organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Amino-5-bromopyridinium 3-carboxy-4-hydroxybenzenesulfonate

Madhukar Hemamalini and Hoong-Kun Fun*‡

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 19 August 2010; accepted 23 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.007 Å; R factor = 0.060; wR factor = 0.181; data-to-parameter ratio = 23.5.

The asymmetric unit of the title salt, $C_5H_6BrN_2^+ \cdot C_7H_5O_6S^-$, contains two independent 2-amino-5-bromopyridinium cations and two independent 3-carboxy-4-hydroxybenzenesulfonate anions. The hydroxy and carboxyl groups of the anions are involved in intramolecular O-H···O hydrogen bonds, which generate S(6) ring motifs. In the crystal structure, the ions are linked by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds into a two-dimensional network parallel to (110). Adjacent networks are linked via $C-H \cdots O$ hydrogen bonds.

Related literature

For applications of pyridinium compounds, see: Akkurt et al. (2005); Navarro Ranninger et al. (1985); Krizanovic et al. (1993); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Lah et al. (2002); Ren et al. (2002); Rivas et al. (2003); Luque et al. (1997); Jin et al. (2000); Albrecht et al. (2003). For related structures, see: Hemamalini & Fun (2010); Quah et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data C5H6BrN2+C7H5O6S $M_r = 391.20$

Triclinic, $P\overline{1}$ a = 7.8425 (2) Å

‡ Thomson Reuters ResearcherID: A-3561-2009.

Acta	Cryst	(2010)	F66	02408-0	2409
/ icta	Cryst.	(2010).	LUU,	02400-0	2405

b = 10.8682 (3) Å	
c = 16.5457 (5) Å	
$\alpha = 85.207 \ (2)^{\circ}$	
$\beta = 83.290 \ (2)^{\circ}$	
$\gamma = 86.537 \ (2)^{\circ}$	
$V = 1393.87 (7) \text{ Å}^3$	

Data collection

b

с

α

β

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.498, \ T_{\max} = 0.772$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 397 parameters $wR(F^2) = 0.181$ H-atom parameters constrained S = 1.11 $\Delta \rho_{\rm max} = 1.65 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$ 9322 reflections

Z = 4

Mo $K\alpha$ radiation

 $0.26 \times 0.14 \times 0.09 \text{ mm}$

34040 measured reflections

9322 independent reflections

7366 reflections with $I > 2\sigma(I)$

 $\mu = 3.13 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.040$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1NA \cdots O4B$	0.99	1.86	2.811 (6)	160
$N2A - H2AB \cdots O6B^{i}$	0.90	2.23	3.113 (6)	166
$N2A - H2NA \cdots O5B$	0.80	2.22	2.919 (6)	146
$N2A - H2NA \cdots O2A^{i}$	0.80	2.26	2.807 (6)	126
$O1A - H1OA \cdots O2A$	0.82	1.82	2.596 (5)	158
$O3A - H2OA \cdots O4B$	0.90	2.60	3.250 (5)	130
$O3A - H2OA \cdots O6B$	0.90	1.77	2.649 (5)	165
$N1B - H1NB \cdots O6A^{ii}$	0.84	2.13	2.859 (6)	145
$N2B - H2NB \cdots O5A^{ii}$	0.83	2.34	3.006 (5)	138
$N2B - H3NB \cdots O4A$	0.76	2.27	3.024 (6)	175
$O1B - H1OB \cdot \cdot \cdot O2B$	0.81	1.89	2.582 (5)	143
$O1B - H1OB \cdot \cdot \cdot O5A^{iii}$	0.81	2.42	3.023 (5)	131
$O3B-H2OB\cdots O4A^{iv}$	0.89	1.79	2.661(5)	166
$C5A - H5AA \cdots O1A^{v}$	0.93	2.56	3.188 (6)	125
$C10A - H10A \cdots O1B^{iii}$	0.93	2.56	3.406 (6)	151
$C10B - H10B \cdots O1A^{i}$	0.93	2.53	3.364 (6)	150
Symmetry codes: (i)	-x, -y + 2,	-z + 1; (ii) -x + 1, -y -	+1, -z; (iii)

-x + 1, -y + 1, -z + 1; (iv) x, y, z + 1; (v) x + 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5165).

References

- Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, 0776-0778.
- Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33. 269-276.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, 0663.
- Jin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195– 198.
- Krizanovic, O., Sabat, M., Beyerle-Pfnur, R. & Lippert, B. (1993). J. Am. Chem. Soc. 115, 5538–5548.
- Lah, N., Segedin, P. & Leban, I. (2002). Struct. Chem. 13, 357-360.
- Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
- Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21-22.

- Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). *Polyhedron*, 18, 3461–3464.
- Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935– 01936.
- Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). *Jiegou Huaxue*, **21**, 38–41.
- Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). *Dalton Trans.* pp. 3339-3349.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem. 38, 3586-3589.

supporting information

Acta Cryst. (2010). E66, o2408–o2409 [https://doi.org/10.1107/S1600536810033908] 2-Amino-5-bromopyridinium 3-carboxy-4-hydroxybenzenesulfonate

Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Pyridinium derivatives often exhibit antibacterial and antifungal activities (Akkurt *et al.*, 2005). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger *et al.*, 1985; Krizanovic *et al.*, 1993; Luque *et al.*, 1997; Qin *et al.*, 1999; Yip *et al.*, 1999; Lah *et al.*, 2002; Ren *et al.*, 2002; Rivas *et al.*, 2003) or as protonated cations (Luque *et al.*, 1997; Jin *et al.*, 2000; Albrecht *et al.*, 2003). We have been interested in hydrogen-bonded systems formed by 2-aminopyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010; Quah *et al.*, 2010). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5bromopyridinium cation is planar, with a maximum deviation of 0.015 (1) Å for atom Br1A in cation A and 0.031 (1) Å for Br1B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A —C5A [123.9 (4)°] and C1B—N1B—C5B [123.8 (4)°] angles.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-bromopyridinium cations via a pair of N—H···O hydrogen bonds forming an $R_2^2(8)$ ring motif (Bernstein *et al.*, 1995). Here, sulfonate groups mimic the role of the carboxylate groups. Furthermore, the ionic units are linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds generating a three-dimensional network. The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and - COOH groups in sulfosalicylate anions, which generate *S*(6) ring motifs.

S2. Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (46 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow coloured crystals of the title compound appeared after a few days.

S3. Refinement

The N- and O-bound H atoms were initially located in a difference map and later allowed to ride on the parent atoms [N– H = 0.76–0.98 Å and O–H = 0.82–0.90 Å], with $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)$. C-bound H atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$. In the final difference Fourier map the highest peak is 0.88 Å from atom Br1A and the deepest hole is 1.55 Å from atom C6A.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

A view of hydrogen-bonded sheet made up of 3-carboxy-4-hydroxy benzenesulfonate anions.

2-Amino-5-bromopyridinium 3-carboxy-4-hydroxybenzenesulfonate

Crystal data

 $C_{5}H_{6}BrN_{2}^{+} \cdot C_{7}H_{5}O_{6}S^{-}$ $M_{r} = 391.20$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.8425 (2) Å b = 10.8682 (3) Å c = 16.5457 (5) Å $a = 85.207 (2)^{\circ}$ $\beta = 83.290 (2)^{\circ}$ $\gamma = 86.537 (2)^{\circ}$ $V = 1393.87 (7) \text{ Å}^{3}$

Data collection

Bruker SMART APEXII CCD area-detector34040 mediffractometer9322 indeRadiation source: fine-focus sealed tube7366 refleGraphite monochromator $R_{int} = 0.04$ φ and ω scans $\theta_{max} = 31.^{\circ}$ Absorption correction: multi-scan $h = -11 \rightarrow$ (SADABS; Bruker, 2009) $k = -15 \rightarrow$ $T_{min} = 0.498, T_{max} = 0.772$ $l = -24 \rightarrow$

Z = 4 F(000) = 784 $D_x = 1.864 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9916 reflections $\theta = 3.0-31.4^{\circ}$ $\mu = 3.13 \text{ mm}^{-1}$ T = 100 K Plate, yellow $0.26 \times 0.14 \times 0.09 \text{ mm}$

