.00	2.39	3.188 (2)	136
C19−H19· · ·N6	1.00	2.26	3.181 (2)	152

 $\mu = 4.72 \text{ mm}^{-1}$ T = 173 K

 $0.45 \times 0.22 \times 0.17 \text{ mm}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *APEX2* and *SAINT* (Bruker, 2008); data reduction: *SAINT* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *X-SEED*.

We gratefully acknowledge the financial support of the National Science Foundation (CHE-0722547) to KAW.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2311).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Black, K. J., Huang, H., High, S., Starks, L., Olson, M. & McGuire, M. E. (1993). *Inorg. Chem.* **32**, 5591–5596.
- Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Chen, X., Gao, F., Zhou, Z.-X., Yang, W.-Y., Guo, L.-T. & Ji, L.-N. (2010). J. Inorg. Biochem. 104, 576–582.
- Dalton, S. R., Glazier, S., Leung, B., Win, S., Megatulski, C. & Nieter Burgmayer, S. J. (2008). J. Biol. Inorg. Chem. 13, 1133–1148.
- Fan, H., Molivia, A. C. D., Eliason, J. K., Olson, J. L., Green, D. D., Gealy, M. W. & Ulness, D. J. (2009). *Chem. Phys. Lett.* **479**, 43–46.
- Gao, F., Chao, H., Zhou, F., Xu, L.-C., Zheng, K.-C. & Ji, L.-N. (2007). *Helv. Chim. Acta*, **90**, 36–50.
- Lawrence, D., Vaidyananthan, V. G. & Nair, B.-U. (2006). J. Inorg. Biochem. 100, 1244–1251.
- Li, A. Y. & Wang, S. W. (2007). J. Mol. Struct, 807, 191-199.
- Ozawa, T., Kishi, Y., Miyamato, K., Wasada-Tsutsui, Y., Funahashi, Y., Jitsukawa, K. & Masuda, H. (2006). Adv. Mater. Res. 11–12, 277–280.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.

supporting information

Acta Cryst. (2010). E66, o2288 [https://doi.org/10.1107/S1600536810031570]

10,12-Dimethylpteridino[6,7-f][1,10]phenanthroline-11,13(10H,12H)-dionechloroform (1/1)

Waynie Olaprath, Jennifer Roden, Kraig A. Wheeler and Mark E. McGuire

S1. Comment

We first reported the synthesis of the title compound as part of our effort to study the pH-dependent electron transfer reactions of transition metal complexes of riboflavin mimics (Black et al., 1993). Since that time, others have investigated metal complexes of this ligand as possible DNA probes (see, for example, Gao et al., 2007; Lawrence et al., 2006). The title compound is only slightly soluble in many common solvents; it appears at least moderately soluble in CHCl₃. We have grown crystals by vapor diffusion of hexane into a CHCl₃/95% EtOH solution. As shown in Figure 1, the crystal structure revealed interesting H-bonding interactions involving the H-atom on CHCl₃ and the N-atoms in the 1,10phenanthroline portion of the ligand (C19-H···N1: 3.188 (2) Å, 136° and C19-H···N6: 3.181 (2) Å, 152°). This type of interaction has been reported previously (Ton & Bolte, 2005) for a co-crystal of CHCl₃ and 1,10-phenanthroline(Cl₃C— H···N: 3.175 (3) Å, 146° and 3.225 (3) Å, 141°). Ab initio calculations on the interaction between CHCl₃ and pyridine (Li & Wang, 2007) predict a range of Cl₃C—H···N distances (3.13–3.25 Å) and angles (156–167°), depending on the basis sets used. Fan et al. (2009) reported very weak Cl₃C-H···N interaction in pyridine/chloroform solutions as measured by anti-Stokes Raman scattering. The interplanar distance between inversion-related molecules in I (viewed along the aaxis) is 3.241 (2) Å. The molecular planes in alternating stacks are oriented at 12.46 (2)° to each other; this could at least partially be due to packing constraints imposed by the slightly out-of-plane C18-methyl group (see packing diagram in Figure 2). Studies involving the non-methylated analog of the title compound have also been reported (Chen et al., 2010; Dalton et al., 2008; Gao et al., 2007; Ozawa et al., 2006) although, to our knowledge, no crystal structures of this analog have been reported.

