

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate

Guo-Qing Wang,^a Cong-Hui Ma,^b Xiao-Feng Li,^c Wen-Ge Li^c and Seik Weng Ng^d*

^aShanghai Sunvea Chemical Materials Science and Technology Co. Ltd, Shanghai 201611, People's Republic of China, ^bQingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ^cInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China, and ^dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 21 July 2010; accepted 10 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.071; wR factor = 0.214; data-to-parameter ratio = 14.5.

The cation and anion of the title salt, $C_{14}H_{18}N_3S_2^+ \cdot ClO_4^-$, lie on a twofold rotation axis. The cation is a W-shaped entity with the aromatic rings at the ends; the ammonium NH_2^+ group is a hydrogen-bond donor to the pyridyl N atoms. The perchlorate ion has one O atom disordered over two sites in a 0.50:0.50 ratio.

Related literature

For the structure of tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate, see: An *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{18}N_3S_2^{+}\cdot \text{CIO}_4^{-}\\ M_r = 391.88\\ \text{Monoclinic, } P2/n\\ a = 8.1265 \ \text{(6)} \ \text{\AA}\\ b = 9.2291 \ \text{(7)} \ \text{\AA}\\ c = 11.9872 \ \text{(9)} \ \text{\AA}\\ \beta = 97.534 \ \text{(7)}^{\circ} \end{array}$

 $V = 891.28 (12) \text{ Å}^{3}$ Z = 2Cu K\alpha radiation $\mu = 4.31 \text{ mm}^{-1}$ T = 293 K0.15 \times 0.15 \times 0.10 mm 3124 measured reflections

