

 $\gamma = 87.845 \ (2)^{\circ}$

Z = 4

 $V = 1314.72 (10) \text{ Å}^3$

 $0.24 \times 0.20 \times 0.10$ mm

7631 measured reflections

7631 independent reflections

5583 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 3.14 \text{ mm}^-$

T = 100 K

NH

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-bromopyridinium 2-carboxybenzoate

Ching Kheng Quah,‡ Madhukar Hemamalini and Hoong-Kun Fun*§

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 26 July 2010; accepted 3 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.009 Å;

R factor = 0.067; wR factor = 0.194; data-to-parameter ratio = 21.0.

The asymmetric unit of the title compound, $C_5H_6BrN_2^+$. $C_8H_5O_4^{-}$, consists of two crystallographically independent 2-amino-5-bromopyridinium cations (A and B) and two 2-carboxybenzoate anions (A and B). Each 2-amino-5-bromopyridinium cation is approximately planar, with a maximum deviation of 0.047 (1) Å in cation A and 0.027 (1) Å in cation B. The 2-amino-5-bromopyridinium unit in cation A is inclined at dihedral angles of 4.9 (3) and 2.2 (3) $^{\circ}$ with the phenyl rings of the A and B 2-carboxybenzoate anions, respectively. The corresponding angles for cation B are 3.0 (3) and 5.6 (3)°. The molecular structure is stabilized by an intramolecular O-H···O hydrogen bond, which generates an S(7) ring motif. The cations and anions are linked via intermolecular N-H···O and C-H···O hydrogen bonds, generating $R_2^2(8)$ ring motifs. In the crystal packing, molecules are linked into wave-like chains along [001] via adjacent ring motifs. Short intermolecular distances between the phenyl and pyridine rings [3.613 (4) and 3.641 (4) Å] indicate the existence of $\pi - \pi$ interactions. The crystal structure is a non-merohedral twin with a contribution of 0.271(3) of the minor component.

Related literature

For applications of phthalic acid, see: Dale *et al.* (2004); Ballabh *et al.* (2005). For related structures, see: Schuckmann *et al.* (1978); Küppers (1978); Jessen & Küppers (1991); Quah *et al.* (2008, 2010*a*,*b*). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $C_{5}H_{6}BrN_{2}^{+}\cdot C_{8}H_{5}O_{4}^{-}$ $M_{r} = 339.15$ Triclinic, *P*1 a = 9.0192 (4) Å b = 10.2689 (5) Å c = 14.4092 (6) Å $\alpha = 82.269 (2)^{\circ}$ $\beta = 83.969 (2)^{\circ}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.526, T_{max} = 0.740$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.067 & 364 \text{ parameters} \\ wR(F^2) &= 0.194 & H\text{-atom parameters constrained} \\ S &= 1.09 & \Delta\rho_{\text{max}} = 1.14 \text{ e } \text{\AA}^{-3} \\ 7631 \text{ reflections} & \Delta\rho_{\text{min}} = -1.25 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1N1 \cdots O4A$	0.86	1.80	2.664 (7)	176
$N2A - H2NA \cdots O4B^{i}$	0.94	1.97	2.910 (8)	175
$N2A - H3NA \cdots O3A$	0.98	1.97	2.930 (7)	167
$O3B - H2O3 \cdots O2B$	0.75	1.68	2.391 (6)	159
$N1B - H2N1 \cdots O1B$	0.92	1.82	2.647 (7)	147
$N2B - H3N2 \cdot \cdot \cdot O1A^{ii}$	1.00	1.91	2.903 (8)	176
$N2B - H4N2 \cdots O2B$	0.81	2.20	2.971 (7)	160
$C4A - H4AA \cdots O3B^{i}$	0.93	2.44	3.219 (9)	141
$C4B - H4BA \cdots O2A^{ii}$	0.93	2.42	3.175 (9)	139

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z - 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/ 811012). CKQ also thanks USM for the award of a USM fellowship and HM also thanks USM for the award of a postdoctoral fellowship.