34040 measured reflections 9322 independent reflections 7366 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 31.7^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 16$ $l = -24 \rightarrow 24$ Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.060$ wR(F^2) = 0.181	Hydrogen site location: inferred from neighbouring sites
S = 1.11	H-atom parameters constrained
9322 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 14.502P]$
397 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.65 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1A	0.34842 (7)	1.03576 (5)	0.09171 (3)	0.02290 (13)	
N1A	0.3053 (5)	1.0274 (4)	0.3409 (2)	0.0164 (7)	
H1NA	0.3775	0.9756	0.3767	0.020*	
N2A	0.1288 (6)	1.1186 (4)	0.4427 (3)	0.0220 (9)	
H2AB	0.0369	1.1714	0.4514	0.026*	
H2NA	0.1650	1.0910	0.4843	0.026*	
C1A	0.1717 (6)	1.1047 (5)	0.3644 (3)	0.0179 (9)	
C2A	0.0822 (6)	1.1683 (5)	0.3013 (3)	0.0181 (9)	
H2AA	-0.0107	1.2229	0.3149	0.022*	
C3A	0.1326 (6)	1.1490 (5)	0.2214 (3)	0.0180 (9)	
H3AA	0.0732	1.1895	0.1806	0.022*	
C4A	0.2754 (6)	1.0674 (5)	0.2008 (3)	0.0161 (8)	
C5A	0.3601 (6)	1.0076 (5)	0.2613 (3)	0.0163 (8)	
H5AA	0.4544	0.9538	0.2485	0.020*	
S1A	0.15205 (14)	0.68598 (11)	0.03315 (6)	0.0126 (2)	
01A	-0.2400(5)	0.9811 (3)	0.2821 (2)	0.0180 (7)	
H1OA	-0.2078	0.9424	0.3229	0.027*	
O2A	-0.0584 (5)	0.8634 (4)	0.3883 (2)	0.0227 (8)	
O3A	0.1606 (5)	0.7338 (3)	0.3455 (2)	0.0178 (7)	
H2OA	0.1921	0.7418	0.3952	0.027*	
O4A	0.2922 (4)	0.7619 (3)	-0.0065 (2)	0.0169 (7)	
O5A	0.2150 (5)	0.5735 (3)	0.0766 (2)	0.0196 (7)	
06A	0.0315 (5)	0.6618 (4)	-0.0241 (2)	0.0194 (7)	

C6A	-0.1432 (6)	0.9151 (4)	0.2271 (3)	0.0134 (8)
C7A	-0.1724 (6)	0.9374 (4)	0.1452 (3)	0.0162 (8)
H7AA	-0.2528	0.9992	0.1304	0.019*
C8A	-0.0827 (6)	0.8683 (4)	0.0861 (3)	0.0150 (8)
H8AA	-0.1028	0.8838	0.0318	0.018*
