

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrakis(1,3-diphenylpropane-1,3dionato)hafnium(IV)

J. Augustinus Viljoen,* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300 South Africa

Correspondence e-mail: ViljoenJA@ufs.ac.za

Received 3 June 2010; accepted 30 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.122; data-to-parameter ratio = 18.5.

In the title compound, $[\mathrm{Hf}(\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{O}_2)_4],$ the $\mathrm{Hf}^{\mathrm{IV}}$ atom is coordinated by four 1,3-diphenylpropane-1,3-dionato ligands with an average Hf-O distance of 2.17 (3) Å and O-Hf-Obite angles varying from 74.5 (1) to 75.02 (9) $^{\circ}$. The coordination polyhedron shows a slightly distorted Archimedean square-antiprismatic geometry. The crystal packing is stabilized by weak $C-H \cdots O$ interactions.

Related literature

For a monoclinic isomorph of the title compound, see: Fay et al. (1979). For related literature on hafnium and zirconium diketonato complexes, see: Viljoen et al. (2008, 2009a,b, 2010); Steyn et al. (2008); Lewis & Fay (1974); Demakopoulos et al. (1995). For the use of acetylacetone in separation chemistry and homogenous catalysis, see: Van Aswegen et al. (1991); Steyn et al. (1992, 1997); Otto et al. (1998); Roodt & Steyn (2000); Brink et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

V = 4805.8 (6) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.19 \times 0.11 \ \mathrm{mm}$

39626 measured reflections

11555 independent reflections 9232 reflections with $I > 2\sigma(I)$

 $\mu = 2.23 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.036$

Z = 4

Experimental

Crystal data

$[Hf(C_{15}H_{11}O_2)_4]$ M = 1071 44	
Monoclinic, $P2_1/c$	
a = 24.846 (2) Å	
b = 10.2236 (8) Å	
c = 19.3155 (13) Å	
$\beta = 101.618 \ (4)^{\circ}$	

Data collection

Bruker X8 APEXII 4K KappaCCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2004)	
$T_{\min} = 0.661, T_{\max} = 0.783$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	623 parameters
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.16	$\Delta \rho_{\rm max} = 1.17 \text{ e } \text{\AA}^{-3}$
11555 reflections	$\Delta \rho_{\rm min} = -1.29 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C43-H43···O6 ⁱ	0.95	2.6	3.538 (5)	170

Symmetry code: (i) x, y + 1, z.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged. Financial assistance from the University of the Free State is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2349).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. pp. 5572-5578.
- Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Demakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). Z. Anorg. Allg. Chem. 621, 1761–1766.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fay, R. C., Chun, H. K. & Steffen, W. L. (1979). *Inorg. Chem.* **18**, 2458–2465. Lewis, D. F. & Fay, R. C. (1974). *J. Chem. Soc. Chem. Commun.* pp. 1046–1047.

Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, **17**, 2447–2453.

- Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.
- Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536–537, 197–205.

Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.

Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem. 16, 369–371.

Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.

Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603-m604.

Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515.

Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367-m1368.

Acta Cryst. (2010). E66, m1053-m1054 [https://doi.org/10.1107/S1600536810030400]

Tetrakis(1,3-diphenylpropane-1,3-dionato)hafnium(IV)

J. Augustinus Viljoen, Hendrik G. Visser and Andreas Roodt

S1. Comment

Acetylacetone find applications as a ligand in the extraction and separation industry world-wide. However, it is also utilized in homogenous catalysis applications as a model precursor (Van Aswegen *et al.* (1991); Steyn *et al.* (1992, 1997); Otto *et al.* (1998); Roodt & Steyn, (2000); Brink *et al.* (2010)). This study forms part of ongoing research to investigate the reactions of *O*,*O*'- and *N*,*O*-bidentate ligands with hafnium(IV) and zirconium(IV) with possible applications in the mentioned industries (Steyn *et al.*, (2008); Viljoen *et al.* (2008, 2009*a*, 2009*b*, 2010); Demakopoulos *et al.* (1995) and Lewis & Fay (1974)).