[‡] Thomson Reuters ResearcherID: A-5525-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5311).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1548– 1553.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Dale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207–214.
- Jessen, S. M. & Küppers, H. (1991). J. Mol. Struct. 263, 247-265.
- Küppers, H. (1978). Acta Cryst. B34, 3763-3765.
- Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1932.
 Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1935– 01936.
- Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, 01878-01879.
- Schuckmann, W., Fuess, H. & Bats, J. W. (1978). Acta Cryst. B34, 3754–3756.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o2269-o2270 [https://doi.org/10.1107/S1600536810030977]

2-Amino-5-bromopyridinium 2-carboxybenzoate

Ching Kheng Quah, Madhukar Hemamalini and Hoong-Kun Fun

S1. Comment

Phthalic acid forms hydrogen phthalate salts with various organic and other compounds. The crystal structures of hydrogen phthalates include calcium phthalate monohydrate (Schuckmann *et al.*, 1978), lithium hydrogen phthalate monohydrate (Küppers, 1978) and tetramethylammonium hydrogen phthalate (Jessen & Küppers, 1991) have been reported in the literature. Hydrogen phthalates also form supramolecular assemblies, such as extended chains, ribbons and three-dimensional networks (Dale *et al.*, 2004; Ballabh *et al.*, 2005). In this paper, the hydrogen-bonding patterns of 2-amino-5-bromopyridinium hydrogenphthalate, (I), are discussed.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridinium cations (*A* and *B*) and two 2-carboxybenzoate anions (*A* and *B*). The bond lengths (Allen *et al.*, 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah *et al.*, 2008, 2010*a*, *b*). Each 2-amino-5-bromopyridinium cation is approximately planar, with a maximum deviation of 0.047 (1) Å for atom Br1A in cation *A* and 0.027 (1) Å for atom Br1B in cation *B*. The 2-amino-5-bromopyridinium in cation *A* is inclined at dihedral angles of 4.9 (3) and 2.2 (3)° with the C6A—C11A and C6B—C11B phenyl rings, respectively. The correspondence angles for cation *B* are 3.0 (3) and 5.6 (3)°. The molecular structure is stabilized by an intramolecular O3B—H2O3···O2B hydrogen bond which generates an *S*(7) ring motif (Bernstein *et al.*, 1995).

The cations and anions are linked *via* intermolecular N–H···O and C–H···O hydrogen bonds (Table 1), generating $R_2^2(8)$ ring motifs. In the crystal packing (Fig. 2), the molecules are linked into one-dimensional wave-like chains along [001] *via* adjacent ring motifs. The crystal packing is further consolidated by π - π stacking interactions between the centroids of C6A—C11A (*Cg*1), N1B/C1B—C5B (*Cg*2) rings and C6B—C11B (*Cg*3), N1A/C1A—C5A (*Cg*4) rings, with *Cg*1···*Cg*2ⁱⁱⁱ and *Cg*3···*Cg*4 distances of 3.613 (4) and 3.641 (4) Å, respectively [symmetry code: (iii) *x*, *y*, 1 + *z*]

S2. Experimental

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and phthalic acid (83 mg, Merck) was mixed and warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

S3. Refinement

O- and N- bound H atoms were located in a difference Fourier map and refined using a riding model with O-H = 0.7471-0.8532 Å and N-H = 0.8108-0.9952 Å]. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$. The crystal structure is a non-merohedral twin, a contribution of 0.271 (3) of the minor component. The twin law is $(-1\ 0\ 0\ /\ 0\ -1\ 0\ /-0.320\ -0.367\ 1)$.

Figure 1

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular interactions are shown in dashed lines.

