organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[4-(3,5-Difluorobenzyloxy)-2-hydroxyphenyl]ethanone

Ya-Tuan Ma, An-Ling Zhang, Mao-Sen Yuan and Jin-Ming Gao*

College of Science, Northwest A&F University, Yangling 712100, People's Republic of China

Correspondence e-mail: jinminggaocn@yahoo.com.cn

Received 22 July 2010; accepted 21 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.072; wR factor = 0.231; data-to-parameter ratio = 12.4.

The title compound, $C_{15}H_{12}F_2O_3$, has been obtained by the reaction of 2,4-dihydroxylacetonephenone, potassium carbonate and 3,5-difluorobenzyl bromide. The hydroxy group is involved in an intramolecular O-H···O hydrogen bond in each of the two independent molecules in the asymmetric unit. The dihedral angle between the aromatic rings is $0.5 (2)^{\circ}$ in one molecule and $1.9 (2)^{\circ}$ in the other. In the crystal, weak $C-H \cdots O$ interactions link the molecules into tetrameric units aligned perpendicular to b.

Related literature

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For a related structure, see: Ma et al. (2010).

Experimental

Crystal data C15H12F2O3 $M_r = 278.25$

Triclinic, $P\overline{1}$ a = 7.4220 (8) Å

<i>b</i> = 13.0329 (14) Å	Z = 4
c = 14.1171 (16) Å	Mo $K\alpha$ radiation
$\alpha = 83.921 \ (2)^{\circ}$	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 77.913 \ (1)^{\circ}$	$T = 298 { m K}$
$\gamma = 76.501 \ (1)^{\circ}$	$0.40 \times 0.32 \times 0.28 \text{ mm}$
$V = 1296.1 (2) \text{ Å}^3$	

Data collection

6817 measured reflections
4491 independent reflections
2244 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.036$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.072$ 363 parameters $wR(F^2) = 0.231$ H-atom parameters constrained S = 0.96 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$ 4491 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···O1	0.82	1.81	2.533 (4)	147
O5−H5···O4	0.82	1.80	2.525 (4)	147
C8−H8···O5	0.93	2.49	3.382 (5)	161
$C13-H13\cdots O1^{i}$	0.93	2.44	3.342 (5)	165
$C28-H28\cdots O4^{ii}$	0.93	2.40	3.315 (5)	168

Symmetry codes: (i) x + 1, y, z - 1; (ii) x - 1, y, z + 1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We would like to acknowledge funding support from the National Natural Science Foundation of China (grant No. 30971882) and the Program of Natural Science Basic Research in Shaanxi (No. 2009JM3010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2156).

References

- Dermer, O. C. (1934). Chem. Rev. 14, 385-430.
- Ma, Y.-T., Wang, J.-J., Liu, X.-W., Yang, S.-X. & Gao, J.-M. (2010). Acta Cryst. E66. o52
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2010). E66, o2468 [https://doi.org/10.1107/S1600536810033787] 1-[4-(3,5-Difluorobenzyloxy)-2-hydroxyphenyl]ethanone

Ya-Tuan Ma, An-Ling Zhang, Mao-Sen Yuan and Jin-Ming Gao

S1. Comment

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkylhalide (Dermer, 1934).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2,4-dihydroxylacetonephenone, potassium carbonate and 3,5-difluorobenzyl bromide. In (I) (Fig. 1), the bond lengths and angles are normal and the dihedral angle between the aromatic rings is $0.51 (4)^{\circ}$. In addition to the intramolecular O—H···O hydrogen bonds, there are weak C—H···O interactions which link the molecules into tetrameric units aligned perpendicular to *b* (see Fig. 2).

S2. Experimental

2,4-Dihydroxylacetonephenone (4 mmol), potassium carbonate (8 mmol), 3,5-difluorobenzyl bromide (4 mmol), and 40 ml acetone were mixed in 100 ml flask. After 3 h stirring at 331 K, the crude product was obtained. The crystals were obtained by recrystallization from n-hexane/ethyl acetate.