Colourless cubic-like crystals of the title compound crystallize in the monoclinic crystal system ($P2_1/c$, Z=4) (Figure 1). The Hf(IV) atom is eight coordinated and surrounded by four β -diketonate ligands, dibenzoylmethane (dbm⁻), adopting an Archimedean antiprismatic coordination geometry. The Hf—O bond lengths vary from 2.133 (2) Å to 2.200 (2) Å, with the average Hf—O distance being 2.169 (3) Å. This average Hf—O bond distance is somewhat larger than the average of 2.159 (5) Å obtained from the Cambridge Structural Database (Allen (2002)) (data extracted from 22 hits, yielding 60 observations ranging from 2.079 to 2.262 Å). The O—Hf—O bite angles vary between 74.5 (1) and 75.02 (9)°. The molecules of the title compound pack in horizontal layers along the *bc*-plane and are stabilized by weak C—H···O interactions (Table 1, Figure 2).

S2. Experimental

Chemicals were purchased from Sigma-Aldrich and used as received. HfCl₄ (203 mg, 0.63 mmol) was dissolved in a minimal amount of DMF. While stirring this solution at room temperature, another solution of $[C_{15}H_{12}O_2]$ (568 mg, 2.5 mmol) was dissolved in a minimal amount of DMF and slowly added to the HfCl₄ solution, resulting in the formation of a yellow solution, which was left to stand at 252 K for a few days after which colourless crystals, suitable for X-ray diffraction were obtained (Yield: 891 mg, 83%).

S3. Refinement

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and methine, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl protons. Torsion angles for methyl protons were refined from electron density. The highest residual electron density was located 0.7 Å from C314 and was essentially meaningless.

Figure 1

Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability).

Figure 2

Graphical illustration of the title compound indicating the packing along the *bc*-plane (displacement ellipsoids at the 50% probability level. Non-interacting molecule portions and H atoms omitted for clarity). Symmetry code: (i) x, y + 1, z.

Tetrakis(1,3-diphenylpropane-1,3-dionato)hafnium(IV)

Crystal data	
$[Hf(C_{15}H_{11}O_2)_4]$	F(000) = 2160
$M_r = 1071.44$	$D_{\rm x} = 1.481 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9989 reflections
a = 24.846 (2) Å	$\theta = 3.0 - 28.2^{\circ}$
b = 10.2236 (8) Å	$\mu = 2.23 \text{ mm}^{-1}$
c = 19.3155 (13) Å	T = 100 K
$\beta = 101.618 \ (4)^{\circ}$	Cuboid, colourless
$V = 4805.8 (6) Å^3$	$0.20 \times 0.19 \times 0.11 \text{ mm}$
Z = 4	
Data collection	
Bruker X8 APEXII 4K KappaCCD	39626 measured reflections
diffractometer	11555 independent reflections
Radiation source: fine-focus sealed tube	9232 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
ω - and φ -scans	$\theta_{\max} = 28^\circ, \ \theta_{\min} = 0.8^\circ$
Absorption correction: multi-scan	$h = -23 \rightarrow 32$
(SADABS; Bruker, 2004)	$k = -11 \rightarrow 13$
$T_{\min} = 0.661, \ T_{\max} = 0.783$	$l = -25 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_o^2) + (0.0613P)^2 + 3.4756P]$
S = 1.16	where $P = (F_o^2 + 2F_c^2)/3$
11555 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
623 parameters	$\Delta ho_{ m max} = 1.17 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.29 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008)
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.00501 (19)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.24706 (16)	0.4566 (4)	0.08242 (19)	0.0161 (8)
C1A	0.30445 (16)	0.4590 (4)	0.0913 (2)	0.0207 (8)
H1A	0.3209	0.4314	0.0534	0.025*
C2	0.33800 (17)	0.5007 (3)	0.1542 (2)	0.0197 (8)
C2A	0.20819 (15)	0.8200 (4)	0.29205 (19)	0.0187 (8)
H2A	0.1954	0.8959	0.3121	0.022*
C3	0.17177 (15)	0.7475 (3)	0.24237 (18)	0.0157 (7)
C3A	0.28567 (17)	0.5107 (4)	0.4365 (2)	0.0208 (9)
H3A	0.2987	0.5368	0.4841	0.025*
C4	0.26320 (15)	0.7829 (4)	0.31278 (18)	0.0142 (7)
C4A	0.19232 (16)	0.1980 (4)	0.1584 (2)	0.0228 (9)
H4A	0.1779	0.133	0.1246	0.027*
C5	0.23035 (18)	0.5291 (4)	0.4056 (2)	0.0197 (8)
C6	0.32221 (16)	0.4545 (4)	0.3986 (2)	0.0201 (8)
C7	0.24896 (16)	0.2030 (4)	0.18487 (19)	0.0201 (8)
C8	0.15649 (16)	0.2868 (4)	0.1806 (2)	0.0213 (8)
C11	0.21105 (16)	0.4190 (4)	0.01309 (19)	0.0189 (8)
C12	0.15601 (17)	0.4562 (4)	-0.0013 (2)	0.0238 (9)
H12	0.1417	0.5037	0.0333	0.029*
C13	0.12182 (18)	0.4252 (4)	-0.0650 (2)	0.0301 (10)
H13	0.0845	0.4526	-0.0746	0.036*
C14	0.14269 (18)	0.3532 (4)	-0.1150 (2)	0.0268 (9)
H14	0.1195	0.3318	-0.1589	0.032*

