Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-amino-5-bromopyridinium) fumarate dihydrate

Ching Kheng Quah, \ddagger Madhukar Hemamalini and Hoong-Kun Fun*§

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun@usm.my
Received 26 July 2010; accepted 3 August 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.026 ; w R$ factor $=0.059 ;$ data-to-parameter ratio $=28.6$.

In the title compound, $2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the complete fumarate dianion is generated by crystallographic inversion symmetry. The cation is approximately planar, with a maximum deviation of 0.036 (1) \AA. In the anion, the carboxylate group is twisted slightly away from the attached plane; the dihedral angle between carboxylate and (E)-but-2-ene planes is $6.11(14)^{\circ}$. In the crystal, the carboxylate O atoms form bifurcated $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O})$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the cations. The crystal packing is stabilized by $R_{2}^{2}(8)$ ring motifs which are generated by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structure is further consolidated by water molecules via O (water) $-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (water) hydrogen bonds. The components are linked by these interactions into three-dimensional network.

Related literature

For details of hydrogen bonding, see: Goswami \& Ghosh (1997); Goswami et al. (1998). For applications of fumaric acid, see: Batchelor et al. (2000). For related structures, see: Büyükgüngör et al. (2004); Büyükgüngör \& Odabąsoğlu (20065); Hemamalini \& Fun, (2010a,b); Quah et al. (2008; $2010 a, b)$. For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).
\ddagger Thomson Reuters ResearcherID: A-5525-2009.
§ Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

$$
\begin{array}{ll}
2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O} & V=891.50(2) \AA^{3} \\
M_{r}=498.14 & Z=2 \\
\text { Monoclinic, } P 2_{1} / c & \text { Mo } K \alpha \text { radiation } \\
a=8.3717(1) \AA & \mu=4.59 \mathrm{~mm}^{-1} \\
b=16.5354(2) \AA & T=100 \mathrm{~K} \\
c=6.7846(1) \AA & 0.39 \times 0.15 \times 0.12 \mathrm{~mm}
\end{array}
$$

$c=6.7846(1) \AA$
$\beta=108.336(1)^{\circ}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)

15040 measured reflections
3942 independent reflections
3252 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$
$T_{\text {min }}=0.271, T_{\text {max }}=0.618$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.059$ independent and constrained
$S=1.03$ refinement
3942 reflections
138 parameters
$\Delta \rho_{\max }=0.54 \mathrm{e}_{\AA^{-3}}^{-3}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 1$	0.902 (18)	1.815 (18)	2.7136 (14)	174.1 (19)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.82 (2)	2.11 (2)	2.9143 (16)	169.7 (19)
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O} 2$	0.893 (19)	1.946 (19)	2.8348 (15)	173.2 (19)
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.77 (2)	2.07 (2)	2.8213 (15)	169 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 1^{\text {iii }}$	0.82 (3)	1.99 (3)	2.7865 (14)	167 (3)
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {iv }}$	0.93	2.41	3.3089 (17)	162
Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2} .$	$+1, y, z ;$	x, y, z	(iii) x,	$+\frac{1}{2}$; (iv)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/ 811012). CKQ also thanks USM for the award of a USM fellowship and HM also thanks USM for the award of a postdoctoral fellowship.

[^0]
organic compounds

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batchelor, E., Klinowski, J. \& Jones, W. (2000). J. Mater. Chem. 10, 839-848.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Büyükgüngör, O. \& Odabąsoğlu, M. (2006). Acta Cryst. E62, o3816-o3818.
Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. \& Lönnecke, P. (2004). Acta Cryst. C60, o470-o472.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Goswami, S. P. \& Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.
Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. \& Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.