S3. Refinement

The positions of all H atoms were fixed geometrically and distance to H atoms were set by the program, with C—H distance in the range 0.93-0.97 Å and O—H distance of 0.82 Å.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Both the C—H…O interaction and the intramolecular hydrogen bonds are shown by dashed lines.

Figure 2

The packing viewed down the b axis showing the tetrameric units linked by C—H···O interactions. Both these interactions and the intramolecular hydrogen bonds are shown by dashed lines.

(I)

Crystal data

C₁₅H₁₂F₂O₃ $M_r = 278.25$ Triclinic, *P*I Hall symbol: -P 1 a = 7.4220 (8) Å b = 13.0329 (14) Å c = 14.1171 (16) Å a = 83.921 (2)° $\beta = 77.913$ (1)° $\gamma = 76.501$ (1)° V = 1296.1 (2) Å³

Data collection

Siemens SMART CCD area-detector681diffractometer449Radiation source: fine-focus sealed tube224Graphite monochromator R_{int} ω scans θ_{max} Absorption correction: multi-scanh =(SADABS; Sheldrick, 1996)k = $T_{min} = 0.955, T_{max} = 0.968$ l =

Z = 4 F(000) = 576 $D_x = 1.426 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1571 reflections $\theta = 2.4-23.0^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 298 K Triclinic, colorless $0.40 \times 0.32 \times 0.28 \text{ mm}$

6817 measured reflections 4491 independent reflections 2244 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -8 \rightarrow 8$ $k = -13 \rightarrow 15$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.231$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 0.96	H-atom parameters constrained
4491 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1234P)^2]$
363 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$ $\Delta ho_{ m min} = -0.22 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
F1	1.1302 (5)	-0.2012 (2)	-0.40710 (17)	0.1012 (10)
F2	1.0857 (4)	0.1549 (2)	-0.36867 (17)	0.0938 (10)
01	0.3966 (4)	-0.0294 (2)	0.39116 (18)	0.0685 (9)
O2	0.5359 (4)	-0.1407 (2)	0.24593 (18)	0.0660 (9)
H2	0.4839	-0.1278	0.3020	0.099*
O3	0.7935 (4)	0.0311 (2)	-0.04745 (16)	0.0550 (8)
C1	0.3850 (7)	0.1531 (3)	0.3919 (3)	0.0710 (13)
H1A	0.3360	0.1414	0.4597	0.106*
H1B	0.2913	0.2023	0.3626	0.106*
H1C	0.4958	0.1815	0.3844	0.106*
C2	0.4350 (6)	0.0503 (3)	0.3436 (3)	0.0537 (10)
C3	0.5232 (5)	0.0463 (3)	0.2413 (2)	0.0429 (9)
C4	0.5740 (5)	-0.0511 (3)	0.1963 (2)	0.0450 (9)
C5	0.6623 (5)	-0.0580 (3)	0.1002 (2)	0.0457 (9)
H5A	0.6932	-0.1227	0.0719	0.055*
C6	0.7044 (5)	0.0296 (3)	0.0468 (2)	0.0425 (9)
C7	0.6561 (5)	0.1271 (3)	0.0888 (2)	0.0499 (10)
H7	0.6832	0.1871	0.0522	0.060*
C8	0.5688 (5)	0.1336 (3)	0.1839 (2)	0.0486 (10)
H8	0.5387	0.1987	0.2113	0.058*
C9	0.8450 (6)	-0.0657 (3)	-0.0942 (2)	0.0511 (10)
H9A	0.7336	-0.0936	-0.0915	0.061*
H9B	0.9319	-0.1171	-0.0610	0.061*
C10	0.9362 (5)	-0.0474 (3)	-0.1973 (2)	0.0453 (9)
C11	0.9919 (6)	-0.1327 (3)	-0.2559 (3)	0.0585 (11)