Figure 2

The crystal structure of the title compound viewed along the *b* axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

2-Amino-5-bromopyridinium 2-carboxybenzoate

Crystal data

$C_5H_6BrN_2^+ C_8H_5O_4^-$
$M_r = 339.15$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 9.0192 (4) Å
<i>b</i> = 10.2689 (5) Å
c = 14.4092 (6) Å
$\alpha = 82.269 \ (2)^{\circ}$
$\beta = 83.969 \ (2)^{\circ}$
$\gamma = 87.845 \ (2)^{\circ}$
$V = 1314.72 (10) Å^3$

Z = 4 F(000) = 680 $D_x = 1.713 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9951 reflections $\theta = 2.3-27.7^{\circ}$ $\mu = 3.14 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.24 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Bruker SMART APEXII CCD area-detector	7631 measured reflections
diffractometer	7631 independent reflections
Radiation source: fine-focus sealed tube	5583 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.000$
φ and ω scans	$\theta_{max} = 30.0^{\circ}, \theta_{min} = 1.4^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2009)	$k = -14 \rightarrow 14$
$T_{\min} = 0.526, T_{\max} = 0.740$	$l = -6 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from
$wR(F^2) = 0.194$	neighbouring sites
S = 1.09	H-atom parameters constrained
7631 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0079P)^2 + 15.1445P]$
364 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.14$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.25$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Br1A	0.79304 (8)	0.52547 (8)	0.47978 (5)	0.03121 (19)	
N1A	0.6074 (6)	0.6549 (5)	0.7230 (4)	0.0196 (10)	
H1N1	0.6339	0.6324	0.7790	0.023*	
N2A	0.3893 (6)	0.7645 (6)	0.7726 (4)	0.0236 (11)	
H2NA	0.2872	0.7862	0.7731	0.02 (2)*	
H3NA	0.4231	0.7281	0.8335	0.03 (2)*	
C1A	0.7009 (7)	0.6012 (7)	0.6581 (4)	0.0223 (13)	
H1AA	0.7894	0.5596	0.6749	0.027*	
C2A	0.6649 (7)	0.6083 (7)	0.5678 (4)	0.0223 (13)	
C3A	0.5324 (7)	0.6715 (7)	0.5428 (4)	0.0243 (13)	
H3AA	0.5077	0.6766	0.4813	0.029*	
C4A	0.4383 (8)	0.7262 (7)	0.6095 (4)	0.0244 (13)	
H4AA	0.3505	0.7696	0.5932	0.029*	
C5A	0.4765 (7)	0.7158 (6)	0.7033 (4)	0.0206 (12)	

