

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2,2-Dimethoxyethyl)-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin-5-ol

Zhongzhen Tian,^a* Gaolei Wang^a and Haijun Dong^b

^aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China, and ^bSchool of Sciences, University of Jinan, People's Republic of China

Correspondence e-mail: chm_tianzz@ujn.edu.cn

Received 19 August 2010; accepted 20 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.120; data-to-parameter ratio = 15.6.

In the title compound, $C_{11}H_{19}N_3O_5$, the six-membered ring displays a half-chair conformation and the imidazolidine ring is essentially planar (r.m.s. deviation = 0.088 Å). An intermolecular hydrogen bond between the hydroxy O atom and a nitro O atom stabilizes the crystal packing.

Related literature

For related structures, see: Tian *et al.* (2010); Li *et al.* (2010). For background to neonicotinoid insecticides, see: Mori *et al.* (2001); Ohno *et al.* (2009); Jeschke *et al.* (2008); Tian *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{19}N_3O_5\\ M_r = 273.29\\ \text{Monoclinic, } P2_1/c\\ a = 11.2337 \ (6) \ \text{\AA}\\ b = 9.0903 \ (3) \ \text{\AA}\\ c = 14.2618 \ (7) \ \text{\AA}\\ \beta = 113.124 \ (6)^\circ \end{array}$

 $V = 1339.36 (11) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.11 mm^{-1} T = 293 K 0.46 \times 0.20 \times 0.16 mm

Data collection

37886 measured reflections 2723 independent reflections 2100 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.033$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	175 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
2723 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1 \cdots O5^i$	0.82	1.89	2.6966 (16)	169
Symmetry code: (i)	$x, -y + \frac{3}{2}, z - \frac{1}{2}$			

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant 20902037) and the Doctoral Foundation of University of Jinan (B0542) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5332).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jeschke, P. & Nauen, R. (2008). Pest Manag. Sci. 64, 1084-1098.
- Li, D., Tian, Z., Wang, G., Wei, P. & Zhang, Y. (2010). Acta Cryst. E66, 02216. Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2001). Pest. Manage. Sci. 46, 40–46.
- Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). *Chem. Res. Toxicol.* 22, 476–482.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tian, Z., Dong, H., Li, D. & Wang, G. (2010). Acta Cryst. E66, 02330.
- Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food. Chem. 55, 2288–2292.

supporting information

Acta Cryst. (2010). E66, o2451 [https://doi.org/10.1107/S1600536810033660]

1-(2,2-Dimethoxyethyl)-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin-5-ol

Zhongzhen Tian, Gaolei Wang and Haijun Dong

S1. Comment

Neonicotinoid insecticides have rapidly grown and become a new chemical class of insecticides in recent years because of their novel structure and mode of action compared with conventional insecticides (Ohno *et al.*, 2009; Jeschke *et al.*, 2008). We have synthesized a series of new compounds by introducing a tetrahydropyridine ring into the lead structure to improve photostability, in which the title compound exhibited moderate insecticidal activities against pea aphids.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The title compound is a homologue of (E)-1-(2,2-dimethoxyethyl)-2-(nitromethylene)imidazolidine (Li *et al.*, 2010). The six-membered ring displays a half-chair conformation and the imidazolidine ring is essentially planar (r.m.s. deviation = 0.088 Å). An intermolecular hydrogen bond between the hydroxyl group O atom and the nitro-group O stabilizes the crystal packing.

S2. Experimental

To a mixture of 1-((1,3-dithiolan-2-yl)methyl)-2-(nitromethylene)imidazolidine (2 mmol) were added olefin aldehyde (2.2 mmol), acetonitrile (20 ml), and a drop of concentrated hydrochloric acid. The reaction was carried out at 40°, and the progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure, and the crude oil was purified by flash chromatography to give the desired product. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of dichloromethane and ethyl acetate of the title compound.

S3. Refinement

All H atoms were placed in their calculated positions and then refined using riding model with C—H = 0.96–0.98 Å, $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary size.

Figure 2 Intermolecular hydrogen bonding in the crystal structure.

