

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[2-(5H-Indolo[2,3-b]guinoxalin-5-yl)ethyl]-1,3-oxazolidin-2-one

Abdussalam Alsubari,^a Rachid Bouhfid,^a Hafid Zouihri,^b El Mokhtar Essassi^a and Seik Weng Ng^{c*}

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 21 July 2010; accepted 18 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.152; data-to-parameter ratio = 14.2.

The title compound, C₁₉H₁₆N₄O₂, has an almost planar fused *N*-heterocyclic system (r.m.s. deviation = 0.031 Å) and an almost planar five-membered 1,3-oxazolidine ring (r.m.s. deviation = 0.015 Å) at the ends of an ethylene chain [N-C-C-N torsion angle = $-65.6 (2)^{\circ}$]. The ring systems are inclined at $38.1 (1)^{\circ}$ to one another.

Related literature

For background to this class of oxindole derivatives, see: Alsubari et al. (2009). For a related structure, see: Alsubari et al. (2010)

Experimental

Crystal data

$C_{19}H_{16}N_4O_2$	V = 1599.57 (9) Å ³
$M_r = 332.36$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.5565 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 5.8993 (2) Å	T = 293 K
c = 18.6434 (6) Å	$0.37 \times 0.18 \times 0.17 \text{ mm}$
$\beta = 92.393 \ (2)^{\circ}$	

Data collection

Refinement

3216 reflections

S = 0.95

 $R[F^2 > 2\sigma(F^2)] = 0.044$ wR(F²) = 0.152

Bruker X8 APEXII diffractometer 19296 measured reflections 3216 independent reflections

1897 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.054$

226 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.15$ e Å⁻³

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2310).

References

Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337-346.

Alsubari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, 0454

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2010). E66, o2461 [https://doi.org/10.1107/S1600536810033222]

3-[2-(5H-Indolo[2,3-b]quinoxalin-5-yl)ethyl]-1,3-oxazolidin-2-one

Abdussalam Alsubari, Rachid Bouhfid, Hafid Zouihri, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

The synthesis of new oxindole derivatives having an oxazolindin-2-one unit has been detailed in a recent report (Alsubari *et al.*, 2009). Among related compounds whose structures have been determined is 3-[2-(2,3-dioxoindolin-1-yl)ethyl]-1,3-oxazolidin-2-one (Alsubari *et al.*, 2010) in which the oxazolidinyl ring has an envelope conformation with the methylene C atom bonded to the N atom as the flap. The $-CH_2-CH_2-$ connecting this ring to the other fused-ring system has its substituents in a *gauche* conformation [torsion angle = 62.7 (2)°]. In the tite compound (Scheme I, Fig. 1), the oxazolidinyl ring is planar (rms 0.015 Å), and there is no indication of any disorder in the ethylene portion of the ring. The fused *N*-heterocyclic system (rms 0.031 Å) is also planar and the two ring systems are inclined at 38.1 (1)° to one another. The fused-rings are not stacked directly over one another, however, the distance between two inversion-related fused ring systems is only 3.4 Å (Fig. 2).

S2. Experimental

1-(2-(2-Oxoxazolidin-3-yl)ethyl)indoline-2,3-dione (0.5 g, 3.84 mmole) and *o*-phenylenediamine (0.41 g, 3.84 mmole) were heated in xylene (30 ml) and refluxed for twelve hours. The solvent was then removed under reduced pressure and the residue recrystallized from ethanol to afford the title compound as yellow crystals.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

Figure 1

Thermal ellipsoid plot of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

3-[2-(5H-Indolo[2,3-b]quinoxalin-5-yl)ethyl]-1,3-oxazolidin-2-one

Crystal data

 $C_{19}H_{16}N_4O_2$ $M_r = 332.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.5565 (4) Åb = 5.8993 (2) Å c = 18.6434 (6) Å $\beta = 92.393 (2)^{\circ}$ V = 1599.57 (9) Å³ Z = 4