H11	0.9724	-0.1990	-0.2309	0.070*
C12	1.0756 (6)	-0.1181 (4)	-0.3505 (3)	0.0630 (12)
C13	1.1114 (6)	-0.0235 (4)	-0.3913 (3)	0.0592 (11)
H13	1.1714	-0.0155	-0.4556	0.071*
C14	1.0529 (6)	0.0592 (3)	-0.3312 (3)	0.0582 (11)
C15	0.9681 (6)	0.0493 (3)	-0.2359 (3)	0.0543 (10)
H15	0.9327	0.1073	-0.1978	0.065*
F3	-0.1980 (4)	0.6542 (2)	0.85834 (18)	0.1013 (10)
F4	-0.0009 (4)	0.2932 (2)	0.93069 (17)	0.0972 (10)
O4	0.6255 (5)	0.4794 (2)	0.11718 (18)	0.0730 (9)
05	0.5718 (4)	0.3646 (2)	0.27167 (18)	0.0697 (9)
Н5	0.6143	0.3793	0.2147	0.104*
O6	0.1814 (4)	0.5295 (2)	0.55010 (16)	0.0569 (8)
C16	0.4955 (7)	0.6621 (4)	0.1001 (3)	0.0734 (14)
H16A	0.5610	0.6523	0.0343	0.110*
H16B	0.5433	0.7121	0.1277	0.110*
H16C	0.3630	0.6883	0.1010	0.110*
C17	0.5250 (6)	0.5590 (3)	0.1580 (3)	0.0551 (11)
C18	0.4401 (5)	0.5514 (3)	0.2605 (2)	0.0426 (9)
C19	0.4657 (6)	0.4531 (3)	0.3139 (2)	0.0487 (10)
C20	0.3820 (5)	0.4430 (3)	0.4103 (2)	0.0476 (10)
H20	0.3995	0.3774	0.4441	0.057*
C21	0.2719 (5)	0.5314 (3)	0.4563 (2)	0.0425 (9)
C22	0.2473 (6)	0.6292 (3)	0.4062 (2)	0.0519 (10)
H22	0.1748	0.6886	0.4377	0.062*
C23	0.3298 (5)	0.6385 (3)	0.3104 (2)	0.0501 (10)
H23	0.3119	0.7047	0.2775	0.060*
C24	0.2003 (6)	0.4312 (3)	0.6062 (2)	0.0500 (10)
H24A	0.3325	0.4014	0.6070	0.060*
H24B	0.1513	0.3818	0.5772	0.060*
C25	0.0940 (5)	0.4486 (3)	0.7071 (2)	0.0452 (9)
C26	-0.0051 (6)	0.5473 (3)	0.7369 (3)	0.0533 (10)
H26	-0.0067	0.6063	0.6936	0.064*
C27	-0.1003 (6)	0.5569 (3)	0.8303 (3)	0.0602 (12)
C28	-0.1032 (6)	0.4739 (3)	0.8982 (3)	0.0573 (11)
H28	-0.1689	0.4821	0.9616	0.069*
C29	-0.0026 (6)	0.3781 (3)	0.8659 (3)	0.0575 (11)
C30	0.0951 (6)	0.3632 (3)	0.7736 (3)	0.0564 (11)
H30	0.1619	0.2962	0.7556	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.142 (3)	0.099 (2)	0.0589 (15)	-0.0326 (19)	0.0144 (17)	-0.0386 (15)
F2	0.127 (3)	0.0745 (19)	0.0608 (16)	-0.0203 (17)	0.0172 (16)	0.0074 (14)
01	0.083 (2)	0.070(2)	0.0420 (15)	-0.0189 (17)	0.0142 (15)	-0.0045 (14)
O2	0.090 (2)	0.0521 (18)	0.0466 (15)	-0.0224 (16)	0.0132 (15)	0.0016 (13)
03	0.0694 (19)	0.0644 (18)	0.0293 (13)	-0.0207 (15)	0.0041 (13)	-0.0077 (12)