Hemamalini, M. \& Fun, H.-K. (2010a). Acta Cryst. E66, o1416-o1417
Hemamalini, M. \& Fun, H.-K. (2010b). Acta Cryst. E66, o1962-o1963.
Quah, C. K., Hemamalini, M. \& Fun, H.-K. (2010a). Acta Cryst. E66, o1935o1936.
Quah, C. K., Hemamalini, M. \& Fun, H.-K. (2010b). Acta Cryst. E66, o2164o2165.
Quah, C. K., Jebas, S. R. \& Fun, H.-K. (2008). Acta Cryst. E64, o1878-o1879. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o2252-o2253 [https://doi.org/10.1107/S1600536810030989]

Bis(2-amino-5-bromopyridinium) fumarate dihydrate

Ching Kheng Quah, Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Hydrogen bonding plays a key role in molecular recognition (Goswami \& Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). Fumaric acid, the E isomer of butenedioic acid, is of interest since it is known to form supramolecular assemblies with N-aromatic compounds (Batchelor et al., 2000). It tends to form infinite chains arranged in a nearly coplanar manner via pairs of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structures of 2-aminopyridinium-fumarate-fumaric acid (2/1/1) (Büyükgüngör et al., 2004) and 2,6-diamino pyridinium hydrogen fumarate (Büyükgüngör \& Odabąsoğlu, 2006) have been reported in the literature. We have recently reported the crystal structures of 2-amino-5-chloropyridine-fumaric acid (1/2) (Hemamalini \& Fun, 2010a) and 2-amino-4-methylpyridinium (E)-3-carboxyprop-2enoate (Hemamalini \& Fun, 2010b) from our laboratory. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.
The asymmetric unit of title compound (Fig. 1), consist of a protonated 2-amino-5-bromopyridinium cation, a half molecule of fumarate anion and a water molecule. The fumarate anion is lying about an inversion center (symmetry code: $-x+1,-y+1,-z$). In the 2 -amino-5-bromopyridinium cation, protonatation of N1 atom has lead to a slight increase in the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$ angle to 122.64 (11) ${ }^{\circ}$. The 2-amino-5-bromopyridinium cation is approximately planar, with a maximum deviation of 0.036 (1) \AA for atom N2. In fumarate anion, $\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 6 \mathrm{~A} / \mathrm{C} 7 \mathrm{~A}$ plane is planar with an r.m.s deviation of <0.001 (1) \AA. This plane makes a dihedral angle of $6.90(6)^{\circ}$ with 2-amino-5-bromopyridinium cation. In the anion, the carboxylate group is twisted slightly away from the attached plane; the dihedral angle between C6/C7/C6A/C7A and $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 6 / \mathrm{C} 7$ planes is $6.11(14)^{\circ}$.
In the crystal packing (Fig. 2), the carboxylate oxygen atoms, O2 and O3 form bifurcated (N2-H1N2 $\cdots \mathrm{O} 2$ and $\mathrm{C} 3-$ $\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 2$) and $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 1$ hydrogen bonds, respectively, with cations. The crystal packing is stabilized by $R_{2}{ }^{2}(8)$ ring motifs (Bernstein et al., 1995) which are generated by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). The crystal structure is further consolidated by water molecules via O1W-H1W1 $\cdots \mathrm{O} 1$, O1W-H2W1 $\cdots \mathrm{O} 1$ and N2-H2N2 $\cdots \mathrm{O} 1 \mathrm{~W}$ hydrogen bonds. The anions, cations and water molecules are linked by these interactions into three-dimensional network.

S2. Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg , Aldrich) and fumaric acid (58 mg , Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

S3. Refinement

$\mathrm{O}-$ and N - bound H atoms were located in a difference Fourier map and allowed to refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ $U_{\text {eq }}(\mathrm{C})$. The highest residual electron density peak is located at $0.66 \AA$ from C6 and the deepest hole is located at $1.19 \AA$
from Br 1 .

Figure 1
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Symmetry code: (\$) $-x+1,-y+1,-z$. Intramolecular interactions are shown as dashed lines.