1-(2,2-Dimethoxyethyl)-8-nitro-1,2,3,5,6,7- hexahydroimidazo[1,2-a]pyridin-5-ol

F(000) = 584

 $\theta = 3.0-28.9^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Prism. colourless

 $0.46 \times 0.20 \times 0.16 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.355 {\rm Mg} {\rm m}^{-3}$

Mo Ka radiation, $\lambda = 0.7107$ Å

Cell parameters from 15115 reflections

Crystal data

C₁₁H₁₉N₃O₅ $M_r = 273.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.2337 (6) Å b = 9.0903 (3) Å c = 14.2618 (7) Å $\beta = 113.124$ (6)° V = 1339.36 (11) Å³ Z = 4

Data collection

Bruker APEXII CCD area-detector	37886 measured reflections
diffractometer	2/23 independent reflections
Radiation source: fine-focus sealed tube	2100 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
Detector resolution: 16.0355 pixels mm ⁻¹	$\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 3.0^\circ$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Bruker, 2005)	$l = -17 \rightarrow 17$
$T_{\min} = 0.929, \ T_{\max} = 1.0$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites

S = 1.06H-atom parameters constrained2723 reflections $w = 1/[\sigma^2(F_o^2) + (0.0615P)^2 + 0.2341P]$ 175 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} = 0.005$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent	nt isotropic displacement parameters (\AA^2 ,
---	--

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.29875 (12)	0.55756 (14)	0.22689 (9)	0.0425 (3)
01	0.63771 (13)	0.70130 (14)	0.20749 (9)	0.0628 (4)
H1	0.6117	0.7331	0.1491	0.094*
N2	0.47152 (13)	0.53178 (15)	0.19064 (9)	0.0445 (3)

C5	0.42919 (14)	0.56183 (15)	0.26436 (10)	0.0371 (3)
O4	0.38448 (13)	0.73086 (14)	0.41241 (9)	0.0600 (3)
N3	0.49381 (14)	0.67236 (15)	0.43224 (9)	0.0480 (3)
05	0.58619 (14)	0.69576 (16)	0.51820 (8)	0.0707 (4)
O2	0.02213 (12)	0.59831 (16)	0.16524 (10)	0.0721 (4)
C8	0.22221 (16)	0.51751 (18)	0.28522 (12)	0.0475 (4)
H8B	0.2773	0.5183	0.3573	0.057*
H8A	0.1892	0.4184	0.2671	0.057*
C1	0.52149 (15)	0.59073 (16)	0.36427 (10)	0.0406 (4)
C4	0.60599 (16)	0.55202 (18)	0.20530 (12)	0.0487 (4)
H4	0.6219	0.5029	0.1502	0.058*
C6	0.36474 (16)	0.5264 (2)	0.09100 (11)	0.0533 (4)
H6A	0.3731	0.4436	0.0511	0.064*
H6B	0.3589	0.6166	0.0531	0.064*
C2	0.66126 (16)	0.5530(2)	0.39249 (12)	0.0550 (4)
H2A	0.6892	0.4865	0.4503	0.066*
H2B	0.7126	0.6420	0.4133	0.066*
O3	0.05036 (15)	0.58840 (17)	0.33329 (12)	0.0822 (5)
С9	0.10981 (17)	0.6218 (2)	0.26575 (14)	0.0533 (4)
Н9	0.1401	0.7240	0.2748	0.064*
C7	0.25036 (17)	0.5085 (2)	0.11957 (12)	0.0583 (5)
H7B	0.1784	0.5690	0.0767	0.070*
H7A	0.2226	0.4066	0.1133	0.070*
C3	0.68676 (18)	0.4813 (2)	0.30524 (14)	0.0593 (5)
H3B	0.7777	0.4911	0.3176	0.071*
H3A	0.6665	0.3772	0.3024	0.071*
C11	-0.0810(2)	0.7013 (3)	0.12986 (19)	0.0959 (8)
H11A	-0.1268	0.6905	0.0575	0.144*
H11C	-0.0469	0.7992	0.1449	0.144*
H11B	-0.1391	0.6837	0.1632	0.144*
C10	0.0604 (3)	0.6935 (3)	0.40618 (19)	0.1038 (9)
H10C	0.0242	0.7846	0.3732	0.156*
H10B	0.1499	0.7079	0.4495	0.156*
H10A	0.0140	0.6611	0.4464	0.156*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0463 (7)	0.0455 (7)	0.0367 (7)	-0.0014 (6)	0.0174 (5)	0.0008 (5)
01	0.0799 (9)	0.0637 (8)	0.0487 (7)	-0.0237 (7)	0.0295 (7)	-0.0008 (6)
N2	0.0509 (7)	0.0518 (8)	0.0352 (6)	-0.0067 (6)	0.0216 (6)	-0.0049 (6)
C5	0.0503 (8)	0.0298 (7)	0.0356 (7)	0.0001 (6)	0.0216 (6)	0.0037 (6)
04	0.0738 (9)	0.0590 (8)	0.0535 (7)	0.0098 (6)	0.0316 (6)	-0.0076 (6)
N3	0.0638 (9)	0.0476 (8)	0.0355 (7)	-0.0002 (7)	0.0224 (6)	0.0012 (6)
05	0.0843 (9)	0.0892 (10)	0.0313 (6)	-0.0007 (8)	0.0149 (6)	-0.0112 (6)
02	0.0559 (7)	0.0772 (9)	0.0729 (9)	0.0166 (6)	0.0144 (6)	-0.0202 (7)
C8	0.0528 (9)	0.0441 (9)	0.0526 (9)	-0.0010(7)	0.0284 (7)	0.0035 (7)
C1	0.0515 (9)	0.0403 (8)	0.0330(7)	0.0005 (6)	0.0200 (6)	0.0033 (6)