supporting information

C1	0.086 (3)	0.074 (3)	0.049 (2)	-0.019 (3)	0.007 (2)	-0.022 (2)
C2	0.056 (3)	0.062 (3)	0.039 (2)	-0.015 (2)	0.0019 (19)	-0.005 (2)
C3	0.043 (2)	0.051 (2)	0.0352 (19)	-0.0133 (18)	-0.0034 (17)	-0.0077 (17)
C4	0.043 (2)	0.052 (2)	0.037 (2)	-0.0114 (18)	-0.0008 (17)	0.0014 (18)
C5	0.047 (2)	0.051 (2)	0.036 (2)	-0.0091 (18)	-0.0026 (18)	-0.0065 (18)
C6	0.041 (2)	0.054 (2)	0.0288 (18)	-0.0096 (18)	0.0004 (16)	-0.0030 (17)
C7	0.064 (3)	0.047 (2)	0.037 (2)	-0.018 (2)	-0.0015 (19)	0.0012 (18)
C8	0.053 (2)	0.046 (2)	0.043 (2)	-0.0099 (18)	-0.0010 (19)	-0.0058 (17)
C9	0.057 (3)	0.061 (3)	0.0338 (19)	-0.015 (2)	-0.0017 (18)	-0.0044 (19)
C10	0.041 (2)	0.061 (3)	0.0335 (19)	-0.0099 (19)	-0.0082 (17)	-0.0045 (18)
C11	0.066 (3)	0.069 (3)	0.041 (2)	-0.023 (2)	0.002 (2)	-0.013 (2)
C12	0.067 (3)	0.077 (3)	0.048 (2)	-0.015 (2)	-0.005 (2)	-0.028 (2)
C13	0.054 (3)	0.085 (3)	0.034 (2)	-0.011 (2)	0.0031 (19)	-0.011 (2)
C14	0.058 (3)	0.067 (3)	0.041 (2)	-0.010 (2)	-0.001 (2)	0.009 (2)
C15	0.054 (3)	0.065 (3)	0.038 (2)	-0.006 (2)	-0.0040 (19)	-0.0027 (19)
F3	0.135 (3)	0.0683 (19)	0.0704 (17)	-0.0089 (17)	0.0385 (17)	-0.0170 (14)
F4	0.118 (2)	0.0870 (19)	0.0553 (15)	0.0010 (16)	0.0135 (15)	0.0235 (14)
O4	0.091 (2)	0.078 (2)	0.0414 (16)	-0.0216 (18)	0.0155 (16)	-0.0122 (15)
05	0.094 (2)	0.0533 (18)	0.0471 (16)	-0.0092 (16)	0.0153 (16)	-0.0126 (14)
06	0.0694 (19)	0.0613 (18)	0.0321 (13)	-0.0113 (14)	0.0052 (13)	-0.0041 (13)
C16	0.090 (4)	0.081 (3)	0.044 (2)	-0.025 (3)	-0.002 (2)	0.010 (2)
C17	0.059 (3)	0.068 (3)	0.040 (2)	-0.023 (2)	-0.002 (2)	-0.005 (2)
C18	0.047 (2)	0.050 (2)	0.0326 (18)	-0.0149 (18)	-0.0043 (17)	-0.0038 (17)
C19	0.057 (3)	0.052 (2)	0.037 (2)	-0.018 (2)	-0.0007 (18)	-0.0101 (19)
C20	0.059 (3)	0.050 (2)	0.0332 (19)	-0.018 (2)	-0.0017 (18)	-0.0015 (17)
C21	0.048 (2)	0.052 (2)	0.0277 (18)	-0.0162 (19)	-0.0014 (16)	-0.0039 (17)
C22	0.057 (3)	0.053 (3)	0.041 (2)	-0.0044 (19)	-0.0054 (19)	-0.0074 (18)
C23	0.057 (3)	0.049 (2)	0.041 (2)	-0.0092 (19)	-0.0043 (19)	-0.0008 (18)
C24	0.057 (3)	0.057 (3)	0.035 (2)	-0.016 (2)	-0.0040 (18)	-0.0013 (18)
C25	0.040 (2)	0.063 (3)	0.0336 (19)	-0.0141 (19)	-0.0031 (16)	-0.0079 (18)
C26	0.064 (3)	0.055 (3)	0.038 (2)	-0.017 (2)	0.002 (2)	0.0002 (19)
C27	0.070 (3)	0.051 (3)	0.050 (2)	-0.011 (2)	0.010 (2)	-0.010 (2)
C28	0.060 (3)	0.076 (3)	0.032 (2)	-0.015 (2)	0.0041 (19)	-0.008 (2)
C29	0.065 (3)	0.063 (3)	0.038 (2)	-0.012 (2)	-0.005 (2)	0.012 (2)
C30	0.060 (3)	0.060 (3)	0.042 (2)	-0.006 (2)	-0.004 (2)	0.000 (2)