C15	0.19669 (18)	0.3128 (4)	-0.1011 (2)	0.0283 (10)
H15	0.2104	0.2625	-0.1351	0.034*
C16	0.23119 (17)	0.3456 (4)	-0.0375(2)	0.0243 (9)
H16	0.2685	0.3182	-0.0283	0.029*
C21	0.39823 (16)	0.5154 (4)	0.1617 (2)	0.0199 (8)
C22	0.42742(17)	0.4504(5)	0.1174(2)	0.0298 (10)
H22	0.4086	0 3942	0.0813	0.036*
C23	0.48370(19)	0.4676(5)	0.1259(2)	0.0387(12)
H23	0.5034	0.4218	0.0961	0.046*
C24	0.51146 (18)	0.5506(6)	0.0701 0.1772(2)	0.0395(12)
U24 H24	0.5400	0.5500 (0)	0.1772 (2)	0.047*
C25	0.3477 0.48275 (18)	0.5042 0.6137 (5)	0.1019 0.2215(2)	0.047 0.0325(10)
U25	0.46275 (16)	0.6706	0.2213 (2)	0.0323 (10)
1125 C26	0.3017 0.42671(16)	0.5053 (4)	0.2372 0.2148 (2)	0.035
U20	0.42071 (10)	0.5955(4)	0.2148(2) 0.2467	0.0238 (9)
П20 С21	0.4077 0.11285 (15)	0.0374 0.7021 (4)	0.2407 0.21507 (18)	0.031°
C31	0.11303(13) 0.07428(16)	0.7921(4)	0.21307(10) 0.1992(2)	0.0170(8)
U32	0.07438 (10)	0.6976 (4)	0.1882 (2)	0.0242 (9)
H32	0.0845	0.0079	0.1895	0.029*
(33	0.02068 (17)	0.7337(4)	0.1600 (2)	0.0295 (10)
H33	-0.0059	0.668/	0.1425	0.035*
C34	0.00591 (17)	0.8638 (5)	0.1573 (2)	0.0290 (10)
H34	-0.0308	0.8883	0.13/3	0.035*
C35	0.04449 (18)	0.9597 (4)	0.1835 (2)	0.0260 (9)
H35	0.0343	1.0494	0.1812	0.031*
C36	0.09820 (16)	0.9229 (4)	0.21317 (19)	0.0208 (8)
H36	0.1244	0.9878	0.2323	0.025*
C41	0.30414 (15)	0.8754 (4)	0.35389 (18)	0.0166 (8)
C42	0.29894 (17)	1.0095 (4)	0.3414 (2)	0.0197 (8)
H42	0.2678	1.0425	0.3093	0.024*
C43	0.33883 (17)	1.0947 (4)	0.3756 (2)	0.0241 (9)
H43	0.3361	1.1854	0.3649	0.029*
C44	0.38253 (16)	1.0485 (4)	0.4251 (2)	0.0228 (9)
H44	0.4095	1.1074	0.4492	0.027*
C45	0.38700 (16)	0.9157 (4)	0.4397 (2)	0.0242 (9)
H45	0.4163	0.884	0.475	0.029*
C46	0.34863 (16)	0.8288 (4)	0.4026 (2)	0.0211 (8)
H46	0.353	0.7374	0.4108	0.025*
C51	0.19077 (16)	0.5727 (4)	0.44986 (19)	0.0209 (8)
C52	0.13972 (18)	0.5118 (4)	0.4416 (2)	0.0240 (9)
H52	0.1295	0.447	0.4062	0.029*
C53	0.10394 (18)	0.5455 (4)	0.4850 (2)	0.0276 (9)
H53	0.0696	0.502	0.4803	0.033*
C54	0.11806 (17)	0.6423 (4)	0.5350 (2)	0.0275 (10)
H54	0.0933	0.6651	0.5646	0.033*
C55	0.16760 (18)	0.7061 (4)	0.5423 (2)	0.0287 (10)
H55	0.1766	0.7737	0.5764	0.034*
C56	0.20449 (17)	0.6720 (4)	0.5000 (2)	0.0261 (9)
H56	0.2388	0.7158	0.5052	0.031*

