Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Biphenyl-4,4'-dicarboxylic acid N, N-dimethylformamide monosolvate

Søren Jakobsen, David Stephen Wragg* and Karl Petter Lillerud

inGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
Correspondence e-mail: david.wragg@smn.uio.no

Received 24 June 2010; accepted 30 July 2010

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.044 ; w R$ factor $=0.175$; data-to-parameter ratio $=16.6$.

Biphenyl-4,4'-dicarboxylic acid was recrystallized from N, N dimethylformamide (DMF) yielding the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$. The acid molecules are located on crystallographic centres of inversion and are hydrogen bonded to DMF molecules. These hydrogen-bonded units form infinite chains although there is no interaction between the methyl groups of neighboring DMF molecules.

Related literature

The title compound is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002) and UIO-67 (Cavka et al., 2008).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$

$$
c=9.099(8) \AA
$$

$M_{r}=388.41$
$\alpha=88.549$ (10) ${ }^{\circ}$
Triclinic, $P \overline{1}$
$\beta=73.596(10)^{\circ}$
$\gamma=65.208(7)^{\circ}$
$V=469.6(7) \AA^{3}$

$Z=1$

$T=150 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$

Data collection
Bruker APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.980, T_{\text {max }}=0.990$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
129 parameters
$w R\left(F^{2}\right)=0.175$
$S=1.11$
2136 reflections
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

3968 measured reflections 2136 independent reflections 1635 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.76	$2.575(2)$	172
Symmetry code: (i) $x, y+1, z-1$.				

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004).

The authors thank The Research Council of Norway, SMN and inGAP for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5277).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. \& Lillerud, K. P. (2008). J. Am. Chem. Soc. 130, 13850-13851.
Eddaoudi, M., Kim, J., Rosi, N. L., Vodak, B. T., Wachter, J., O’Keeffe, M. \& Yaghi, O. M. (2002). Science, 295, 469-472.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2010). E66, o2209 [https://doi.org/10.1107/S1600536810030515]
Biphenyl-4,4'-dicarboxylic acid N, N-dimethylformamide monosolvate

Søren Jakobsen, David Stephen Wragg and Karl Petter Lillerud

S1. Comment

The title compound, (I) (Fig. 1), which is a popular linker for the synthesis of metal-organic framework materials, for example IRMOF 10 (Eddaoudi et al., 2002) and UIO-67 (Cavka et al., 2008), comprises units of one biphenyl-4,4'-dicarboxylic acid molecule hydrogen bonded to two DMF molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ links. These units pack as chains (Fig. 2), although there is no interaction between the methyl groups of neighboring DMF molecules. The chains are arranged in layers with no stacking interactions between the benzene rings (Fig. 3).

S2. Experimental

Biphenyl-4,4'-dicarboxylic acid and N, N-Dimethylformamide (DMF) were purchased from Sigma-Aldrich and used without further purification. 1.0 g Biphenyl-4,4'dicarboxylic acid was suspended in 100 ml DMF and heated to $100^{\circ} \mathrm{C}$. DMF was added in small portions until the acid had just dissolved (app. 50 ml) and the solution left in aluminium foil over night for slow cool-down to RT. Filtration of the now 125 ml DMF suspension yielded 0.57 g white powder of Bi-phenyl-4,4-dicarboxylic acid after drying under vacuum. The mother liquor was placed at $5^{\circ} \mathrm{C}$ over night which gave a small amount of colourless crystals, which gave the structure presented here.

S3. Refinement

Hydrogen atoms were placed in ideal positions and refined with a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{U}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{U}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}\left(\mathrm{C}_{\text {methy }}\right)$.

Figure 1
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Unlabeled atoms are related to the labeled ones by an inversion centre.

Figure 2
The packing of (I), showing the hydrogen bonded chains. Hydrogen atoms are omitted and hydrogen bonds are shown as dashed lines.

Figure 3
The packing of (I), showing the layers formed by the chains. Hydrogen atoms are omitted and hydrogen bonds are shown as dashed lines.