C9A	0.0377 (6)	0.7754 (4)	0.1079 (3)	0.0134 (8)
C10A	0.0740 (6)	0.7554 (4)	0.1881 (3)	0.0130 (8)
H10A	0.1576	0.6954	0.2018	0.016*
C11A	-0.0146 (6)	0.8250 (4)	0.2484 (3)	0.0129 (8)
C12A	0.0249 (6)	0.8082 (4)	0.3339 (3)	0.0154 (8)
Br1B	0.82103 (7)	0.51159 (5)	0.36511 (3)	0.02183 (12)
N1B	0.7997 (5)	0.5274 (4)	0.1191 (2)	0.0151 (7)
H1NB	0.8554	0.5000	0.0772	0.018*
N2B	0.6286 (6)	0.6276 (4)	0.0271 (2)	0.0185 (8)
H2NB	0.6942	0.6071	-0.0134	0.022*
H3NB	0.5478	0.6641	0.0167	0.022*
C1B	0.6675 (6)	0.6070 (4)	0.1026 (3)	0.0148 (8)
C2B	0.5735 (6)	0.6639 (5)	0.1700 (3)	0.0181 (9)
H2BA	0.4806	0.7187	0.1612	0.022*
C3B	0.6179 (7)	0.6392 (5)	0.2468 (3)	0.0190 (9)
H3BA	0.5569	0.6775	0.2903	0.023*
C4B	0.7588 (6)	0.5541 (5)	0.2600 (3)	0.0157 (8)
C5B	0.8482 (6)	0.5005 (4)	0.1952 (3)	0.0151 (8)
H5BA	0.9418	0.4459	0.2030	0.018*
S1B	0.34815 (15)	0.81374 (11)	0.51288 (7)	0.0149 (2)
O1B	0.7530 (5)	0.5267 (3)	0.7495 (2)	0.0182 (7)
H1OB	0.7144	0.5349	0.7967	0.027*
O2B	0.5619 (5)	0.6350 (4)	0.8632 (2)	0.0196 (7)
O3B	0.3442 (5)	0.7652 (3)	0.8315 (2)	0.0176 (7)
H2OB	0.3280	0.7778	0.8844	0.026*
O4B	0.4611 (5)	0.8372 (4)	0.4372 (2)	0.0239 (8)
O5B	0.2794 (6)	0.9255 (4)	0.5500 (2)	0.0269 (9)
O6B	0.2102 (5)	0.7328 (4)	0.5012 (2)	0.0201 (7)
C6B	0.6577 (6)	0.5938 (4)	0.6973 (3)	0.0133 (8)
C7B	0.6953 (7)	0.5781 (5)	0.6139 (3)	0.0183 (9)
H7BA	0.7826	0.5215	0.5963	0.022*
C8B	0.6037 (6)	0.6462 (5)	0.5575 (3)	0.0186 (9)
H8BA	0.6293	0.6353	0.5021	0.022*
C9B	0.4723 (6)	0.7315 (4)	0.5838 (3)	0.0144 (8)
C10B	0.4318 (6)	0.7471 (4)	0.6658 (3)	0.0131 (8)
H10B	0.3430	0.8031	0.6828	0.016*
C11B	0.5235 (6)	0.6792 (4)	0.7235 (3)	0.0121 (7)
C12B	0.4794 (6)	0.6907 (4)	0.8116 (3)	0.0140 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br1A	0.0219 (2)	0.0316 (3)	0.0159 (2)	-0.0003 (2)	-0.00412 (17)	-0.00410 (18)