 $R_{\rm int} = 0.020$

1736 independent reflections

1427 reflections with $I > 2\sigma(I)$

Data collection

Oxford Xcalibur Sapphire-3

```
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2009)
T_{min} = 0.345, T_{max} = 1.000
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.071$ 9 restraints $wR(F^2) = 0.214$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$ 1736 reflections $\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$ 120 parameters $\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots N1$	0.86	2.11	2.832 (5)	141

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the Special Foundation for Nanotechnology of the Shanghai Committee for Science and Technology (grant No. 1052nm00600), the Foundation of the Science and Technology Programme of Shanghai Maritime University (grant No. 20100128), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (grant No. PCRRF09001) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2303).

References

An, Y., Li, X.-F., Chen, H.-G. & Dong, L.-H. (2010). Acta Cryst. E66, o101.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2010). E66, o2335 [https://doi.org/10.1107/S1600536810032216] Bis[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate

Guo-Qing Wang, Cong-Hui Ma, Xiao-Feng Li, Wen-Ge Li and Seik Weng Ng

S1. Comment

We are engaged in the study of metal complexes of di- and tri-(pyridylsulfanyl)alkylamines as such compounds owing to their flexible nature. We reported earlier the synthesis of tris[2-(2-pyridylsulfanyl)ethyl]amine, whose reaction with copper perchlorate gave instead tris[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate (An *et al.*, 2010). The two-legged bis[2-(2-pyridylsulfanyl)ethyl]amine, in the present study, reacted with copper perchlorate to afford the corresponding ammonium perchlorate (Scheme and Fig. 1).

S2. Experimental

Bis(2-chloroethyl)ammonium hydrochloride (8.92 g, 0.05 mol) in ethanol (100 ml) was added to a solution (353 K) of 2-mercaptopyridine (12.23 g, 0.11 mol) and potassium hydroxide (6.17 g, 0.11 mol) in ethanol (200 ml). The mixture was heated at 353 K for 8 h. The solvent was removed to yield a yellow oil; this was column chromatographed with ethly acetate/petroleum ether (3/5 v/v) as eluent; yield 65%. ¹H NMR (CDCl₃, 400 MHz, p.p.m.): 3.316–3.349 (*t*, 4H), 2.959–2.992 (*t*, 4H), 6.924–6.960 (*m*, 2H), 7.154–7.173 (*m*, 2H), 7.416–7.459 (*m*, 2H), 8.382–8.393 (*m*, 2H).

The title salt was obtained from the reaction of bis[2-(2-pyridylsulfanyl)ethyl]amine (0.5 mmol, 0.146 g) and copper perchlorate (0.5 mmol, 0.132 g) in ethanol. Colorless crystals were separated from the blue solution after three days. CH&N elemental analysis, calculated for $C_{14}H_{18}O_4N_3S_2Cl$: C 42.91, H 4.63, N 10.72%; Found: C 42.73, H 4.35, N 11.02%.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2 times $U_{eq}(C)$. The ammonium H-atom was similarly positioned [N —H 0.86 Å] and its temperature factor tied by a factor of 1.2.

The perchlorate ion is disordered about the twofold rotation axis with respect to one O atom; two O atoms were assigned half-occupancy. The Cl—O distances were restrained to within 0.005 Å of each other, as were the O…O separations.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $[C_{14}H_{18}N_3S_2]^+[ClO_4]^-$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. For the cation, the unlabeled atoms are related to the labeled ones by symmetry 1/2-*x*, *y*, 3/2-*z*.

Bis[2-(2-pyridylsulfanyl)ethyl]ammonium perchlorate

Crystal data

C₁₄H₁₈N₃S₂⁺·ClO₄⁻ $M_r = 391.88$ Monoclinic, P2/n Hall symbol: -P 2yac a = 8.1265 (6) Å b = 9.2291 (7) Å c = 11.9872 (9) Å $\beta = 97.534$ (7)° V = 891.28 (12) Å³ Z = 2

Data collection

Oxford Xcalibur Sapphire-3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.0855 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\min} = 0.345, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.214$ F(000) = 408 $D_x = 1.460 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 1783 reflections $\theta = 3.7-72.5^{\circ}$ $\mu = 4.31 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.15 \times 0.15 \times 0.10 \text{ mm}$