S2. Experimental

The title compound was prepared and purified using a previously published procedure (Black *et al.*, 1993). A small amount of this compound was dissolved in \sim 1 ml of CHCl₃ and one drop of 95% ethanol was added to the mixture. The vial containing this mixture was placed in a beaker with \sim 1 ml of hexane and the beaker was loosely sealed. In 14 days, yellow crystals, suitable for data collection, were observed on the sides of the vial.

S3. Refinement

H atoms were positioned geometrically with C—H = 0.95, 0.96 and 1.00 Å, for aromatic, methyl and methine H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2Ueq(C)[U_{iso}(H) = 1.5Ueq(C)$ for methyl groups].

Figure 1

Perspective view of the title compound, with the atom numbering; displacement ellipsoids are at the 50% probability level.

Figure 2

Packing diagram for the title compound. The molecular planes of alternating stacks of molecules are oriented at $12.46 (2)^{\circ}$ relative to one another. The CHCl₃ molecules and H-atoms have been omitted for clarity.

10,12-Dimethylpteridino[6,7-f][1,10]phenanthroline-11,13(10H,12H)-dione-chloroform (1/1)

Crystal data

$C_{18}H_{12}N_6O_2$ ·CHCl ₃	c = 13.4872 (4) Å
$M_r = 463.70$	$\beta = 108.058 (1)^{\circ}$
Monoclinic, $P2_1/n$	V = 1872.63 (8) Å ³
Hall symbol: -P 2yn	Z = 4
a = 8.9043 (2) Å	F(000) = 944
b = 16.4009 (4) Å	$D_{\rm x} = 1.645 {\rm ~Mg} {\rm ~m}^{-3}$

Cu K α radiation, $\lambda = 1.54178$ Å Cell parameters from 8311 reflections $\theta = 4.3-71.9^{\circ}$ $\mu = 4.72$ mm⁻¹

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2008)
$T_{\min} = 0.224, \ T_{\max} = 0.508$

Refinement

Kejinemeni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.095$	neighbouring sites
S = 1.08	H-atom parameters constrained
3370 reflections	$w = 1/[\sigma^2(F_o^2) + (0.061P)^2 + 0.6946P]$
273 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 173 K

 $R_{\rm int} = 0.033$

 $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -16 \rightarrow 15$

Transparent prism, yellow

15543 measured reflections 3370 independent reflections 3115 reflections with $I > 2\sigma(I)$

 $0.45 \times 0.22 \times 0.17$ mm

 $\theta_{\rm max} = 68.2^\circ, \ \theta_{\rm min} = 4.4^\circ$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.11933 (6)	0.91490 (3)	0.06882 (4)	0.03314 (15)	
C12	1.02227 (5)	0.75947 (3)	0.13113 (3)	0.02516 (14)	
C13	0.78834 (5)	0.87388 (3)	0.00893 (4)	0.03132 (15)	
01	0.58359 (16)	0.89641 (8)	0.76117 (10)	0.0252 (3)	
02	0.50035 (16)	1.16797 (8)	0.78817 (10)	0.0253 (3)	
N1	0.93260 (18)	0.83887 (9)	0.33300 (11)	0.0211 (3)	
N2	0.69578 (17)	0.92402 (9)	0.59325 (11)	0.0185 (3)	
N3	0.53018 (17)	1.03163 (9)	0.76877 (11)	0.0199 (3)	
N4	0.61174 (18)	1.12873 (9)	0.66532 (11)	0.0193 (3)	
N5	0.71061 (17)	1.08699 (9)	0.53254 (11)	0.0185 (3)	
N6	0.94027 (18)	0.99643 (9)	0.27110 (11)	0.0206 (3)	
C1	0.9330 (2)	0.76237 (11)	0.36516 (14)	0.0228 (4)	