Data collection

F(000) = 696

 $\theta = 2.8 - 21.3^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

Prism, yellow

 $0.37 \times 0.18 \times 0.17 \text{ mm}$

 $D_x = 1.380 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2575 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.152$	neighbouring sites
<i>S</i> = 0.95	H-atom parameters constrained
3216 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0947P)^2]$
226 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.14976 (14)	0.4457 (3)	0.30554 (10)	0.0756 (6)	
O2	0.09479 (13)	0.3291 (3)	0.41022 (10)	0.0765 (6)	
N1	0.38685 (12)	0.2701 (3)	0.50246 (9)	0.0499 (5)	
N2	0.32451 (12)	0.6823 (3)	0.43058 (9)	0.0493 (5)	
N3	0.21587 (12)	0.6899 (3)	0.52289 (9)	0.0491 (5)	
N4	0.10754 (12)	0.7065 (3)	0.38211 (9)	0.0449 (4)	
C1	0.42821 (14)	0.3536 (4)	0.44272 (11)	0.0455 (5)	
C2	0.50363 (16)	0.2364 (4)	0.41630 (12)	0.0536 (6)	
H2	0.5235	0.1027	0.4383	0.064*	
C3	0.54794 (16)	0.3169 (4)	0.35861 (12)	0.0571 (6)	
Н3	0.5980	0.2382	0.3418	0.069*	
C4	0.51867 (16)	0.5176 (4)	0.32443 (12)	0.0573 (6)	
H4	0.5496	0.5713	0.2852	0.069*	
C5	0.44540 (15)	0.6342 (4)	0.34824 (12)	0.0519 (6)	

Н5	0.4262	0.7664	0.3249	0.062*
C6	0.39828 (14)	0.5568 (4)	0.40790 (10)	0.0434 (5)
C7	0.28851 (14)	0.5993 (4)	0.48773 (11)	0.0448 (5)
C8	0.31888 (14)	0.3950 (4)	0.52400 (11)	0.0446 (5)
C9	0.26054 (15)	0.3687 (4)	0.58425 (11)	0.0477 (5)
C10	0.25656 (16)	0.2117 (4)	0.64019 (12)	0.0593 (6)
H10	0.2985	0.0928	0.6437	0.071*
C11	0.19041 (17)	0.2347 (5)	0.68979 (14)	0.0693 (7)
H11	0.1874	0.1309	0.7272	0.083*
C12	0.12790 (18)	0.4118 (5)	0.68458 (13)	0.0713 (8)
H12	0.0829	0.4229	0.7184	0.086*
C13	0.13042 (17)	0.5719 (5)	0.63082 (12)	0.0624 (7)
H13	0.0884	0.6907	0.6282	0.075*
C14	0.19776 (15)	0.5498 (4)	0.58088 (11)	0.0480 (6)
C15	0.15862 (15)	0.8786 (4)	0.49739 (11)	0.0505 (6)
H15A	0.1961	0.9839	0.4714	0.061*
H15B	0.1353	0.9582	0.5384	0.061*
C16	0.07797 (15)	0.8028 (4)	0.44871 (12)	0.0483 (6)
H16A	0.0424	0.6908	0.4737	0.058*
H16B	0.0384	0.9317	0.4381	0.058*
C17	0.11498 (16)	0.4834 (4)	0.37101 (13)	0.0539 (6)
C18	0.1696 (2)	0.6593 (5)	0.27265 (14)	0.0742 (8)
H18A	0.1341	0.6763	0.2278	0.089*
H18B	0.2344	0.6699	0.2630	0.089*
C19	0.14339 (19)	0.8400 (4)	0.32542 (12)	0.0616 (7)
H19A	0.1965	0.9276	0.3421	0.074*
H19B	0.0971	0.9416	0.3046	0.074*