3124 measured reflections 1736 independent reflections 1427 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 72.7^\circ, \theta_{min} = 4.8^\circ$ $h = -6 \rightarrow 9$ $k = -11 \rightarrow 10$ $l = -14 \rightarrow 14$

S = 1.111736 reflections 120 parameters 9 restraints

0 constraints Primary atom site location: structure-invariant	$w = 1/[\sigma^2(F_o^2) + (0.1333P)^2 + 0.2886P]$ where $P = (F_o^2 + 2F_c^2)/3$
direct methods	$(\Delta/\sigma)_{\rm max} < 0.001$
Secondary atom site location: difference Fourier	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
map	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from neighbouring sites	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
H-atom parameters constrained	Extinction coefficient: 0.077 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.7500	-0.07951 (11)	0.7500	0.0585 (5)	
S1	0.15849 (15)	0.6905 (2)	0.51373 (9)	0.1143 (7)	
O1	0.7006 (6)	-0.1628 (4)	0.8355 (3)	0.1259 (15)	
O2	0.6180 (11)	-0.001 (2)	0.6944 (18)	0.231 (14)	0.50
O2′	0.8847 (16)	0.0079 (15)	0.7855 (10)	0.184 (11)	0.50
N1	0.4045 (4)	0.6093 (3)	0.6688 (2)	0.0637 (8)	
N2	0.2500	0.8558 (5)	0.7500	0.0789 (13)	
H2	0.3345	0.8007	0.7463	0.095*	
C1	0.2997 (4)	0.5641 (5)	0.5824 (3)	0.0703 (10)	
C2	0.2947 (7)	0.4216 (6)	0.5433 (4)	0.0947 (16)	
H2A	0.2197	0.3938	0.4817	0.114*	
C3	0.4023 (10)	0.3248 (6)	0.5977 (6)	0.108 (2)	
Н3	0.4022	0.2290	0.5736	0.130*	
C4	0.5080 (8)	0.3672 (5)	0.6857 (5)	0.1001 (16)	
H4	0.5815	0.3016	0.7244	0.120*	
C5	0.5067 (6)	0.5111 (5)	0.7187 (3)	0.0844 (12)	
Н5	0.5823	0.5401	0.7796	0.101*	
C6	0.2658 (7)	0.8617 (6)	0.5449 (5)	0.115 (2)	
H6A	0.3843	0.8432	0.5566	0.137*	
H6B	0.2433	0.9242	0.4796	0.137*	
C7	0.2201 (7)	0.9415 (5)	0.6454 (6)	0.114 (2)	
H7A	0.2841	1.0304	0.6551	0.137*	
H7B	0.1036	0.9677	0.6318	0.137*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}	
Cl1	0.0546 (7)	0.0504 (6)	0.0705 (7)	0.000	0.0085 (4)	0.000	
S 1	0.0748 (8)	0.1960 (17)	0.0662 (7)	0.0179 (8)	-0.0137 (5)	0.0078 (7)	
O1	0.178 (4)	0.106 (2)	0.101 (3)	0.005 (3)	0.046 (3)	0.039 (2)	
O2	0.107 (12)	0.31 (3)	0.29 (2)	0.088 (14)	0.074 (13)	0.21 (2)	
O2′	0.185 (18)	0.188 (15)	0.198 (14)	-0.139 (14)	0.098 (13)	-0.118 (12)	
N1	0.0638 (17)	0.0756 (18)	0.0492 (14)	-0.0023 (13)	-0.0020 (12)	-0.0074 (12)	
N2	0.077 (3)	0.061 (2)	0.103 (4)	0.000	0.030 (3)	0.000	
C1	0.0612 (19)	0.104 (3)	0.0463 (16)	-0.0205 (18)	0.0108 (13)	-0.0068 (17)	
C2	0.100 (3)	0.119 (4)	0.069 (2)	-0.050 (3)	0.025 (2)	-0.036 (3)	
C3	0.155 (5)	0.076 (3)	0.108 (4)	-0.032 (3)	0.071 (4)	-0.020 (3)	

supporting information

C4	0.143 (5)	0.076 (3)	0.089(3)	0.022 (3)	0.043 (3)	0.008 (2)	
C5	0.098 (3)	0.090 (3)	0.062 (2)	0.016 (2)	-0.0026 (19)	-0.005 (2)	
C6	0.100 (3)	0.137 (4)	0.113 (4)	0.027 (3)	0.037 (3)	0.071 (4)	
C7	0.095 (3)	0.082 (3)	0.174 (5)	0.024 (3)	0.052 (4)	0.054 (3)	

Geometric parameters (Å, °)

Cl1—O2'	1.381 (4)	C2—C3	1.357 (8)
Cl1-01 ⁱ	1.383 (3)	C2—H2A	0.9300
Cl1—O1	1.383 (3)	C3—C4	1.329 (10)
Cl1—O2	1.391 (4)	С3—Н3	0.9300
S1—C1	1.763 (4)	C4—C5	1.387 (7)
S1—C6	1.820(7)	C4—H4	0.9300
N1—C1	1.319 (4)	С5—Н5	0.9300
N1—C5	1.319 (5)	C6—C7	1.500 (9)
N2—C7	1.475 (6)	C6—H6A	0.9700
N2—C7 ⁱⁱ	1.475 (6)	C6—H6B	0.9700
N2—H2	0.8600	C7—H7A	0.9700
C1—C2	1.395 (7)	С7—Н7В	0.9700
02'-Cl1-O1 ⁱ	104.9 (8)	С2—С3—Н3	120.1
O2′—Cl1—O1	113.1 (4)	C3—C4—C5	118.7 (5)
01 ⁱ Cl1O1	112.4 (3)	C3—C4—H4	120.6
O2′—Cl1—O2	111.9 (4)	C5—C4—H4	120.6
O1 ⁱ —C11—O2	102.5 (12)	N1C5C4	123.8 (5)
O1—Cl1—O2	111.4 (4)	N1—C5—H5	118.1
02 ⁱ —Cl1—O2	117 (2)	C4—C5—H5	118.1
C1—S1—C6	102.3 (2)	C7—C6—S1	115.4 (3)
C1—N1—C5	116.3 (4)	С7—С6—Н6А	108.4
C7—N2—C7 ⁱⁱ	115.2 (6)	S1—C6—H6A	108.4
C7—N2—H2	108.5	С7—С6—Н6В	108.4
C7 ⁱⁱ —N2—H2	108.5	S1—C6—H6B	108.4
N1—C1—C2	123.3 (4)	H6A—C6—H6B	107.5
N1—C1—S1	118.1 (3)	N2—C7—C6	112.9 (4)
C2—C1—S1	118.6 (3)	N2—C7—H7A	109.0
C3—C2—C1	118.1 (4)	С6—С7—Н7А	109.0
C3—C2—H2A	121.0	N2—C7—H7B	109.0
C1—C2—H2A	121.0	С6—С7—Н7В	109.0
C4—C3—C2	119.8 (5)	H7A—C7—H7B	107.8
С4—С3—Н3	120.1		
C5—N1—C1—C2	-0.5 (5)	C2—C3—C4—C5	-0.9 (8)
C5—N1—C1—S1	179.2 (3)	C1—N1—C5—C4	-0.3 (6)
C6-S1-C1-N1	25.3 (3)	C3—C4—C5—N1	1.0 (8)
C6—S1—C1—C2	-155.0 (3)	C1—S1—C6—C7	-94.7 (4)
N1-C1-C2-C3	0.6 (6)	C7 ⁱⁱ —N2—C7—C6	154.1 (5)

supporting information

S1—C1—C2—C3	-179.1 (3)	S1—C6—C7—N2	58.4 (5)
C1—C2—C3—C4	0.1 (7)		

Symmetry codes: (i) -x+3/2, y, -z+3/2; (ii) -x+1/2, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N2—H2…N1	0.86	2.11	2.832 (5)	141