C61	0.37973 (16)	0.4165 (4)	0.4335 (2)	0.0216 (8)
C62	0.39500 (18)	0.3968 (4)	0.5053 (2)	0.0307 (10)
H62	0.3693	0.4094	0.5349	0.037*
C63	0.44867 (19)	0.3583 (4)	0.5339 (2)	0.0345 (11)
H63	0.459	0.3441	0.5834	0.041*
C64	0.48704 (19)	0.3402 (4)	0.4925 (2)	0.0345 (11)
H64	0.5236	0.3151	0.513	0.041*
C65	0.47105 (19)	0.3596 (4)	0.4190 (3)	0.0337 (10)
H65	0.4967	0.3467	0.3891	0.04*
C66	0.41714 (16)	0.3980 (4)	0.3904 (2)	0.0251 (9)
H66	0.4062	0.4115	0.3409	0.03*
C71	0.28609 (17)	0.0940 (4)	0.17170 (19)	0.0218 (8)
C72	0.34175 (18)	0.1171 (4)	0.1818 (2)	0.0270 (9)
H72	0.3556	0.2022	0.1946	0.032*
C73	0.3775 (2)	0.0184 (5)	0.1735 (2)	0.0328 (11)
H73	0.4157	0.036	0.1796	0.039*
C74	0.3580 (2)	-0.1065 (5)	0.1563 (2)	0.0337 (11)
H74	0.3828	-0.1747	0.1507	0.04*
C75	0.3029 (2)	-0.1320 (4)	0.1475 (2)	0.0313 (10)
H75	0.2896	-0.2182	0.1365	0.038*
C76	0.26652 (19)	-0.0328 (4)	0.1544 (2)	0.0286 (10)
H76	0.2283	-0.0506	0.1475	0.034*
C81	0.09616 (16)	0.2845 (4)	0.1502 (2)	0.0203 (8)
C82	0.07572 (17)	0.2409 (4)	0.0814 (2)	0.0258 (9)
H82	0.1003	0.2083	0.0536	0.031*
C83	0.02023 (18)	0.2449 (4)	0.0537 (2)	0.0293 (10)
H83	0.0066	0.2158	0.0067	0.035*
C84	-0.01538 (17)	0.2907 (4)	0.0934 (2)	0.0273 (9)
H84	-0.0536	0.2934	0.0738	0.033*
C85	0.00363 (17)	0.3330 (4)	0.1619 (2)	0.0266 (9)
H85	-0.0215	0.3628	0.1895	0.032*
C86	0.05943 (17)	0.3319 (4)	0.1901 (2)	0.0239 (9)
H86	0.0727	0.3634	0.2367	0.029*
O1	0.22174 (11)	0.4883 (2)	0.13129 (13)	0.0159 (6)
O3	0.18452 (10)	0.6395 (2)	0.21599 (12)	0.0145 (5)
O4	0.28238 (10)	0.6747 (2)	0.29717 (12)	0.0154 (5)
05	0.20986 (12)	0.5050 (2)	0.34095 (14)	0.0179 (6)
O6	0.30933 (10)	0.4271 (3)	0.33300 (12)	0.0181 (5)
07	0.27280 (10)	0.2980 (2)	0.22244 (12)	0.0164 (5)
08	0.17248 (10)	0.3757 (3)	0.22776 (12)	0.0177 (6)
O2	0.31948 (11)	0.5335 (3)	0.20904 (13)	0.0173 (5)
Hf1	0.245894 (6)	0.493352 (14)	0.247129 (7)	0.01434 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.021 (2)	0.0103 (18)	0.0170 (17)	0.0021 (15)	0.0036 (15)	0.0021 (15)
C1A	0.018 (2)	0.025 (2)	0.0190 (18)	0.0002 (17)	0.0037 (15)	-0.0020 (17)