Biphenyl-4,4'-dicarboxylic acid N, N-dimethylformamide monosolvate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$Z=1$
$M_{r}=388.41$
Triclinic, $P \overline{1}$
$a=7.666$ (7) \AA
$b=7.774$ (7) \AA
$c=9.099$ (8) \AA
$\alpha=88.549(10)^{\circ}$
$\beta=73.596(10)^{\circ}$
$\gamma=65.208$ (7) ${ }^{\circ}$
$V=469.6$ (7) \AA^{3}
$F(000)=206$
$D_{\mathrm{x}}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1412 reflections
$\theta=2.4-28.2^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector
diffractometer
Radiation source: sealed tube

Graphite monochromator
phi and ω scans

Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.980, T_{\text {max }}=0.990$
3968 measured reflections
2136 independent reflections 1635 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.175$
$S=1.11$
2136 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& R_{\text {int }}=0.015 \\
& \theta_{\max }=28.8^{\circ}, \theta_{\min }=2.9^{\circ} \\
& h=-9 \rightarrow 10 \\
& k=-10 \rightarrow 10 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.1394(2)$	$0.7816(2)$	$0.21617(19)$	$0.0217(4)$
C2	$-0.0126(3)$	$0.8677(2)$	$0.3535(2)$	$0.0260(4)$
H2	-0.0795	0.9999	0.3711	0.031^{*}
C3	$-0.0653(3)$	$0.7578(2)$	$0.4645(2)$	$0.0265(4)$
H3	-0.1653	0.8178	0.5567	0.032^{*}
C4	$0.0289(2)$	$0.5590(2)$	$0.44054(18)$	$0.0208(4)$
C5	$0.1794(3)$	$0.4743(2)$	$0.30105(19)$	$0.0252(4)$
H5	0.2442	0.3421	0.2816	0.030^{*}
C6	$0.2336(2)$	$0.5847(2)$	$0.1908(2)$	$0.0251(4)$
H6	0.3344	0.5255	0.0989	0.030^{*}
C7	$0.1957(2)$	$0.9059(2)$	$0.10229(19)$	$0.0240(4)$
O1	$0.1055(2)$	$1.07728(18)$	$0.11935(16)$	$0.0363(4)$
O2	$0.35493(18)$	$0.80786(17)$	$-0.01629(14)$	$0.0282(3)$
H2A	0.3804	0.8814	-0.0753	0.042^{*}
O3	$0.44518(19)$	$0.01439(18)$	$0.77730(15)$	$0.0333(4)$
N1	$0.3688(2)$	$0.3198(2)$	$0.72336(17)$	$0.0249(4)$
C8	$0.3490(3)$	$0.1893(2)$	$0.8138(2)$	$0.0267(4)$
H8	0.2566	0.2312	0.9116	0.032^{*}
C9	$0.5089(3)$	$0.2649(3)$	$0.5689(2)$	$0.0292(4)$