H1	0.9744	0.7215	0.3310	0.027*
C2	0.8759 (2)	0.73847 (11)	0.44641 (15)	0.0232 (4)
H2	0.8798	0.6829	0.4670	0.028*
C3	0.8141 (2)	0.79660 (11)	0.49591 (14)	0.0207 (4)
H3	0.7739	0.7820	0.5510	0.025*
C4	0.8113 (2)	0.87791 (10)	0.46354 (13)	0.0180 (3)
C5	0.7528 (2)	0.94334 (10)	0.51497 (13)	0.0181 (3)
C6	0.6493 (2)	0.98516 (11)	0.64097 (13)	0.0187 (4)
C7	0.5877 (2)	0.96493 (10)	0.72797 (13)	0.0193 (4)
C8	0.5445 (2)	1.11330 (11)	0.74324 (13)	0.0202 (4)
C9	0.6584 (2)	1.06698 (10)	0.61137 (13)	0.0185 (4)
C10	0.7584 (2)	1.02511 (10)	0.48401 (13)	0.0179 (3)
C11	0.8194 (2)	1.04465 (11)	0.39814 (13)	0.0186 (3)
C12	0.8254 (2)	1.12494 (11)	0.36400 (14)	0.0211 (4)
H12	0.7857	1.1686	0.3949	0.025*
C13	0.8895 (2)	1.13969 (11)	0.28512 (14)	0.0221 (4)
H13	0.8958	1.1936	0.2609	0.027*
C14	0.9452 (2)	1.07352 (11)	0.24152 (14)	0.0226 (4)
H14	0.9895	1.0843	0.1872	0.027*
C15	0.8776 (2)	0.98147 (10)	0.34867 (13)	0.0185 (3)
C16	0.8732 (2)	0.89648 (11)	0.38207 (13)	0.0181 (4)
C17	0.4656 (2)	1.01675 (11)	0.85485 (14)	0.0241 (4)
H17A	0.4159	0.9628	0.8465	0.036*
H17B	0.3867	1.0586	0.8543	0.036*
H17C	0.5511	1.0189	0.9213	0.036*
C18	0.6292 (2)	1.21489 (11)	0.64044 (14)	0.0232 (4)
H18A	0.7078	1.2195	0.6034	0.035*
H18B	0.6641	1.2466	0.7051	0.035*
H18C	0.5275	1.2359	0.5962	0.035*
C19	0.9722 (2)	0.86285 (11)	0.10784 (14)	0.0226 (4)
H19	0.9645	0.8881	0.1736	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0291 (3)	0.0310 (3)	0.0357 (3)	-0.00401 (19)	0.0049 (2)	0.01122 (19)
Cl2	0.0350 (3)	0.0176 (2)	0.0227 (2)	0.00243 (17)	0.00862 (19)	0.00046 (15)
C13	0.0251 (3)	0.0264 (3)	0.0357 (3)	0.00431 (18)	-0.0004(2)	-0.00619 (18)
01	0.0364 (7)	0.0162 (6)	0.0245 (7)	-0.0019 (5)	0.0115 (6)	-0.0004 (5)
02	0.0348 (7)	0.0187 (6)	0.0233 (6)	0.0043 (5)	0.0104 (6)	-0.0023 (5)
N1	0.0255 (8)	0.0172 (7)	0.0193 (7)	-0.0007 (6)	0.0048 (6)	-0.0020 (6)
N2	0.0213 (7)	0.0153 (7)	0.0167 (7)	-0.0020 (6)	0.0023 (6)	-0.0017 (5)
N3	0.0240 (7)	0.0175 (7)	0.0179 (7)	-0.0003 (6)	0.0059 (6)	-0.0019 (5)
N4	0.0258 (8)	0.0133 (7)	0.0179 (7)	0.0018 (6)	0.0054 (6)	-0.0010 (5)
N5	0.0213 (7)	0.0146 (7)	0.0170 (7)	0.0009 (5)	0.0023 (6)	0.0001 (5)
N6	0.0255 (8)	0.0180 (7)	0.0168 (7)	-0.0011 (6)	0.0042 (6)	0.0004 (6)
C1	0.0286 (9)	0.0162 (9)	0.0228 (9)	0.0007 (7)	0.0067 (8)	-0.0030 (7)
C2	0.0296 (9)	0.0141 (8)	0.0244 (9)	0.0000 (7)	0.0065 (8)	0.0000 (7)