N1A	0.0165 (18)	0.0151 (19)	0.0166 (17)	0.0003 (15)	-0.0026 (14)	0.0048 (14)
N2A	0.023 (2)	0.025 (2)	0.0170 (19)	0.0012 (17)	0.0003 (16)	0.0000 (16)
C1A	0.018 (2)	0.018 (2)	0.017 (2)	-0.0045 (17)	0.0005 (16)	0.0005 (17)
C2A	0.014 (2)	0.019 (2)	0.021 (2)	0.0019 (17)	-0.0016 (16)	0.0014 (17)
C3A	0.016 (2)	0.018 (2)	0.020 (2)	0.0010 (17)	-0.0052 (17)	0.0013 (17)
C4A	0.015 (2)	0.018 (2)	0.0162 (19)	-0.0050 (17)	-0.0020 (15)	0.0011 (16)
C5A	0.0122 (19)	0.017 (2)	0.019 (2)	0.0010 (16)	-0.0019 (16)	0.0007 (16)
S1A	0.0121 (5)	0.0141 (5)	0.0114 (4)	0.0016 (4)	-0.0007 (3)	-0.0027 (4)
O1A	0.0182 (16)	0.0205 (18)	0.0152 (15)	0.0078 (13)	-0.0030 (12)	-0.0050 (13)
O2A	0.0253 (19)	0.028 (2)	0.0148 (15)	0.0126 (15)	-0.0066 (13)	-0.0063 (14)
O3A	0.0188 (17)	0.0184 (17)	0.0166 (15)	0.0095 (13)	-0.0067 (12)	-0.0042 (12)
O4A	0.0147 (15)	0.0189 (17)	0.0164 (15)	-0.0015 (13)	0.0017 (12)	-0.0024 (12)
O5A	0.0242 (18)	0.0155 (17)	0.0181 (16)	0.0067 (14)	-0.0017 (13)	-0.0009 (12)
O6A	0.0183 (17)	0.0240 (19)	0.0175 (15)	-0.0015 (14)	-0.0032 (13)	-0.0093 (13)
C6A	0.0134 (19)	0.013 (2)	0.0137 (18)	0.0030 (15)	-0.0025 (15)	-0.0029 (15)
C7A	0.019 (2)	0.013 (2)	0.0166 (19)	0.0025 (17)	-0.0040 (16)	-0.0015 (15)
C8A	0.016 (2)	0.016 (2)	0.0127 (18)	0.0030 (16)	-0.0035 (15)	-0.0017 (15)
C9A	0.016 (2)	0.0117 (19)	0.0124 (18)	-0.0016 (15)	0.0025 (15)	-0.0038 (14)
C10A	0.0132 (19)	0.012 (2)	0.0141 (18)	-0.0020 (15)	-0.0015 (15)	-0.0038 (15)
C11A	0.0135 (19)	0.014 (2)	0.0121 (17)	0.0013 (15)	-0.0034 (14)	-0.0021 (14)
C12A	0.018 (2)	0.014 (2)	0.0157 (19)	0.0013 (16)	-0.0043 (16)	-0.0027 (15)
Br1B	0.0238 (3)	0.0286 (3)	0.0131 (2)	-0.0010 (2)	-0.00254 (17)	-0.00132 (17)
N1B	0.0132 (17)	0.019 (2)	0.0130 (16)	-0.0017 (14)	0.0005 (13)	-0.0033 (14)
N2B	0.0172 (19)	0.023 (2)	0.0154 (17)	0.0027 (16)	-0.0034 (14)	-0.0017 (15)
C1B	0.014 (2)	0.015 (2)	0.0155 (19)	-0.0031 (16)	0.0002 (15)	-0.0008 (15)
C2B	0.017 (2)	0.016 (2)	0.022 (2)	0.0019 (17)	-0.0020 (17)	-0.0046 (17)
C3B	0.022 (2)	0.017 (2)	0.017 (2)	-0.0029 (18)	0.0031 (17)	-0.0045 (17)
C4B	0.016 (2)	0.019 (2)	0.0124 (18)	-0.0048 (17)	-0.0014 (15)	-0.0009 (15)
C5B	0.016 (2)	0.012 (2)	0.017 (2)	-0.0002 (16)	-0.0024 (16)	-0.0018 (15)
S1B	0.0165 (5)	0.0162 (5)	0.0123 (4)	0.0028 (4)	-0.0046 (4)	-0.0005 (4)
O1B	0.0190 (17)	0.0208 (18)	0.0139 (14)	0.0071 (13)	-0.0032 (12)	-0.0002 (12)
O2B	0.0237 (18)	0.0205 (18)	0.0136 (15)	0.0073 (14)	-0.0040 (13)	0.0006 (12)
O3B	0.0207 (17)	0.0184 (17)	0.0126 (14)	0.0039 (13)	-0.0008 (12)	0.0001 (12)
O4B	0.0250 (19)	0.029 (2)	0.0166 (16)	0.0023 (16)	-0.0023 (14)	0.0037 (14)
O5B	0.038 (2)	0.0215 (19)	0.0210 (17)	0.0152 (17)	-0.0109 (16)	-0.0052 (14)
O6B	0.0193 (17)	0.0232 (19)	0.0186 (16)	-0.0028 (14)	-0.0076 (13)	0.0011 (13)
C6B	0.0105 (18)	0.015 (2)	0.0144 (18)	0.0015 (15)	-0.0022 (14)	-0.0006 (15)
C7B	0.018 (2)	0.020 (2)	0.016 (2)	0.0066 (18)	-0.0025 (16)	-0.0034 (17)
C8B	0.018 (2)	0.022 (2)	0.015 (2)	0.0070 (18)	-0.0050 (16)	-0.0044 (17)
C9B	0.015 (2)	0.016 (2)	0.0130 (18)	0.0021 (16)	-0.0048 (15)	-0.0020 (15)
C10B	0.0128 (19)	0.013 (2)	0.0142 (18)	0.0003 (15)	-0.0031 (14)	-0.0014 (15)
C11B	0.0129 (19)	0.0116 (19)	0.0121 (17)	0.0011 (15)	-0.0030 (14)	-0.0021 (14)
C12B	0.017 (2)	0.013 (2)	0.0124 (18)	-0.0014 (16)	-0.0020 (15)	0.0005 (14)