H2O3	1.0538	0.7571	0.5815	0.031*
Br1B	0.69848 (8)	0.98559 (8)	0.01879 (5)	0.03200 (19)
N1B	0.8885 (6)	0.8524 (6)	0.2596 (4)	0.0221 (11)
H2N1	0.8515	0.8432	0.3223	0.027*
N2B	1.0992 (7)	0.7300 (6)	0.2998 (4)	0.0261 (12)
H3N2	1.2048	0.7046	0.2816	0.031*
H4N2	1.0882	0.7577	0.3502	0.031*
C1B	0.7963 (7)	0.9101 (7)	0.1972 (4)	0.0222(13)
H1BA	0.7119	0.9571	0.2180	0.027*
C2B	0.8265 (7)	0.8995 (7)	0.1045 (4)	0.0229(13)
C3B	0.9539 (8)	0.8290(7)	0.0737 (5)	0.0257(14)
H3BA	0.9755	0.8216	0.0101	0.031*
C4B	1.0461 (8)	0.7713(7)	0.1368(4)	0.0245(13)
H4BA	1 1305	0.7237	0.1168	0.029*
C5B	1.0122 (7)	0.7237 0.7843 (7)	0.2339(4)	0.029
O1B	0.7873(6)	0.9253 (6)	0.2333(4) 0.4244(3)	0.0222(13) 0.0348(13)
01B 02B	0.7875(0)	0.9255(0) 0.8164(5)	0.4244(3) 0.4822(3)	0.0346(19)
02B	1.0802 (6)	0.8104(5) 0.7552(5)	0.4022(3)	0.0233(10)
03B 04P	1.0802(0) 1.0764(6)	0.7552(5)	0.0291(3) 0.7617(3)	0.0301(11)
C10D	1.0704(0)	0.0300(3)	0.7017(3)	0.0291(11)
	0.8034(7)	0.9237(0)	0.3808(4)	0.0195(12)
	0.7961 (8)	0.9415 (7)	0.7555 (4)	0.0232 (13)
H6BA	0.8386	0.9233	0.8101	0.028*
C/B	0.6601 (8)	1.0105 (7)	0.7525 (5)	0.0252 (13)
H/BA	0.6122	1.0362	0.8077	0.030*
C8B	0.5967 (8)	1.0405 (7)	0.6684 (5)	0.0253 (13)
H8BA	0.5074	1.0884	0.6663	0.030*
C9B	0.6676 (7)	0.9984 (7)	0.5881 (4)	0.0216 (12)
H9BA	0.6239	1.0188	0.5321	0.026*
C11B	0.8708 (7)	0.8986 (6)	0.6729 (4)	0.0202 (12)
C12B	0.8597 (7)	0.8867 (6)	0.4919 (4)	0.0200 (12)
C13B	1.0179 (7)	0.8290 (7)	0.6895 (5)	0.0233 (13)
OlA	0.4113 (6)	0.6654 (5)	1.2511 (3)	0.0313 (11)
O2A	0.3986 (6)	0.7420 (5)	1.1025 (3)	0.0284 (11)
H1OA	0.4630	0.7831	1.0627	0.043*
O3A	0.5145 (5)	0.6946 (5)	0.9528 (3)	0.0271 (10)
O4A	0.7025 (6)	0.5820 (6)	0.8916 (3)	0.0344 (13)
C6A	0.8161 (7)	0.5016 (7)	1.0550 (4)	0.0222 (13)
H6AB	0.8572	0.4762	0.9981	0.027*
C7A	0.8877 (7)	0.4632 (7)	1.1348 (5)	0.0247 (13)
H7AB	0.9766	0.4145	1.1309	0.030*
C8A	0.8256 (8)	0.4979 (7)	1.2215 (4)	0.0245 (13)
H8AB	0.8736	0.4741	1.2755	0.029*
C9A	0.6919 (7)	0.5682 (6)	1.2255 (4)	0.0219 (12)
H9AB	0.6506	0.5902	1.2834	0.026*
C10A	0.6164 (7)	0.6075 (6)	1.1468 (4)	0.0197 (12)
C11A	0.6819 (7)	0.5788 (6)	1.0570 (4)	0.0190 (12)
C12A	0.4671 (8)	0.6747 (7)	1.1692 (5)	0.0240 (13)
C13A	0.6295 (7)	0.6207 (7)	0.9607 (4)	0.0215 (12)
			(•)	