C3	0.0239 (9)	0.0179 (9)	0.0189 (8)	-0.0021 (7)	0.0047 (7)	-0.0011 (7)
C4	0.0194 (8)	0.0150 (8)	0.0165 (8)	-0.0018 (6)	0.0011 (7)	-0.0015 (6)
C5	0.0194 (8)	0.0161 (8)	0.0159 (8)	-0.0021 (7)	0.0015 (7)	-0.0014 (6)
C6	0.0201 (8)	0.0168 (8)	0.0167 (8)	-0.0007 (7)	0.0019 (7)	-0.0014 (6)
C7	0.0227 (8)	0.0164 (9)	0.0164 (8)	-0.0023 (7)	0.0025 (7)	-0.0026 (6)
C8	0.0221 (9)	0.0183 (8)	0.0172 (8)	0.0007 (7)	0.0018 (7)	-0.0006 (7)
C9	0.0193 (8)	0.0164 (8)	0.0165 (8)	-0.0002 (7)	0.0006 (7)	-0.0021 (6)
C10	0.0184 (8)	0.0161 (8)	0.0163 (8)	-0.0001 (6)	0.0011 (7)	-0.0017 (6)
C11	0.0198 (8)	0.0168 (8)	0.0161 (8)	-0.0002 (7)	0.0012 (7)	0.0006 (6)
C12	0.0228 (9)	0.0172 (9)	0.0198 (9)	0.0009 (7)	0.0015 (7)	-0.0010 (7)
C13	0.0256 (9)	0.0175 (8)	0.0201 (9)	-0.0015 (7)	0.0024 (7)	0.0033 (7)
C14	0.0266 (9)	0.0209 (9)	0.0187 (8)	-0.0027 (7)	0.0047 (7)	0.0017 (7)
C15	0.0206 (8)	0.0163 (9)	0.0154 (8)	-0.0007 (7)	0.0008 (7)	-0.0003 (6)
C16	0.0193 (8)	0.0158 (8)	0.0156 (8)	-0.0006 (7)	0.0000 (7)	-0.0018 (6)
C17	0.0314 (10)	0.0217 (9)	0.0210 (9)	-0.0015 (7)	0.0105 (8)	-0.0015 (7)
C18	0.0339 (10)	0.0139 (8)	0.0218 (9)	0.0014 (7)	0.0084 (8)	-0.0002 (7)
C19	0.0264 (9)	0.0191 (8)	0.0197 (9)	-0.0006 (7)	0.0036 (7)	-0.0005 (7)

Geometric parameters (Å, °)