Geometric parameters (Å, °)

F1—C12	1.349 (4)	F3—C27	1.358 (5)
F2—C14	1.357 (4)	F4—C29	1.358 (4)
O1—C2	1.234 (4)	O4—C17	1.245 (5)
O2—C4	1.353 (4)	O5—C19	1.352 (4)
O2—H2	0.8207	O5—H5	0.8205
O3—C6	1.356 (4)	O6—C21	1.354 (4)
О3—С9	1.421 (4)	O6—C24	1.426 (4)
C1—C2	1.501 (5)	C16—C17	1.491 (5)
C1—H1A	0.9600	C16—H16A	0.9600
C1—H1B	0.9600	C16—H16B	0.9600

supporting information

C1—H1C	0.9600	C16—H16C	0.9600
C2—C3	1.456 (5)	C17—C18	1.456 (5)
C3—C8	1.391 (5)	C18—C23	1.396 (5)
C3—C4	1.416 (5)	C18—C19	1.410 (5)
C4—C5	1.380 (4)	C19—C20	1.379 (5)
C5—C6	1.362 (5)	C20—C21	1.383 (5)
C5—H5A	0.9300	С20—Н20	0.9300
C6—C7	1.397 (5)	C21—C22	1.383 (5)
C7—C8	1.366 (4)	C22—C23	1.369 (5)
C7—H7	0.9300	С22—Н22	0.9300
C8—H8	0.9300	C23—H23	0.9300
C9-C10	1 492 (5)	C_{24} C_{25} C_{25}	1 490 (4)
	0.9700	$C_{24} = C_{23}$	0.0700
C0 H0B	0.9700	$C_{24} = H_{24}R$	0.9700
C10 C15	1 371 (5)	$C_{24} = 112 + D$	1 376 (5)
C10 - C13	1.371(3) 1.297(5)	$C_{23} = C_{30}$	1.370(3) 1.294(5)
	1.387(3)	$C_{23} = C_{20}$	1.364(3)
	1.364 (5)	C_{20}	1.362 (5)
CII—HII	0.9300	C26—H26	0.9300
C12—C13	1.364 (5)	C27—C28	1.368 (5)
C13—C14	1.375 (5)	C28—C29	1.367 (6)
С13—Н13	0.9300	C28—H28	0.9300
C14—C15	1.367 (5)	C29—C30	1.362 (5)
C15—H15	0.9300	С30—Н30	0.9300
C4—O2—H2	109.6	С19—О5—Н5	109.6
C6—O3—C9	117.5 (3)	C21—O6—C24	118.8 (3)
C2—C1—H1A	109.5	C17—C16—H16A	109.5
C2—C1—H1B	109.5	C17—C16—H16B	109.5
H1A—C1—H1B	109.5	H16A—C16—H16B	109.5
C2—C1—H1C	109.5	C17—C16—H16C	109.5
H1A—C1—H1C	109.5	H16A—C16—H16C	109.5
HIB-C1-HIC	109.5	H16B—C16—H16C	109.5
01-02-03	120.9 (4)	04-C17-C18	109.3 120.3(4)
01 - 02 - 01	120.9(4) 1101(3)	04-C17-C16	120.3(4) 118.8(3)
$C_1 = C_2 = C_1$	119.1(3) 120.0(4)	C_{18} C_{17} C_{16}	1200(3)
$C_{3}^{8} - C_{2}^{2} - C_{1}^{2}$	120.0(4)	$C_{10}^{22} = C_{10}^{10} = C_{10}^{10}$	120.9(4)
$C_{0}^{8} - C_{3}^{2} - C_{4}^{2}$	110.3(3) 122.5(2)	$C_{23} = C_{18} = C_{17}$	110.9(3) 122.7(4)
$C_{0} = C_{2}$	123.3(3)	$C_{23} = C_{18} = C_{17}$	122.7(4)
C4 - C3 - C2	119.9 (3)	C19 - C18 - C17	120.3(4)
02-04-03	117.0 (3)	05 - C19 - C20	117.0 (4)
02	121.1 (3)	05-019-018	120.9 (3)
C5—C4—C3	121.3 (3)	C20—C19—C18	121.5 (4)
C6—C5—C4	120.2 (3)	C19—C20—C21	119.5 (4)
C6—C5—H5A	119.9	C19—C20—H20	120.2
C4 C5 H5A			
C4—CJ—IIJA	119.9	C21—C20—H20	120.2
03—C6—C5	119.9 124.9 (3)	C21—C20—H20 O6—C21—C20	120.2 124.0 (3)
03-C6-C5 03-C6-C7	119.9 124.9 (3) 115.0 (3)	C21—C20—H20 O6—C21—C20 O6—C21—C22	120.2 124.0 (3) 115.8 (3)
O3-C6-C5 O3-C6-C7 C5-C6-C7	119.9 124.9 (3) 115.0 (3) 120.1 (3)	C21—C20—H20 O6—C21—C20 O6—C21—C22 C20—C21—C22	120.2 124.0 (3) 115.8 (3) 120.2 (3)