Geometric parameters (Å, °)

Br1A—C4A	1.883 (5)	Br1B—C4B	1.874 (5)
N1A—C1A	1.344 (7)	N1B—C1B	1.348 (6)

N1A—C5A	1.367 (6)	N1B—C5B	1.361 (6)
N1A—H1NA	0.98	N1B—H1NB	0.84
N2A—C1A	1.320 (6)	N2B—C1B	1.318 (6)
N2A—H2AB	0.90	N2B—H2NB	0.83
N2A—H2NA	0.80	N2B—H3NB	0.76
C1A—C2A	1.433 (7)	C1B—C2B	1.427 (6)
C2A—C3A	1.365 (7)	C2B—C3B	1.358 (7)
C2A—H2AA	0.93	C2B—H2BA	0.93
C3A—C4A	1.413 (7)	C3B—C4B	1.422 (7)
СЗА—НЗАА	0.93	СЗВ—НЗВА	0.93
C4A—C5A	1.364 (7)	C4B—C5B	1.364 (6)
С5А—Н5АА	0.93	C5B—H5BA	0.93
S1A—O5A	1.455 (4)	S1B	1.453 (4)
S1A—O6A	1.464 (4)	S1B—O4B	1.461 (4)
S1A—O4A	1.473 (4)	S1B—O6B	1.475 (4)
S1A—C9A	1.765 (4)	S1B—C9B	1.764 (5)
O1A—C6A	1.343 (5)	O1B—C6B	1.347 (6)
O1A—H1OA	0.82	O1B—H1OB	0.82
O2A—C12A	1.225 (6)	O2B—C12B	1.230 (6)
O3A—C12A	1.319 (6)	O3B—C12B	1.322 (6)
O3A—H2OA	0.90	O3B—H2OB	0.89
C6A—C7A	1.399 (6)	C6B—C7B	1.400 (6)
C6A—C11A	1.417 (6)	C6B—C11B	1.414 (6)
C7A—C8A	1.384 (6)	C7B—C8B	1.384 (7)
С7А—Н7АА	0.93	C7B—H7BA	0.93
С8А—С9А	1.395 (7)	C8B—C9B	1.399 (7)
C8A—H8AA	0.93	C8B—H8BA	0.93
C9A—C10A	1.386 (6)	C9B—C10B	1.379 (6)
C10A—C11A	1.397 (6)	C10B—C11B	1.397 (6)
C10A—H10A	0.93	C10B—H10B	0.93
C11A—C12A	1.478 (6)	C11B—C12B	1.472 (6)
C1A—N1A—C5A	123.9 (4)	C1B—N1B—C5B	123.8 (4)
C1A—N1A—H1NA	126.9	C1B—N1B—H1NB	113.6
C5A—N1A—H1NA	109.2	C5B—N1B—H1NB	122.5
C1A—N2A—H2AB	112.1	C1B—N2B—H2NB	123.2
C1A—N2A—H2NA	135.2	C1B—N2B—H3NB	122.4
H2AB—N2A—H2NA	112.7	H2NB—N2B—H3NB	114.2
N2A—C1A—N1A	119.7 (5)	N2B—C1B—N1B	119.9 (4)
N2A—C1A—C2A	123.3 (5)	N2B—C1B—C2B	123.1 (5)
N1A—C1A—C2A	117.1 (4)	N1B—C1B—C2B	117.0 (4)
C3A—C2A—C1A	120.3 (5)	C3B—C2B—C1B	121.0 (5)
СЗА—С2А—Н2АА	119.9	C3B—C2B—H2BA	119.5
C1A—C2A—H2AA	119.9	C1B—C2B—H2BA	119.5
C2A—C3A—C4A	119.8 (5)	C2B—C3B—C4B	119.2 (4)
С2А—С3А—НЗАА	120.1	С2В—С3В—Н3ВА	120.4
С4А—С3А—НЗАА	120.1	С4В—С3В—Н3ВА	120.4
C5A—C4A—C3A	119.5 (4)	C5B—C4B—C3B	119.4 (4)