Cl1—C19	1.7747 (18)	C3—C4	1.401 (2)
Cl2—C19	1.7564 (18)	С3—Н3	0.9500
Cl3—C19	1.7716 (19)	C4—C16	1.407 (2)
O1—C7	1.214 (2)	C4—C5	1.459 (2)
O2—C8	1.214 (2)	C5—C10	1.410 (2)
N1—C1	1.327 (2)	C6—C9	1.410 (2)
N1-C16	1.352 (2)	C6—C7	1.479 (2)
N2—C6	1.325 (2)	C10-C11	1.459 (2)
N2—C5	1.343 (2)	C11—C12	1.401 (2)
N3—C7	1.392 (2)	C11—C15	1.415 (2)
N3—C8	1.399 (2)	C12—C13	1.376 (3)
N3—C17	1.467 (2)	C12—H12	0.9500
N4—C9	1.384 (2)	C13—C14	1.396 (3)
N4—C8	1.384 (2)	C13—H13	0.9500
N4—C18	1.472 (2)	C14—H14	0.9500
N5—C9	1.327 (2)	C15—C16	1.469 (2)
N5-C10	1.346 (2)	C17—H17A	0.9800
N6-C14	1.331 (2)	C17—H17B	0.9800
N6-C15	1.352 (2)	C17—H17C	0.9800
C1—C2	1.399 (3)	C18—H18A	0.9800
C1—H1	0.9500	C18—H18B	0.9800
С2—С3	1.373 (3)	C18—H18C	0.9800
С2—Н2	0.9500	С19—Н19	1.0000
C1—N1—C16	117.55 (15)	N5—C10—C11	118.16 (15)
C6—N2—C5	117.01 (15)	C5—C10—C11	120.02 (15)
C7—N3—C8	125.62 (15)	C12—C11—C15	118.44 (16)
C7—N3—C17	117.70 (15)	C12—C11—C10	121.93 (16)

C8—N3—C17	116.25 (14)	C15—C11—C10	119.62 (15)
C9—N4—C8	122.44 (15)	C13—C12—C11	119.12 (16)
C9—N4—C18	120.82 (14)	C13—C12—H12	120.4
C8—N4—C18	116.73 (14)	C11—C12—H12	120.4
C9—N5—C10	116.45 (15)	C12—C13—C14	118.39 (16)
C14—N6—C15	117.66 (15)	C12—C13—H13	120.8
N1—C1—C2	123.77 (16)	C14—C13—H13	120.8
N1—C1—H1	118.1	N6—C14—C13	124.28 (16)
С2—С1—Н1	118.1	N6—C14—H14	117.9
C3—C2—C1	118.95 (17)	C13—C14—H14	117.9
C3—C2—H2	120.5	N6—C15—C11	122.09 (16)
C1—C2—H2	120.5	N6—C15—C16	117.76 (15)
C2—C3—C4	118.70 (16)	C11—C15—C16	120.14 (15)
C2—C3—H3	120.7	N1—C16—C4	122.58 (16)
C4—C3—H3	120.7	N1—C16—C15	117.50 (15)
C3—C4—C16	118.44 (16)	C4—C16—C15	119.91 (15)
$C_3 - C_4 - C_5$	121.75 (15)	N3—C17—H17A	109.5
$C_{16} - C_{4} - C_{5}$	119 76 (16)	N3—C17—H17B	109.5
N2-C5-C10	120.93 (16)	H17A—C17—H17B	109.5
N2-C5-C4	118.54 (15)	N3—C17—H17C	109.5
C10—C5—C4	120.52 (15)	H17A—C17—H17C	109.5
N2—C6—C9	121.92 (16)	H17B—C17—H17C	109.5
N2—C6—C7	117.64 (16)	N4—C18—H18A	109.5
C9—C6—C7	120.43 (16)	N4—C18—H18B	109.5
O1—C7—N3	121.63 (16)	H18A—C18—H18B	109.5
O1—C7—C6	124.15 (16)	N4—C18—H18C	109.5
N3—C7—C6	114.20 (15)	H18A—C18—H18C	109.5
O2—C8—N4	121.82 (16)	H18B—C18—H18C	109.5
O2—C8—N3	121.06 (16)	Cl2—C19—Cl3	110.94 (10)
N4—C8—N3	117.12 (15)	Cl2—C19—Cl1	110.33 (10)
N5—C9—N4	118.51 (16)	Cl3—C19—Cl1	108.81 (10)
N5—C9—C6	121.85 (16)	Cl2—C19—H19	108.9
N4—C9—C6	119.65 (16)	Cl3—C19—H19	108.9
N5—C10—C5	121.81 (16)	Cl1—C19—H19	108.9
C16—N1—C1—C2	-0.1 (3)	N2-C6-C9-N5	1.6 (3)
N1—C1—C2—C3	0.7 (3)	C7—C6—C9—N5	-178.85 (16)
C1—C2—C3—C4	-0.4 (3)	N2-C6-C9-N4	-178.51 (16)
C2—C3—C4—C16	-0.5 (3)	C7—C6—C9—N4	1.0 (3)
C2—C3—C4—C5	-177.73 (17)	C9—N5—C10—C5	0.3 (2)
C6-N2-C5-C10	-1.6 (2)	C9—N5—C10—C11	-178.90 (15)
C6—N2—C5—C4	177.43 (15)	N2-C5-C10-N5	1.4 (3)
C3—C4—C5—N2	-2.1 (3)	C4C5C10N5	-177.55 (16)
C16—C4—C5—N2	-179.32 (15)	N2-C5-C10-C11	-179.40 (15)
C3—C4—C5—C10	176.93 (16)	C4—C5—C10—C11	1.6 (3)
C16—C4—C5—C10	-0.3 (3)	N5-C10-C11-C12	-1.6 (3)
C5—N2—C6—C9	0.1 (3)	C5-C10-C11-C12	179.22 (16)
C5—N2—C6—C7	-179.42 (15)	N5-C10-C11-C15	177.03 (16)