supporting information

C4	0.0579 (10)	0.0517 (10)	0.0464 (9)	-0.0060 (8)	0.0312 (8)	-0.0083 (7)
C6	0.0636 (11)	0.0617 (11)	0.0350 (8)	-0.0065 (8)	0.0197 (7)	-0.0068 (7)
C2	0.0541 (10)	0.0666 (11)	0.0409 (8)	0.0061 (8)	0.0150 (7)	0.0070 (8)
O3	0.0895 (10)	0.0801 (10)	0.1065 (12)	-0.0016 (8)	0.0702 (10)	-0.0059 (9)
C9	0.0553 (10)	0.0478 (10)	0.0646 (11)	-0.0009 (8)	0.0319 (8)	-0.0056 (8)
C7	0.0587 (10)	0.0735 (12)	0.0402 (8)	-0.0090 (9)	0.0166 (8)	-0.0065 (8)
C3	0.0579 (10)	0.0598 (11)	0.0643 (11)	0.0100 (8)	0.0284 (9)	0.0031 (9)
C11	0.0779 (15)	0.114 (2)	0.0836 (16)	0.0394 (14)	0.0185 (12)	-0.0119 (14)
C10	0.132 (2)	0.120 (2)	0.0766 (16)	0.0389 (18)	0.0594 (16)	-0.0029 (14)

Geometric parameters (Å, °)

N1—C5	1.3488 (19)	С6—Н6А	0.9700
N1—C8	1.4579 (19)	C6—H6B	0.9700
N1—C7	1.4777 (19)	C6—C7	1.502 (2)
01—H1	0.8200	C2—H2A	0.9700
O1—C4	1.400 (2)	C2—H2B	0.9700
N2—C5	1.3412 (19)	C2—C3	1.528 (2)
N2—C4	1.453 (2)	O3—C9	1.404 (2)
N2—C6	1.4566 (19)	O3—C10	1.384 (3)
C5—C1	1.419 (2)	С9—Н9	0.9800
O4—N3	1.2643 (18)	С7—Н7В	0.9700
N3—O5	1.2751 (17)	С7—Н7А	0.9700
N3—C1	1.350 (2)	С3—Н3В	0.9700
О2—С9	1.400 (2)	С3—НЗА	0.9700
O2—C11	1.419 (2)	C11—H11A	0.9600
C8—H8B	0.9700	C11—H11C	0.9600
C8—H8A	0.9700	C11—H11B	0.9600
С8—С9	1.515 (2)	C10—H10C	0.9600
C1—C2	1.500 (2)	C10—H10B	0.9600
C4—H4	0.9800	C10—H10A	0.9600
C4—C3	1.501 (2)		
N1—C5—C1	130.90 (13)	C1—C2—H2A	109.0
N1—C8—H8B	109.2	C1—C2—H2B	109.0
N1—C8—H8A	109.2	C1 - C2 - C3	112.98 (14)
N1-C8-C9	112.03 (13)	C4—O1—H1	109.5
N1-C7-C6	104.03 (13)	C4—N2—C6	123.77 (12)
N1—C7—H7B	111.0	C4—C3—C2	110.73 (14)
N1—C7—H7A	111.0	C4—C3—H3B	109.5
O1	111.53 (14)	C4—C3—H3A	109.5
O1—C4—H4	109.5	C6—C7—H7B	111.0
O1—C4—C3	109.90 (14)	C6—C7—H7A	111.0
N2-C5-N1	110.37 (13)	H6A—C6—H6B	109.3
N2-C5-C1	118.73 (14)	С2—С3—Н3В	109.5
N2-C4-H4	109.5	С2—С3—НЗА	109.5
N2—C4—C3	106.79 (13)	H2A—C2—H2B	107.8
N2—C6—H6A	111.4	O3—C9—C8	109.02 (15)