C5A—C4A—Br1A	118.9 (4)	C5B—C4B—Br1B	119.3 (4)
C3A—C4A—Br1A	121.5 (4)	C3B—C4B—Br1B	121.3 (3)
C4A—C5A—N1A	119.5 (5)	N1B—C5B—C4B	119.7 (5)
С4А—С5А—Н5АА	120.3	N1B—C5B—H5BA	120.2
N1A—C5A—H5AA	120.3	C4B—C5B—H5BA	120.2
05A—S1A—O6A	112.6 (2)	O5B—S1B—O4B	113.7 (3)
05A—S1A—O4A	112.6 (2)	O5B—S1B—O6B	111.5 (3)
06A—S1A—O4A	111.7 (2)	O4B—S1B—O6B	111.1 (2)
05A—S1A—C9A	106.2 (2)	O5B—S1B—C9B	106.3 (2)
O6A = S1A = C9A	107.2 (2)	O4B—S1B—C9B	107.4(2)
04A = S1A = C9A	1060(2)	O6B = S1B = C9B	107.1(2) 1063(2)
C6A = O1A = H1OA	96 5	C6B - O1B - H1OB	111 2
C12A - O3A - H2OA	109.7	C12B = O3B = H2OB	113.5
01A - C6A - C7A	109.7 117.7(4)	O1B-C6B-C7B	113.3 118.0(4)
O1A - C6A - C11A	117.7(4) 123.0(4)	O1B - C6B - C11B	110.0(4) 122.7(4)
C7A - C6A - C11A	123.0(4) 1193(4)	C7B-C6B-C11B	122.7(4) 1103(4)
C_{8A} C_{7A} C_{6A}	119.5(4)	$C^{8}B$ $C^{7}B$ $C^{6}B$	119.5(4)
C_{8A} C_{7A} H_{7AA}	110.7	C^{8B} C^{7B} H^{7BA}	120.5 (4)
C6A C7A H7AA	119.7	C6B $C7B$ $H7BA$	119.7
C7A C8A C9A	119.7 120.0(A)	C7P $C8P$ $C0P$	119.7 110.0(A)
C7A C8A H8AA	120.0 (4)	C7B $C8B$ $H8BA$	119.9 (4)
	120.0		120.1
$C_{3}A = C_{3}A = H_{3}A A$	120.0	$C_{2}D - C_{3}D - H_{3}DA$	120.1 120.5(4)
C10A = C9A = C8A	120.4(4)	C10D = C9D = C0D	120.3(4)
$C_{A} C_{A} C_{A} S_{A}$	119.1(4) 120.5(2)	$C_{10} = C_{9} = S_{10} = S_$	119.2(4) 120.2(2)
$C_{0A} = C_{0A} = C_{11A}$	120.3(3)	$C_{0}D = C_{1}D D = C_{1}D D$	120.2(3) 120.2(4)
C_{9A} C_{10A} H_{10A}	120.2 (4)	$C_{0}D_{0} = C_{1}OD_{0} = U_{1}OD_{0}$	120.5 (4)
C_{9A} C_{10A} H_{10A}	119.9	$C_{11} P C_{10} P H_{10} P$	119.9
C10A = C10A = HI0A	119.9	$C_{11}D_{-}C_{10}D_{$	119.9
C10A = C11A = C0A	119.3(4)	C10B - C11B - C0B	119.0(4) 121.5(4)
CI0A - CI1A - CI2A	121.4(4)	CIUB-CIIB-CI2B	121.3(4)
C0A = C12A = C12A	119.1(4)	C0B - C11B - C12B	118.9 (4)
O_{2A} C_{12A} O_{3A}	123.4(4)	O_{2B} $-C_{12B}$ $-O_{3B}$	122.1(4)
O2A—C12A—C11A	122.1 (4)	O2B—C12B—C11B	122.6 (4)
U3A—C12A—C11A	114.4 (4)	O3B—C12B—C11B	115.3 (4)
C54 N14 C14 N24	-170 5 (5)	C5R N1R C1R N2R	-170.8(4)
C_{A} NIA C_{A} C_{A}	1/9.3(3)	$C_{3}D_{-N1}D_{-C1}D_{-N2}D_$	-0.0(7)
$N_{2A} = C_{1A} = C_{2A} = C_{2A}$	-170.5(5)	N2P C1P C2P C3P	170.6(5)
$N_{2A} - C_{1A} - C_{2A} - C_{3A}$	1/3.3(3)	$N_{2}D - C_{1}D - C_{2}D - C_{3}D$	179.0(3) 07(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3(7)	C1P C2P C2P C4P	-0.8(7)
$C_{1A} = C_{2A} = C_{3A} = C_{4A}$	-0.9(7)	C1B - C2B - C3B - C4B	-0.8(7)
$C_{2A} = C_{3A} = C_{4A} = C_{3A}$	0.7(7)	$C_{2D} = C_{3D} = C_{4D} = C_{3D}$	1.0(7)
$C_{2A} = C_{3A} = C_{4A} = B_{1A}$	1/9.1(4)	$C_{2}D - C_{3}D - C_{4}D - D_{1}D$	-1//.0(4)
$C_{A} - C_{A} - C_{A} - N_{A}$	0.2(7)	$C_{1D} = N_{1D} = C_{2D} = C_{4D} = C_{5D} = N_{1D}$	1.1(/) -11(7)
DIIA - U4A - U3A - NIA	-1/8.5(3)	$C_{3D} = C_{4D} = C_{3D} = N_{1D}$	-1.1(/)
CIA - NIA - CJA - CAA	-0.9(7)	DIID - C4B - C3B - NIB	1/1.3(5) 179.9(5)
UIA - UOA - U/A - USA	-1/0.8(4)	OIB - OB - OB - OB	-1/8.8(3)
CIIA - CbA - C/A - C8A	5.1 (/)		0.6 (/)
С6А—С/А—С8А—С9А	0.1 (7)	Сов—С/В—С8В—С9В	0.0 (8)