С8—С7—Н7	120.2	C23—C22—H22	120.0
С6—С7—Н7	120.2	C21—C22—H22	120.0
C7—C8—C3	122.4 (3)	C22—C23—C18	121.8 (4)
С7—С8—Н8	118.8	C22—C23—H23	119.1
С3—С8—Н8	118.8	C18—C23—H23	119.1
O3—C9—C10	109.5 (3)	O6—C24—C25	109.5 (3)
03—C9—H9A	109.8	O6—C24—H24A	109.8
C10—C9—H9A	109.8	C25—C24—H24A	109.8
O3-C9-H9B	109.8	O6-C24-H24B	109.8
C10—C9—H9B	109.8	C_{25} C_{24} H_{24B}	109.8
H9A_C9_H9B	108.2	$H^{2}_{4}A - C^{2}_{4} + H^{2}_{4}B$	108.2
C_{15} C_{10} C_{11}	119.1 (3)	C_{30} C_{25} C_{26}	118.7(3)
$C_{15} - C_{10} - C_{9}$	122 8 (3)	$C_{30} = C_{25} = C_{24}$	118.7(3)
$C_{11} - C_{10} - C_{9}$	122.0(3) 118 1 (3)	$C_{26} = C_{25} = C_{24}$	1225(3)
C_{12} C_{11} C_{10} C_{10}	110.1(3) 110.2(4)	$C_{20} = C_{23} = C_{24}$	122.3(3)
C_{12} C_{11} H_{11}	119.2 (4)	$C_{27} = C_{20} = C_{25}$	119.5 (4)
$C_{12} = C_{11} = H_{11}$	120.4	$C_{27} = C_{20} = H_{20}$	120.4
	120.4	C_{23} C_{20} H_{20} H_{20}	120.4
F1 = C12 = C12	119.1(4)	$F_{3} = C_{27} = C_{20}$	118.0(4)
F1 - C12 - C13	117.3(4)	$F_{3} = C_{2} / = C_{2} \delta$	117.7(3)
C12 - C12 - C13	123.4 (4)	$C_{26} = C_{27} = C_{28}$	123.7 (4)
C12-C13-C14	115.6 (3)	$C_{29} = C_{28} = C_{27}$	115.1 (3)
С12—С13—Н13	122.2	C29—C28—H28	122.4
С14—С13—Н13	122.2	C27—C28—H28	122.4
F2-C14-C15	118.8 (4)	F4—C29—C30	118.7 (4)
F2—C14—C13	117.7 (3)	F4—C29—C28	117.4 (3)
C15—C14—C13	123.5 (4)	C30—C29—C28	124.0 (4)
C14—C15—C10	119.1 (4)	C29—C30—C25	119.2 (4)
C14—C15—H15	120.5	С29—С30—Н30	120.4
C10—C15—H15	120.5	С25—С30—Н30	120.4
O1—C2—C3—C8	179.7 (4)	O4—C17—C18—C23	178.5 (4)
C1—C2—C3—C8	1.2 (6)	C16—C17—C18—C23	-0.8 (6)
O1—C2—C3—C4	-2.9 (6)	O4—C17—C18—C19	-2.0 (6)
C1—C2—C3—C4	178.6 (4)	C16—C17—C18—C19	178.6 (4)
C8—C3—C4—O2	180.0 (3)	C23—C18—C19—O5	-179.4 (3)
C2—C3—C4—O2	2.4 (5)	C17—C18—C19—O5	1.2 (6)
C8—C3—C4—C5	-0.7 (5)	C23-C18-C19-C20	1.5 (5)
C2—C3—C4—C5	-178.2 (3)	C17—C18—C19—C20	-178.0(3)
O2—C4—C5—C6	-179.9 (3)	O5—C19—C20—C21	-179.9 (3)
C3—C4—C5—C6	0.7 (6)	C18-C19-C20-C21	-0.7 (6)
C9—O3—C6—C5	0.7 (5)	C24—O6—C21—C20	0.5 (5)
C9—O3—C6—C7	-179.6 (3)	C24—O6—C21—C22	179.9 (3)
C4—C5—C6—O3	178.9 (3)	C19—C20—C21—O6	178.9 (3)
C4—C5—C6—C7	-0.8 (5)	C19—C20—C21—C22	-0.6 (6)
O3—C6—C7—C8	-178.9 (3)	O6—C21—C22—C23	-178.5 (3)
C5—C6—C7—C8	0.8 (6)	C20-C21-C22-C23	1.0 (6)
C6-C7-C8-C3	-0.8 (6)	C21—C22—C23—C18	-0.1 (6)
C4—C3—C8—C7	0.7 (5)	C19—C18—C23—C22	-1.1 (5)
	× /		(-)