N2—C6—H6B	111.4	О3—С9—Н9	110.4
N2—C6—C7	101.74 (12)	O3—C10—H10C	109.5
C5—N1—C8	125.00 (12)	O3—C10—H10B	109.5
C5—N1—C7	108.64 (13)	O3—C10—H10A	109.5
C5—N2—C4	122.00 (13)	C9—O2—C11	114.29 (15)
C5—N2—C6	111.22 (13)	С9—С8—Н8В	109.2
C5—C1—C2	120.14 (13)	С9—С8—Н8А	109.2
O4—N3—O5	119.82 (13)	С7—С6—Н6А	111.4
O4—N3—C1	123.22 (13)	С7—С6—Н6В	111.4
N3—C1—C5	122.62 (14)	H7B—C7—H7A	109.0
N3—C1—C2	116.43 (14)	C3—C4—H4	109.5
O5—N3—C1	116.87 (14)	C3—C2—H2A	109.0
O2—C9—C8	107.03 (13)	С3—С2—Н2В	109.0
O2—C9—O3	109.65 (15)	НЗВ—СЗ—НЗА	108.1
О2—С9—Н9	110.4	H11A—C11—H11C	109.5
O2—C11—H11A	109.5	H11A—C11—H11B	109.5
O2—C11—H11C	109.5	H11C—C11—H11B	109.5
O2—C11—H11B	109.5	С10—О3—С9	116.47 (18)
C8—N1—C7	117.14 (13)	H10C—C10—H10B	109.5
С8—С9—Н9	110.4	H10C—C10—H10A	109.5
H8B—C8—H8A	107.9	H10B—C10—H10A	109.5
N1—C5—C1—N3	-25.8 (2)	O5—N3—C1—C2	-7.5 (2)
N1—C5—C1—C2	164.90 (15)	C8—N1—C5—N2	150.28 (14)
N1—C8—C9—O2	68.81 (18)	C8—N1—C5—C1	-29.3 (2)
N1—C8—C9—O3	-172.66 (14)	C8—N1—C7—C6	-164.17 (14)
O1—C4—C3—C2	61.14 (19)	C1—C2—C3—C4	38.9 (2)
N2—C5—C1—N3	154.74 (15)	C4—N2—C5—N1	169.82 (14)
N2—C5—C1—C2	-14.6 (2)	C4—N2—C5—C1	-10.6 (2)
N2—C4—C3—C2	-59.99 (19)	C4—N2—C6—C7	-178.50 (15)
N2—C6—C7—N1	19.23 (18)	C6—N2—C5—N1	8.77 (17)
C5—N1—C8—C9	135.02 (15)	C6—N2—C5—C1	-171.63 (13)
C5—N1—C7—C6	-15.63 (19)	C6—N2—C4—O1	86.66 (18)
C5—N2—C4—O1	-71.99 (18)	C6—N2—C4—C3	-153.26 (15)
C5—N2—C4—C3	48.10 (19)	C7—N1—C5—N2	4.82 (17)
C5—N2—C6—C7	-17.84 (18)	C7—N1—C5—C1	-174.72 (15)
C5—C1—C2—C3	-1.2 (2)	C7—N1—C8—C9	-82.11 (18)
O4—N3—C1—C5	-0.8 (2)	C11—O2—C9—C8	-171.90 (18)
O4—N3—C1—C2	168.94 (14)	C11—O2—C9—O3	70.0 (2)
N3—C1—C2—C3	-171.20 (15)	C10—O3—C9—O2	-129.9 (2)
O5—N3—C1—C5	-177.19 (14)	C10—O3—C9—C8	113.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O5 ⁱ	0.82	1.89	2.6966 (16)	169

Symmetry code: (i) x, -y+3/2, z-1/2.