C8_N3_C7_01	173 01 (17)	C_{5} C_{10} C_{11} C_{15}	-22(2)
$C_{17} N_{2} C_{7} O_{1}$	1/5.01(17)	$C_{15} = C_{11} = C_{12} = C_{12}$	2.2(2)
C1/_N3_C/_01	0.8 (3)	013-011-012-013	-1.0 (3)
C8—N3—C7—C6	-8.3 (2)	C10-C11-C12-C13	177.63 (16)
C17—N3—C7—C6	179.50 (15)	C11—C12—C13—C14	0.5 (3)
N2-C6-C7-O1	3.3 (3)	C15—N6—C14—C13	-0.2 (3)
C9—C6—C7—O1	-176.22 (17)	C12-C13-C14-N6	0.1 (3)
N2-C6-C7-N3	-175.31 (15)	C14—N6—C15—C11	-0.3 (3)
C9—C6—C7—N3	5.1 (2)	C14—N6—C15—C16	-179.49 (15)
C9—N4—C8—O2	-178.08 (16)	C12-C11-C15-N6	1.0 (3)
C18—N4—C8—O2	0.8 (3)	C10-C11-C15-N6	-177.72 (16)
C9—N4—C8—N3	2.3 (3)	C12-C11-C15-C16	-179.93 (16)
C18—N4—C8—N3	-178.82 (15)	C10-C11-C15-C16	1.4 (2)
C7—N3—C8—O2	-174.77 (17)	C1—N1—C16—C4	-0.8 (3)
C17—N3—C8—O2	-2.5 (2)	C1—N1—C16—C15	178.08 (16)
C7—N3—C8—N4	4.9 (3)	C3—C4—C16—N1	1.1 (3)
C17—N3—C8—N4	177.20 (15)	C5-C4-C16-N1	178.42 (15)
C10—N5—C9—N4	178.39 (15)	C3—C4—C16—C15	-177.78 (16)
C10—N5—C9—C6	-1.7 (2)	C5-C4-C16-C15	-0.5 (3)
C8—N4—C9—N5	174.92 (15)	N6-C15-C16-N1	0.1 (2)
C18—N4—C9—N5	-4.0 (2)	C11—C15—C16—N1	-179.05 (15)
C8—N4—C9—C6	-5.0 (3)	N6-C15-C16-C4	179.05 (15)
C18—N4—C9—C6	176.14 (16)	C11-C15-C16-C4	-0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C19—H19…N1	1.00	2.39	3.188 (2)	136
C19—H19…N6	1.00	2.26	3.181 (2)	152