Figure 2
The crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Bis(2-amino-5-bromopyridinium) fumarate dihydrate
Crystal data
$2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{BrN}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=498.14$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=8.3717$ (1) \AA
$b=16.5354$ (2) \AA
$c=6.7846(1) \AA$
$\beta=108.336(1)^{\circ}$
$V=891.50(2) \AA^{3}$
$Z=2$
$F(000)=496$
$D_{\mathrm{x}}=1.856 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5779 reflections
$\theta=2.6-34.6^{\circ}$
$\mu=4.59 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.39 \times 0.15 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.271, T_{\text {max }}=0.618$

> 15040 measured reflections
> 3942 independent reflections
> 3252 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.028$
> $\theta_{\max }=35.2^{\circ}, \theta_{\min }=2.5^{\circ}$
> $h=-13 \rightarrow 12$
> $k=-26 \rightarrow 23$
> $l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.059$
$S=1.03$
3942 reflections
138 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0265 P)^{2}+0.2048 P\right]\)
where \(P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}\)
\(\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}\)
```


Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.741696(15)$	$1.042853(7)$	$0.08809(2)$	$0.01677(4)$
N1	$0.78272(13)$	$0.79718(7)$	$0.17705(16)$	$0.01325(19)$
H1N1	$0.712(2)$	$0.7551(11)$	$0.133(3)$	$0.022(4)^{*}$
N2	$0.99471(14)$	$0.70859(7)$	$0.34946(18)$	$0.0152(2)$
H2N2	$1.091(3)$	$0.7028(12)$	$0.426(3)$	$0.031(5)^{*}$
H1N2	$0.926(2)$	$0.6673(12)$	$0.296(3)$	$0.036(5)^{*}$
C1	$0.72188(15)$	$0.87250(8)$	$0.11482(19)$	$0.0142(2)$
H1A	0.6112	0.8790	0.0301	0.017^{*}
C2	$0.82285(16)$	$0.93842(8)$	$0.1764(2)$	$0.0139(2)$
C3	$0.99045(15)$	$0.92827(8)$	$0.3065(2)$	$0.0148(2)$
H3A	1.0606	0.9729	0.3486	0.018^{*}
C4	$1.04836(15)$	$0.85246(8)$	$0.36957(19)$	$0.0144(2)$
H4A	1.1575	0.8455	0.4585	0.017^{*}
C5	$0.94285(15)$	$0.78397(8)$	$0.30010(18)$	$0.0127(2)$

supporting information

O1W	$0.34331(12)$	$0.71054(7)$	$0.61811(17)$	$0.0206(2)$
H2W1	$0.392(3)$	$0.6972(13)$	$0.729(3)$	$0.038(6)^{*}$
H1W1	$0.396(3)$	$0.7487(15)$	$0.594(4)$	$0.043(6)^{*}$
O1	$0.55652(11)$	$0.67725(5)$	$0.02333(15)$	$0.01630(18)$
O2	$0.75988(11)$	$0.58655(6)$	$0.15601(16)$	$0.01766(18)$
C6	$0.48381(16)$	$0.53893(7)$	$-0.0202(2)$	$0.0139(2)$
H6AA	0.3763	0.5537	-0.1026	0.017^{*}
C7	$0.61164(15)$	$0.60438(7)$	$0.06033(19)$	$0.0127(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.01516(6)$	$0.01024(6)$	$0.02259(7)$	$0.00028(4)$	$0.00262(4)$	$0.00195(5)$
N 1	$0.0112(4)$	$0.0107(5)$	$0.0165(5)$	$-0.0015(4)$	$0.0023(4)$	$-0.0004(4)$
N 2	$0.0124(5)$	$0.0108(5)$	$0.0201(5)$	$-0.0002(4)$	$0.0017(4)$	$0.0006(4)$
C1	$0.0128(5)$	$0.0124(5)$	$0.0161(5)$	$0.0000(4)$	$0.0027(4)$	$0.0010(4)$
C2	$0.0137(5)$	$0.0103(5)$	$0.0170(5)$	$0.0005(4)$	$0.0040(4)$	$0.0008(4)$
C3	$0.0129(5)$	$0.0123(5)$	$0.0182(6)$	$-0.0025(4)$	$0.0035(4)$	$-0.0017(4)$
C4	$0.0117(5)$	$0.0129(6)$	$0.0162(5)$	$-0.0016(4)$	$0.0011(4)$	$-0.0019(4)$
C5	$0.0111(5)$	$0.0128(5)$	$0.0139(5)$	$-0.0003(4)$	$0.0036(4)$	$-0.0005(4)$
O1W	$0.0163(5)$	$0.0189(5)$	$0.0221(5)$	$-0.0039(4)$	$-0.0003(4)$	$0.0050(4)$
O1	$0.0134(4)$	$0.0097(4)$	$0.0228(5)$	$0.0004(3)$	$0.0014(3)$	$-0.0001(3)$
O2	$0.0120(4)$	$0.0126(4)$	$0.0245(5)$	$0.0001(3)$	$0.0002(3)$	$-0.0001(4)$