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Br1A	0.0271 (4)	0.0455 (4)	0.0232 (3)	-0.0034 (3)	0.0011 (3)	-0.0148 (3)
N1A	0.022 (3)	0.024 (3)	0.013 (2)	-0.003(2)	-0.0037 (19)	-0.0040 (19)
N2A	0.022 (3)	0.030 (3)	0.020 (3)	-0.001 (2)	-0.002(2)	-0.006 (2)
C1A	0.020 (3)	0.026 (3)	0.021 (3)	-0.005 (2)	-0.002 (2)	-0.004 (2)
C2A	0.024 (3)	0.030 (3)	0.014 (3)	-0.008(3)	0.003 (2)	-0.008(2)
C3A	0.026 (3)	0.033 (4)	0.017 (3)	-0.007 (3)	-0.006(2)	-0.008 (3)
C4A	0.023 (3)	0.030 (4)	0.020 (3)	-0.005 (3)	-0.007(2)	0.000 (2)
C5A	0.022 (3)	0.022 (3)	0.019 (3)	-0.005 (2)	-0.003 (2)	-0.004 (2)
Br1B	0.0262 (4)	0.0485 (5)	0.0208 (3)	-0.0002(3)	-0.0066(3)	0.0002 (3)
N1B	0.023 (3)	0.028 (3)	0.016 (2)	0.000 (2)	0.001 (2)	-0.006 (2)
N2B	0.028 (3)	0.031 (3)	0.019 (3)	0.004 (2)	0.000 (2)	-0.004(2)
C1B	0.021 (3)	0.024 (3)	0.022 (3)	-0.005 (2)	-0.002 (2)	-0.004 (2)
C2B	0.022 (3)	0.028 (3)	0.020 (3)	-0.005 (3)	-0.004(2)	-0.004(2)
C3B	0.028 (3)	0.030 (4)	0.019 (3)	-0.006(3)	0.003 (2)	-0.009(3)
C4B	0.026 (3)	0.029 (3)	0.018 (3)	0.000 (3)	0.003 (2)	-0.008(2)
C5B	0.024 (3)	0.023 (3)	0.019 (3)	-0.005 (2)	0.001 (2)	-0.002 (2)
O1B	0.036 (3)	0.051 (3)	0.018 (2)	0.014 (3)	-0.007(2)	-0.007(2)
O2B	0.022 (2)	0.033 (3)	0.021 (2)	0.0008 (19)	0.0014 (18)	-0.0059 (19)
O3B	0.034 (3)	0.037 (3)	0.020 (2)	0.012 (2)	-0.008(2)	-0.007(2)
O4B	0.029 (3)	0.033 (3)	0.028 (2)	0.003 (2)	-0.014 (2)	-0.004(2)
C10B	0.022 (3)	0.021 (3)	0.016 (3)	-0.003 (2)	-0.003 (2)	-0.001(2)
C6B	0.033 (3)	0.024 (3)	0.014 (3)	0.000 (3)	-0.005 (2)	-0.004 (2)
C7B	0.030 (3)	0.027 (3)	0.019 (3)	-0.003 (3)	0.001 (3)	-0.008(2)
C8B	0.023 (3)	0.030 (4)	0.024 (3)	0.004 (3)	-0.001 (2)	-0.007(3)
C9B	0.023 (3)	0.027 (3)	0.015 (3)	-0.002 (2)	-0.001 (2)	-0.002 (2)
C11B	0.022 (3)	0.021 (3)	0.018 (3)	-0.002(2)	-0.001 (2)	-0.004(2)
C12B	0.020 (3)	0.023 (3)	0.016 (3)	-0.002 (2)	-0.001 (2)	0.000 (2)
C13B	0.020 (3)	0.024 (3)	0.026 (3)	0.004 (2)	-0.008(2)	-0.004(2)
O1A	0.035 (3)	0.033 (3)	0.021 (2)	0.008 (2)	0.008 (2)	0.002 (2)
O2A	0.030 (3)	0.035 (3)	0.018 (2)	0.009 (2)	0.0023 (18)	-0.0023 (19)
O3A	0.027 (2)	0.036 (3)	0.019 (2)	0.010 (2)	-0.0050 (18)	-0.0047 (19)
O4A	0.033 (3)	0.057 (4)	0.013 (2)	0.015 (3)	-0.0048 (19)	-0.005 (2)
C6A	0.021 (3)	0.029 (3)	0.016 (3)	0.000 (3)	0.003 (2)	-0.006 (2)
C7A	0.021 (3)	0.028 (3)	0.022 (3)	0.002 (3)	0.001 (2)	0.002 (3)
C8A	0.026 (3)	0.030 (3)	0.018 (3)	-0.003 (3)	-0.005 (2)	0.000 (2)
C9A	0.028 (3)	0.023 (3)	0.014 (3)	-0.002 (3)	0.001 (2)	-0.004 (2)
C10A	0.023 (3)	0.020 (3)	0.016 (3)	0.000 (2)	0.002 (2)	-0.005 (2)
C11A	0.021 (3)	0.022 (3)	0.014 (3)	-0.002 (2)	0.002 (2)	-0.004 (2)
C12A	0.028 (3)	0.020 (3)	0.024 (3)	0.002 (3)	0.001 (3)	-0.004 (2)
C13A	0.022 (3)	0.028 (3)	0.015 (3)	-0.004(2)	-0.002(2)	-0.002(2)