Atomic displacement parameters $(Å^2)$

	T 7 11	T 7))	T 733	T 712	T 713	T 773
	$U^{\prime\prime}$	U^{22}	U^{ss}	U^{12}	U^{15}	U ²³
01	0.1126 (15)	0.0451 (11)	0.0699 (11)	0.0048 (9)	0.0125 (11)	-0.0150 (8)
O2	0.0993 (14)	0.0362 (10)	0.0947 (14)	-0.0026 (9)	0.0106 (11)	0.0101 (9)
N1	0.0567 (11)	0.0489 (11)	0.0437 (10)	0.0008 (9)	-0.0010 (9)	0.0018 (8)
N2	0.0515 (11)	0.0515 (11)	0.0446 (10)	0.0010 (9)	0.0001 (9)	0.0027 (8)
N3	0.0496 (11)	0.0537 (12)	0.0442 (10)	0.0081 (9)	0.0031 (9)	0.0015 (8)
N4	0.0569 (11)	0.0318 (10)	0.0459 (10)	0.0031 (8)	-0.0002 (8)	-0.0013 (8)
C1	0.0486 (12)	0.0489 (13)	0.0387 (11)	-0.0020 (10)	-0.0038 (10)	-0.0051 (9)
C2	0.0602 (14)	0.0534 (14)	0.0467 (13)	0.0070 (11)	-0.0034 (11)	-0.0031 (11)
C3	0.0562 (14)	0.0647 (16)	0.0507 (14)	0.0115 (12)	0.0040 (11)	-0.0073 (12)
C4	0.0571 (15)	0.0726 (17)	0.0426 (12)	-0.0010 (13)	0.0062 (11)	-0.0009 (12)
C5	0.0539 (13)	0.0558 (15)	0.0460 (12)	0.0022 (11)	0.0012 (11)	0.0057 (11)
C6	0.0434 (12)	0.0499 (13)	0.0366 (11)	0.0014 (10)	-0.0034 (9)	-0.0038 (9)
C7	0.0471 (12)	0.0466 (13)	0.0401 (11)	-0.0011 (10)	-0.0041 (10)	-0.0004 (10)
C8	0.0462 (12)	0.0438 (13)	0.0430 (11)	-0.0005 (10)	-0.0072 (10)	-0.0009 (10)
C9	0.0466 (12)	0.0526 (14)	0.0436 (12)	-0.0055 (10)	-0.0022 (10)	0.0002 (10)
C10	0.0585 (14)	0.0619 (16)	0.0573 (15)	-0.0005 (12)	-0.0025 (12)	0.0096 (12)
C11	0.0661 (16)	0.083 (2)	0.0587 (16)	-0.0056 (15)	0.0070 (13)	0.0199 (14)

supporting information

C12	0.0602 (16)	0.102 (2)	0.0523 (14)	-0.0002 (16)	0.0111 (12)	0.0145 (15)
C13	0.0573 (15)	0.0779 (18)	0.0524 (14)	0.0068 (13)	0.0057 (12)	0.0027 (13)
C14	0.0483 (13)	0.0553 (14)	0.0401 (11)	-0.0023 (10)	-0.0031 (10)	0.0013 (10)
C15	0.0596 (14)	0.0442 (13)	0.0479 (13)	0.0055 (10)	0.0024 (11)	-0.0064 (10)
C16	0.0494 (12)	0.0401 (13)	0.0558 (13)	0.0085 (10)	0.0059 (10)	0.0024 (10)
C17	0.0604 (15)	0.0371 (13)	0.0639 (15)	0.0037 (10)	-0.0018 (12)	-0.0045 (11)
C18	0.104 (2)	0.0604 (18)	0.0588 (16)	-0.0010 (14)	0.0136 (15)	-0.0080 (12)
C18	0.104 (2)	0.0604 (18)	0.0588 (16)	-0.0010 (14)	0.0136 (15)	-0.0080 (12)
C19	0.0917 (18)	0.0481 (15)	0.0453 (13)	0.0035 (13)	0.0039 (12)	0.0037 (10)

Geometric parameters (Å, °)