C6	$0.0112(5)$	$0.0111(5)$	$0.0176(5)$	$-0.0005(4)$	$0.0016(4)$	$-0.0011(4)$
C7	$0.0130(5)$	$0.0105(5)$	$0.0138(5)$	$-0.0010(4)$	$0.0030(4)$	$-0.0001(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 2$	1.8832 (13)	C3-H3A	0.9300
N1-C5	1.3556 (15)	C4-C5	1.4223 (17)
N1-C1	1.3616 (16)	C4-H4A	0.9300
N1-H1N1	0.899 (18)	O1W-H2W1	0.77 (2)
N2-C5	1.3278 (16)	O1W-H1W1	0.81 (2)
N2-H2N2	0.81 (2)	O1-C7	1.2863 (15)
N2-H1N2	0.89 (2)	O2-C7	1.2416 (14)
$\mathrm{C} 1-\mathrm{C} 2$	1.3620 (17)	C6- $\mathrm{C}^{\text {i }}$	1.326 (2)
C1-H1A	0.9300	C6-C7	1.4990 (17)
$\mathrm{C} 2-\mathrm{C} 3$	1.4130 (17)	C6-H6AA	0.9300
C3-C4	1.3635 (18)		
C5-N1-C1	122.64 (11)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3
C5-N1-H1N1	119.8 (11)	C3-C4-C5	120.37 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	117.5 (12)	C3-C4-H4A	119.8
C5-N2-H2N2	116.7 (14)	C5-C4-H4A	119.8
C5-N2-H1N2	119.8 (13)	N2-C5-N1	119.22 (11)
H2N2-N2-H1N2	123.4 (19)	N2-C5-C4	122.97 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	120.10 (11)	N1-C5-C4	117.81 (11)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.9	H2W1-O1W-H1W1	105 (2)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.0	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 7$	$123.34(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.67(12)$	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{H} 6 \mathrm{AA}$	118.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	$120.62(9)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{AA}$	118.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 1$	$119.71(9)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$124.24(11)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.37(11)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$	$120.03(11)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$115.72(11)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.12(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$-178.04(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.51(19)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$1.59(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	$178.98(9)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$177.11(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.42(19)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-2.50(18)$
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.92(10)$	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 2$	$6.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.93(19)$	$\mathrm{C} 6-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$-173.89(16)$

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 1$	0.902 (18)	1.815 (18)	2.7136 (14)	174.1 (19)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.82 (2)	2.11 (2)	2.9143 (16)	169.7 (19)
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots \mathrm{O} 2$	0.893 (19)	1.946 (19)	2.8348 (15)	173.2 (19)
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.77 (2)	2.07 (2)	2.8213 (15)	169 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 1^{\text {iv }}$	0.82 (3)	1.99 (3)	2.7865 (14)	167 (3)
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {v }}$	0.93	2.41	3.3089 (17)	162

Symmetry codes: (ii) $x+1, y, z$; (iii) $x, y, z+1$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $-x+2, y+1 / 2,-z+1 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5312).