C2—C3—C8—C7	178.2 (4)	C17—C18—C23—C22	178.4 (4)
C6—O3—C9—C10	178.5 (3)	C21—O6—C24—C25	178.4 (3)
O3—C9—C10—C15	2.3 (5)	O6—C24—C25—C30	-179.6 (3)
O3—C9—C10—C11	-178.3 (3)	O6—C24—C25—C26	0.1 (5)
C15—C10—C11—C12	-0.5 (6)	C30—C25—C26—C27	-0.9 (6)
C9-C10-C11-C12	-180.0 (4)	C24—C25—C26—C27	179.5 (4)
C10-C11-C12-F1	179.8 (4)	C25—C26—C27—F3	-179.6 (4)
C10-C11-C12-C13	1.2 (7)	C25—C26—C27—C28	0.5 (7)
F1-C12-C13-C14	179.8 (4)	F3—C27—C28—C29	-180.0 (4)
C11—C12—C13—C14	-1.6 (6)	C26—C27—C28—C29	-0.1 (7)
C12—C13—C14—F2	179.9 (4)	C27—C28—C29—F4	179.9 (4)
C12—C13—C14—C15	1.5 (6)	C27—C28—C29—C30	0.0 (6)
F2-C14-C15-C10	-179.4 (4)	F4—C29—C30—C25	179.7 (4)
C13—C14—C15—C10	-1.0 (6)	C28—C29—C30—C25	-0.3 (7)
C11—C10—C15—C14	0.5 (6)	C26—C25—C30—C29	0.8 (6)
C9—C10—C15—C14	179.9 (4)	C24—C25—C30—C29	-179.6 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
02—H2…O1	0.82	1.81	2.533 (4)	147
O5—H5…O4	0.82	1.80	2.525 (4)	147
С8—Н8…О5	0.93	2.49	3.382 (5)	161
C13—H13…O1 ⁱ	0.93	2.44	3.342 (5)	165
C28—H28…O4 ⁱⁱ	0.93	2.40	3.315 (5)	168

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*-1, *y*, *z*+1.