O1—C17	1.359 (3)	С7—С8	1.442 (3)
O1—C18	1.436 (3)	C8—C9	1.445 (3)
O2—C17	1.211 (3)	C9—C10	1.398 (3)
N1—C8	1.310 (3)	C9—C14	1.406 (3)
N1—C1	1.379 (3)	C10-C11	1.369 (3)
N2—C7	1.302 (3)	C10—H10	0.9300
N2—C6	1.385 (3)	C11—C12	1.386 (4)
N3—C7	1.375 (3)	C11—H11	0.9300
N3—C14	1.395 (3)	C12—C13	1.379 (3)
N3—C15	1.458 (3)	C12—H12	0.9300
N4—C17	1.338 (3)	C13—C14	1.386 (3)
N4—C19	1.434 (3)	С13—Н13	0.9300
N4—C16	1.447 (3)	C15—C16	1.521 (3)
C1—C2	1.404 (3)	C15—H15A	0.9700
C1—C6	1.423 (3)	C15—H15B	0.9700
C2—C3	1.362 (3)	C16—H16A	0.9700
С2—Н2	0.9300	C16—H16B	0.9700
C3—C4	1.402 (3)	C18—C19	1.510 (3)
С3—Н3	0.9300	C18—H18A	0.9700
C4—C5	1.359 (3)	C18—H18B	0.9700
C4—H4	0.9300	C19—H19A	0.9700
C5—C6	1.407 (3)	C19—H19B	0.9700
С5—Н5	0.9300		
C17 O1 C19	100 10 (19)	C10 C11 C12	120.2 (2)
$C_1 = C_1 = C_1 = C_1$	109.19 (18)	C10 $C11$ $U11$	120.3 (2)
$C_0 - N_1 - C_1$	114.05 (19)		119.8
C/N2 - C6	113.11(18) 108.24(18)	C12— $C12$ — $C12$ — $C11$	119.8
C/-NS-C14	108.24(18)	C13 - C12 - C11	122.0 (2)
$C/-N_3-C_{15}$	125.57 (18)	C13-C12-H12	119.0
C14 - N3 - C15	125.53 (18)	CII—CI2—HI2	119.0
C17 - N4 - C19	113.09 (19)	C12-C13-C14	117.7 (2)
C17—N4—C16	123.23 (19)	С12—С13—Н13	121.1
C19—N4—C16	123.19 (18)	C14—C13—H13	121.1
NI-CI-C2	118.8 (2)	C13—C14—N3	128.8 (2)
N1 - C1 - C6	122.26 (19)	C13—C14—C9	121.2 (2)
C2-C1-C6	118.94 (19)	N3—C14—C9	109.98 (19)
C3—C2—C1	120.5 (2)	N3—C15—C16	112.74 (18)