Geometric parameters (Å, °)

Br1A—C2A	1.891 (6)	O3B—H2O3	0.7471
N1A—C1A	1.352 (8)	O4B—C13B	1.231 (8)

N1A—C5A	1.354 (8)	C10B—C9B	1.410 (9)
N1A—H1N1	0.8651	C10B—C11B	1.428 (8)
N2A—C5A	1.343 (8)	C10B—C12B	1.508 (9)
N2A—H2NA	0.9388	C6B—C7B	1.394 (10)
N2A—H3NA	0.9814	C6B—C11B	1.396 (9)
C1A—C2A	1.366 (9)	C6B—H6BA	0.9300
CIA—HIAA	0.9300	C7B—C8B	1.385 (9)
C2A—C3A	1 396 (10)	C7B—H7BA	0.9300
C3A—C4A	1 378 (9)	C8B—C9B	1 375 (9)
C3A—H3AA	0.9300	C8B—H8BA	0.9300
C4A - C5A	1 418 (9)	C9B—H9BA	0.9300
C4A—H4AA	0.9300	C11B-C13B	1.510(9)
Br1B_C2B	1 889 (7)	O1A - C12A	1.216(9) 1.226(8)
N1B_C5B	1.309(7) 1 340(8)	02A - C12A	1.220(0) 1.302(8)
NIB-CIB	1 352 (8)	02A - H10A	0.8532
NIB_H2N1	0.9235	$O_{3}A - C_{13}A$	1.267(8)
N2B C5B	1 345 (8)	$O_{A} = C_{A}$	1.207(0) 1.230(8)
N2B H2N2	0.0052	C6A C7A	1.239(0) 1.381(0)
	0.9932	C6A = C11A	1.301(9) 1.421(0)
$\begin{array}{c} 122\mathbf{-1}1412 \\ 12222222222$	1.352(0)		0.0200
C1D - C2D	0.0300	C_{0A} C_{0A}	1 200 (0)
C1D— $C1D$ $C2D$	1.400 (10)	C7A H7AP	1.399 (9)
$C_{2}D = C_{3}D$	1.400(10) 1.350(10)	C^{A}	1 282 (0)
C_{2D} U_{2DA}	0.0200	$C_{0A} = U_{0A} D$	1.362 (9)
CAD CED	0.9300		0.9300
	1.425 (9)	COA HOAD	1.389 (9)
C4B—H4BA	0.9300	CIAA CIIA	0.9300
OIB—CI2B	1.241 (8)	CIOA—CIIA	1.428 (8)
O2B—C12B	1.277 (8)	CIUA—CI2A	1.514 (9)
03B	1.300 (8)	CIIA—CI3A	1.515 (8)
C1A—N1A—C5A	123.1 (5)	C7B—C6B—C11B	122.4 (6)
C1A—N1A—H1N1	111.1	С7В—С6В—Н6ВА	118.8
C5A—N1A—H1N1	124.9	C11B—C6B—H6BA	118.8
C5A—N2A—H2NA	126.7	C8B—C7B—C6B	119.4 (6)
C5A—N2A—H3NA	109.3	С8В—С7В—Н7ВА	120.3
H2NA—N2A—H3NA	115.7	С6В—С7В—Н7ВА	120.3
N1A—C1A—C2A	119.7 (6)	C9B—C8B—C7B	119.2 (6)
N1A—C1A—H1AA	120.2	C9B—C8B—H8BA	120.4
C2A—C1A—H1AA	120.2	C7B—C8B—H8BA	120.4
C1A—C2A—C3A	119.9 (6)	C8B—C9B—C10B	123.0 (6)
C1A—C2A—Br1A	118.9 (5)	C8B—C9B—H9BA	118.5
C3A—C2A—Br1A	121.1 (5)	C10B—C9B—H9BA	118.5
C4A—C3A—C2A	119.8 (6)	C6B-C11B-C10B	118.3 (6)
С4А—С3А—НЗАА	120.1	C6B—C11B—C13B	113.6 (6)
С2А—С3А—НЗАА	120.1	C10B—C11B—C13B	128.2 (6)
C3A—C4A—C5A	119.4 (6)	O1B—C12B—O2B	121.6 (6)
СЗА—С4А—Н4АА	120.3	O1B-C12B-C10B	118.0 (6)
С5А—С4А—Н4АА	120.3	O2B—C12B—C10B	120.4 (6)