C7A—C8A—C9A—C10A	-2.9 (7)	C7B—C8B—C9B—C10B	-0.9 (8)
C7A—C8A—C9A—S1A	179.6 (4)	C7B—C8B—C9B—S1B	-177.1 (4)
O5A—S1A—C9A—C10A	22 9 (4)	O5B—S1B—C9B—C10B	27.2 (5)
06A—S1A—C9A—C10A	143.5 (4)	04B—S1B—C9B—C10B	149.2 (4)
04A—S1A—C9A—C10A	-97.1 (4)	06B—S1B—C9B—C10B	-91.7 (4)
O5A—S1A—C9A—C8A	-159.7 (4)	O5B—S1B—C9B—C8B	-156.5 (4)
O6A—S1A—C9A—C8A	-39.1 (4)	O4B—S1B—C9B—C8B	-34.5 (5)
O4A—S1A—C9A—C8A	80.4 (4)	O6B—S1B—C9B—C8B	84.6 (4)
C8A—C9A—C10A—C11A	2.5 (7)	C8B—C9B—C10B—C11B	1.0 (7)
S1A—C9A—C10A—C11A	179.9 (3)	S1B—C9B—C10B—C11B	177.3 (3)
C9A—C10A—C11A—C6A	0.8 (7)	C9B—C10B—C11B—C6B	-0.4 (7)
C9A—C10A—C11A—C12A	-178.2 (4)	C9B—C10B—C11B—C12B	-177.9 (4)
O1A—C6A—C11A—C10A	176.4 (4)	O1B—C6B—C11B—C10B	178.9 (4)
C7A—C6A—C11A—C10A	-3.5 (7)	C7B—C6B—C11B—C10B	-0.5 (7)
01A—C6A—C11A—C10A C7A—C6A—C11A—C12A C7A—C6A—C11A—C12A	-4.6 (7) 175.5 (4)	O1B—C6B—C11B—C12B C7B—C6B—C11B—C12B	-3.5 (7) 177.1 (4)
C10A—C11A—C12A—O2A	-1/5.6 (5)	C10B—C11B—C12B—O2B	-1/7.5(5)
C6A—C11A—C12A—O2A	5.4 (7)	C6B—C11B—C12B—O2B	5.0(7)
C10A—C11A—C12A—O3A	7.2 (7)	C10B—C11B—C12B—O3B	2.6(6)
C6A—C11A—C12A—O3A	-171.8 (4)	C6B—C11B—C12B—O3B	-175.0(4)

Hydrogen-bond geometry (Å, °)

D—H…4	<i>D</i> —Н	H <i>A</i>	DA	D—H…A
	0.00	1.96	2 911 (()	1(0
N1A—H1NA…O4B	0.99	1.80	2.811 (0)	100
$N2A - H2AB \cdots O6B^{i}$	0.90	2.23	3.113 (6)	166
N2A—H2NA····O5B	0.80	2.22	2.919 (6)	146
N2A—H2NA····O2A ⁱ	0.80	2.26	2.807 (6)	126
O1 <i>A</i> —H1 <i>OA</i> ···O2 <i>A</i>	0.82	1.82	2.596 (5)	158
O3 <i>A</i> —H2 <i>OA</i> ···O4 <i>B</i>	0.90	2.60	3.250 (5)	130
O3 <i>A</i> —H2 <i>OA</i> ···O6 <i>B</i>	0.90	1.77	2.649 (5)	165
$N1B$ — $H1NB$ ···· $O6A^{ii}$	0.84	2.13	2.859 (6)	145
N2 <i>B</i> —H2 <i>NB</i> ···O5 <i>A</i> ⁱⁱ	0.83	2.34	3.006 (5)	138
N2 <i>B</i> —H3 <i>NB</i> ····O4 <i>A</i>	0.76	2.27	3.024 (6)	175
O1 <i>B</i> —H1 <i>OB</i> ···O2 <i>B</i>	0.81	1.89	2.582 (5)	143
O1 <i>B</i> —H1 <i>OB</i> ····O5 <i>A</i> ⁱⁱⁱ	0.81	2.42	3.023 (5)	131
O3 <i>B</i> —H2 <i>OB</i> ····O4 <i>A</i> ^{iv}	0.89	1.79	2.661 (5)	166
$C5A$ — $H5AA$ ···O1 A^{v}	0.93	2.56	3.188 (6)	125
C10 <i>A</i> —H10 <i>A</i> ···O1 <i>B</i> ⁱⁱⁱ	0.93	2.56	3.406 (6)	151
C10 <i>B</i> —H10 <i>B</i> ····O1 <i>A</i> ⁱ	0.93	2.53	3.364 (6)	150

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1; (v) x+1, y, z.