C3—C2—H2	119.7	N3—C15—H15A	109.0
C1—C2—H2	119.7	C16—C15—H15A	109.0
C2—C3—C4	120.5 (2)	N3—C15—H15B	109.0
С2—С3—Н3	119.7	C16—C15—H15B	109.0
С4—С3—Н3	119.7	H15A—C15—H15B	107.8
C5—C4—C3	120.4 (2)	N4—C16—C15	112,19(17)
C5-C4-H4	119.8	N4—C16—H16A	109.2
C3—C4—H4	119.8	C15—C16—H16A	109.2
C4-C5-C6	120.6 (2)	N4—C16—H16B	109.2
C4—C5—H5	1197	C15—C16—H16B	109.2
С6—С5—Н5	119.7	H16A—C16—H16B	107.9
N_{2} - C6 - C5	118.5 (2)	Ω^2 — $C17$ —N4	1285(2)
$N_2 - C_6 - C_1$	12253(18)	02 - C17 - 01	120.0(2) 121.9(2)
C_{5} C_{6} C_{1}	118 95 (19)	N4-C17-O1	121.9(2) 1096(2)
N2-C7-N3	1260(2)	01-C18-C19	109.0(2)
$N_{2} - C_{7} - C_{8}$	120.0(2) 124 87 (19)	O1-C18-H18A	110.5
N_{3} C_{7} C_{8}	109 16 (18)	C19-C18-H18A	110.5
N1 - C8 - C7	123 16 (19)	O1-C18-H18B	110.5
N1-C8-C9	120.10(1)) 130.8(2)	C_{19} C_{18} H_{18B}	110.5
C7 - C8 - C9	106.0(2)	H_{184} C_{18} H_{18B}	108.7
$C_{10} - C_{9} - C_{14}$	100.00(10) 119.3(2)	N4-C19-C18	100.7 101.7(2)
C10-C9-C8	1341(2)	N4-C19-H19A	101.7 (2)
$C_{14} - C_{9} - C_{8}$	106.60(18)	C18— $C19$ — $H19A$	111.4
$C_{11} - C_{10} - C_{9}$	1194(2)	N4-C19-H19B	111.1
$C_{11} - C_{10} - H_{10}$	120.3	C_{18} C_{19} H_{19B}	111.1
C9-C10-H10	120.3	H19A - C19 - H19B	109 3
	120.5		109.5
C8—N1—C1—C2	178.18 (19)	C14—C9—C10—C11	1.3 (3)
C8 - N1 - C1 - C6	-0.5(3)	C8-C9-C10-C11	-179.5(2)
N1-C1-C2-C3	-178.2(2)	C9-C10-C11-C12	0.0 (4)
C6-C1-C2-C3	0.6(3)	C10-C11-C12-C13	-10(4)
C1 - C2 - C3 - C4	-0.3(3)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.6 (4)
$C_2 - C_3 - C_4 - C_5$	-0.2(4)	C_{12} C_{13} C_{14} N_3	-178.6(2)
C_{3} C_{4} C_{5} C_{6}	0.6(3)	C_{12} C_{13} C_{14} C_{9}	0.9(3)
C7-N2-C6-C5	-177.54(18)	C7-N3-C14-C13	-179.2(2)
C7-N2-C6-C1	2.3 (3)	C_{15} N3 $-C_{14}$ $-C_{13}$	-8.2(4)
C4-C5-C6-N2	179.5 (2)	C7-N3-C14-C9	1.2 (2)
C4-C5-C6-C1	-0.4(3)	C_{15} N3 $-C_{14}$ C9	172(27(19))
N1-C1-C6-N2	-1.3(3)	C10-C9-C14-C13	-1.8(3)
$C_{2}-C_{1}-C_{6}-N_{2}$	179.99 (19)	C8-C9-C14-C13	178.8 (2)
N1-C1-C6-C5	178.46 (19)	C10-C9-C14-N3	177.76 (19)
$C_2 - C_1 - C_6 - C_5$	-0.2(3)	C8-C9-C14-N3	-1.6(2)
C6—N2—C7—N3	178.79 (19)	C7-N3-C15-C16	87.4 (3)
C6-N2-C7-C8	-1.6(3)	C_{14} N3- C_{15} C16	-82.2(2)
C14—N3—C7—N2	179.42 (19)	C17 - N4 - C16 - C15	98.1 (2)
C15—N3—C7—N2	8.3 (3)	C19—N4—C16—C15	-73.2(3)
C14—N3—C7—C8	-0.3 (2)	N3—C15—C16—N4	-65.6 (2)
C15—N3—C7—C8	-171.34 (18)	C19—N4—C17—O2	176.5 (3)

supporting information

C1—N1—C8—C7	1.2 (3)	C16—N4—C17—O2	4.4 (4)
C1—N1—C8—C9	-178.5 (2)	C19—N4—C17—O1	-4.0 (3)
N2-C7-C8-N1	-0.2 (3)	C16—N4—C17—O1	-176.09 (18)
N3—C7—C8—N1	179.50 (19)	C18—O1—C17—O2	-178.2 (2)
N2—C7—C8—C9	179.6 (2)	C18—O1—C17—N4	2.2 (3)
N3—C7—C8—C9	-0.7 (2)	C17—O1—C18—C19	0.2 (3)
N1-C8-C9-C10	1.9 (4)	C17—N4—C19—C18	3.8 (3)
C7—C8—C9—C10	-177.9 (2)	C16—N4—C19—C18	175.9 (2)
N1-C8-C9-C14	-178.8 (2)	O1-C18-C19-N4	-2.3 (3)
C7—C8—C9—C14	1.4 (2)		