N2A—C5A—N1A	119.0 (6)	O4B—C13B—O3B	120.1 (6)
N2A—C5A—C4A	122.9 (6)	O4B-C13B-C11B	120.0 (6)
N1A—C5A—C4A	118.1 (6)	O3B—C13B—C11B	119.9 (6)
C5B—N1B—C1B	122.7 (6)	C12A—O2A—H1OA	108.9
C5B—N1B—H2N1	118.9	C7A—C6A—C11A	122.3 (6)
C1B—N1B—H2N1	116.7	С7А—С6А—Н6АВ	118.9
C5B—N2B—H3N2	120.3	С11А—С6А—Н6АВ	118.9
C5B—N2B—H4N2	117.1	C6A—C7A—C8A	119.7 (6)
H3N2—N2B—H4N2	112.4	С6А—С7А—Н7АВ	120.2
N1B—C1B—C2B	120.1 (6)	С8А—С7А—Н7АВ	120.2
N1B—C1B—H1BA	120.0	C9A—C8A—C7A	119.0 (6)
C2B—C1B—H1BA	120.0	С9А—С8А—Н8АВ	120.5
C1B—C2B—C3B	119.6 (6)	С7А—С8А—Н8АВ	120.5
C1B—C2B—Br1B	119.0 (5)	C8A—C9A—C10A	122.8 (6)
C3B—C2B—Br1B	121.4 (5)	С8А—С9А—Н9АВ	118.6
C4B—C3B—C2B	120.0 (6)	С10А—С9А—Н9АВ	118.6
С4В—С3В—Н3ВА	120.0	C9A—C10A—C11A	119.0 (6)
С2В—С3В—Н3ВА	120.0	C9A—C10A—C12A	113.5 (5)
C3B—C4B—C5B	119.3 (6)	C11A—C10A—C12A	127.5 (6)
C3B—C4B—H4BA	120.3	C6A—C11A—C10A	117.1 (6)
C5B—C4B—H4BA	120.3	C6A—C11A—C13A	113.9 (5)
N1B-C5B-N2B	119.5 (6)	C10A—C11A—C13A	129.0 (6)
N1B-C5B-C4B	118.2 (6)	O1A— $C12A$ — $O2A$	120.2 (6)
N2B—C5B—C4B	122.2 (6)	O1A—C12A—C10A	119.2 (6)
C13B—O3B—H2O3	121.4	O2A—C12A—C10A	120.6 (6)
C9B-C10B-C11B	117.6 (6)	O4A— $C13A$ — $O3A$	122.0 (6)
C9B-C10B-C12B	114.3 (5)	O4A - C13A - C11A	118.2 (6)
C11B—C10B—C12B	128.1 (6)	O3A—C13A—C11A	119.8 (5)
C5A—N1A—C1A—C2A	0.5 (10)	C9B—C10B—C11B—C13B	-177.0 (6)
N1A—C1A—C2A—C3A	0.3 (10)	C12B—C10B—C11B—C13B	2.7 (11)
N1A—C1A—C2A—Br1A	-177.1 (5)	C9B—C10B—C12B—O1B	2.9 (9)
C1A—C2A—C3A—C4A	-0.1 (10)	C11B—C10B—C12B—O1B	-176.8 (6)
Br1A—C2A—C3A—C4A	177.3 (5)	C9B—C10B—C12B—O2B	-177.4 (6)
C2A—C3A—C4A—C5A	-0.9 (10)	C11B—C10B—C12B—O2B	2.9 (10)
C1A—N1A—C5A—N2A	178.9 (6)	C6B—C11B—C13B—O4B	-15.4(9)
C1A—N1A—C5A—C4A	-1.6 (9)	C10B—C11B—C13B—O4B	163.8 (7)
C3A—C4A—C5A—N2A	-178.8 (6)	C6B—C11B—C13B—O3B	162.2 (6)
C3A—C4A—C5A—N1A	1.7 (10)	C10B—C11B—C13B—O3B	-18.6 (10)
C5B—N1B—C1B—C2B	0.5 (10)	C11A—C6A—C7A—C8A	1.5 (10)
N1B—C1B—C2B—C3B	-0.2(10)	C6A—C7A—C8A—C9A	1.2 (10)
N1B—C1B—C2B—Br1B	-178.2 (5)	C7A—C8A—C9A—C10A	-0.7 (10)
C1B—C2B—C3B—C4B	0.2 (10)	C8A—C9A—C10A—C11A	-2.5(10)
Br1B—C2B—C3B—C4B	178.1 (5)	C8A—C9A—C10A—C12A	175.9 (6)
C2B—C3B—C4B—C5B	-0.5 (10)	C7A—C6A—C11A—C10A	-4.6 (10)
C1B—N1B—C5B—N2B	179.7 (6)	C7A—C6A—C11A—C13A	174.7 (6)
C1B—N1B—C5B—C4B	-0.7 (10)	C9A—C10A—C11A—C6A	5.0 (9)
C3B—C4B—C5B—N1B	0.7 (10)	C12A—C10A—C11A—C6A	-173.1 (6)