H9A	0.4432	0.3379	0.4976	0.044^{*}
H9B	0.5531	0.1317	0.5410	0.044^{*}
H9C	0.6229	0.2888	0.5657	0.044^{*}
C10	$0.2551(3)$	$0.5215(2)$	$0.7753(2)$	$0.0304(4)$
H10A	0.1787	0.5833	0.7065	0.046^{*}
H10B	0.3461	0.5763	0.7765	0.046^{*}
H10C	0.1653	0.5386	0.8773	0.046^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0211(8)$	$0.0194(8)$	$0.0226(8)$	$-0.0075(6)$	$-0.0056(6)$	$0.0033(6)$
C2	$0.0264(8)$	$0.0157(8)$	$0.0281(9)$	$-0.0054(6)$	$-0.0020(7)$	$0.0009(6)$
C3	$0.0262(8)$	$0.0204(8)$	$0.0242(8)$	$-0.0076(6)$	$0.0015(6)$	$-0.0006(6)$
C4	$0.0199(8)$	$0.0187(8)$	$0.0218(8)$	$-0.0066(6)$	$-0.0061(6)$	$0.0033(6)$
C5	$0.0274(8)$	$0.0155(8)$	$0.0243(8)$	$-0.0045(6)$	$-0.0029(7)$	$0.0016(6)$
C6	$0.0267(8)$	$0.0178(8)$	$0.0224(8)$	$-0.0054(6)$	$-0.0012(6)$	$0.0010(6)$
C7	$0.0244(8)$	$0.0186(8)$	$0.0247(8)$	$-0.0069(6)$	$-0.0047(6)$	$0.0029(6)$
O1	$0.0389(8)$	$0.0173(7)$	$0.0360(8)$	$-0.0057(6)$	$0.0031(6)$	$0.0042(5)$
O2	$0.0307(7)$	$0.0185(6)$	$0.0252(7)$	$-0.0071(5)$	$0.0006(5)$	$0.0045(5)$
O3	$0.0358(7)$	$0.0216(7)$	$0.0326(7)$	$-0.0083(5)$	$-0.0024(6)$	$0.0065(5)$
N1	$0.0260(7)$	$0.0190(7)$	$0.0265(7)$	$-0.0084(6)$	$-0.0053(6)$	$0.0036(6)$
C8	$0.0254(8)$	$0.0238(9)$	$0.0260(9)$	$-0.0080(7)$	$-0.0047(7)$	$0.0051(6)$
C9	$0.0308(9)$	$0.0251(9)$	$0.0274(9)$	$-0.0108(7)$	$-0.0045(7)$	$0.0061(7)$
C10	$0.0342(9)$	$0.0199(9)$	$0.0342(9)$	$-0.0095(7)$	$-0.0090(7)$	$-0.0001(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C6	1.383 (3)	C7-O2	1.324 (2)
C1-C2	1.390 (2)	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200
C1-C7	1.497 (2)	O3-C8	1.244 (2)
C2-C3	1.389 (3)	N1-C8	1.321 (2)
C2-H2	0.9300	N1-C10	1.449 (2)
C3-C4	1.396 (3)	N1-C9	1.451 (2)
C3-H3	0.9300	C8-H8	0.9300
C4-C5	1.398 (2)	C9-H9A	0.9600
C4-C4 ${ }^{\text {i }}$	1.493 (3)	C9-H9B	0.9600
C5-C6	1.392 (2)	C9-H9C	0.9600
C5-H5	0.9300	C10-H10A	0.9600
C6-H6	0.9300	C10-H10B	0.9600
C7-O1	1.206 (2)	C10-H10C	0.9600
C6- $\mathrm{C} 1-\mathrm{C} 2$	118.77 (15)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	112.84 (15)
C6-C1-C7	122.67 (15)	$\mathrm{C} 7-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
C2-C1-C7	118.56 (16)	C8-N1-C10	121.51 (15)
C3-C2-C1	120.52 (16)	C8-N1-C9	120.74 (15)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.7	C10-N1-C9	117.75 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7	O3-C8-N1	124.59 (17)

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.27(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.62(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4$	$121.26(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 4$	$121.12(18)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.95(15)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.5
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.84(16)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.6
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$124.29(16)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$122.87(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.5(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-177.92(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{i}$	$0.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.51(17)$
$\mathrm{C} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.67(17)$

O3-C8-H8	117.7
N1-C8-H8	117.7
N1-C9-H9A	109.5
N1-C9-H9B	109.5
H9A-C9-H9B	109.5
N1-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
N1-C10-H10B	109.5
H10A-C10-H10B	109.5
N1-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C7- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	178.71 (15)
C4-C5-C6-C1	-0.2 (3)
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	175.06 (16)
C2- $21-\mathrm{C} 7-\mathrm{O} 1$	-5.5 (3)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	-5.8(2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 2$	173.65 (15)
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8-\mathrm{O} 3$	-178.38 (16)
C9-N1-C8-O3	0.5 (3)

Symmetry code: (i) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	1.76	$2.575(2)$	172

Symmetry code: (ii) $x, y+1, z-1$.