C3B—C4B—C5B—N2B -179.7 (7)C11B—C6B—C7B—C8B -1.2 (11)C6B—C7B—C8B—C9B 1.7 (10)C7B—C8B—C9B—C10B -0.2 (11)C11B—C10B—C9B—C8B -1.7 (10)C12B—C10B—C9B—C8B 178.5 (6)C7B—C6B—C11B—C10B -0.7 (10)C7B—C6B—C11B—C13B 178.5 (6)C9B—C10B—C11B—C6B 2.1 (9)C12B—C10B—C11B—C6B -178.2 (6)	C12A—C10A—C11A—C13A C12A—C10A—C11A—C13A C9A—C10A—C12A—O1A C11A—C10A—C12A—O1A C9A—C10A—C12A—O2A C11A—C10A—C12A—O2A C6A—C11A—C13A—O4A C10A—C11A—C13A—O4A C6A—C11A—C13A—O3A C10A—C11A—C13A—O3A	7.7 (11) $-14.9 (9)$ $163.3 (7)$ $164.9 (6)$ $-16.9 (10)$ $2.3 (9)$ $-178.5 (7)$ $-177.0 (6)$ $2.2 (10)$	
--	--	--	--

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H···A
N1A—H1N1····O4A	0.86	1.80	2.664 (7)	176
$N2A$ — $H2NA$ ···· $O4B^{i}$	0.94	1.97	2.910 (8)	175
N2A—H3NA····O3A	0.98	1.97	2.930 (7)	167
O3 <i>B</i> —H2 <i>O</i> 3···O2 <i>B</i>	0.75	1.68	2.391 (6)	159
N1 <i>B</i> —H2 <i>N</i> 1···O1 <i>B</i>	0.92	1.82	2.647 (7)	147
$N2B$ — $H3N2\cdotsO1A^{ii}$	1.00	1.91	2.903 (8)	176
N2 <i>B</i> —H4 <i>N</i> 2···O2 <i>B</i>	0.81	2.20	2.971 (7)	160
$C4A$ — $H4AA$ ···O3 B^{i}	0.93	2.44	3.219 (9)	141
C4 B —H4 BA ····O2 A^{ii}	0.93	2.42	3.175 (9)	139

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*-1.