C2	0.018 (2)	0.016 (2)	0.024 (2)	0.0030 (15)	0.0039 (16)	0.0017 (15)
C2A	0.0167 (19)	0.015 (2)	0.0239 (19)	0.0005 (15)	0.0025 (15)	-0.0046 (15)
C3	0.0178 (19)	0.0123 (18)	0.0174 (17)	-0.0002 (14)	0.0048 (14)	0.0032 (14)
C3A	0.022 (2)	0.022 (2)	0.0170 (18)	-0.0039 (16)	0.0015 (15)	-0.0018 (15)
C4	0.0164 (18)	0.0108 (18)	0.0163 (16)	-0.0025 (14)	0.0055 (14)	0.0010 (14)
C4A	0.021 (2)	0.021 (2)	0.026 (2)	-0.0054 (16)	0.0040 (16)	-0.0065 (17)
C5	0.026(2)	0.0120 (19)	0.0212 (19)	-0.0039(16)	0.0063 (16)	0.0005 (15)
C6	0.021 (2)	0.016 (2)	0.0208 (18)	-0.0045(16)	-0.0005(15)	0.0021 (16)
C7	0.025(2)	0.015 (2)	0.0204 (18)	-0.0040(16)	0.0061 (16)	0.0031 (15)
C8	0.024(2)	0.018(2)	0.0233 (19)	-0.0061(16)	0.0075 (16)	-0.0003(16)
C11	0.022(2)	0.0142(19)	0.0198 (18)	-0.0030(15)	0.0027(15)	0.0016(15)
C12	0.022(2)	0.023(2)	0.024(2)	-0.0009(17)	0.0027(10)	-0.0068(17)
C13	0.025(2)	0.025(2)	0.021(2) 0.035(2)	0.0007(18)	-0.0059(18)	0.0003(19)
C14	0.029(2) 0.038(3)	0.020(2)	0.033(2)	-0.0104(19)	-0.0014(17)	-0.0024(16)
C15	0.030(3)	0.022(2)	0.0174(10)	-0.0079(19)	0.0014(17)	-0.0024(10)
C16	0.039(3)	0.023(2)	0.022(2)	-0.0014(17)	0.0052(16)	-0.0019(17)
C_{10}	0.020(2)	0.023(2)	0.023(2)	0.0014(17)	0.0032(10)	0.0013(17)
C21	0.0130(19)	0.022(2)	0.0218(19)	0.0000(13)	0.0030(13)	-0.0013(13)
C22	0.021(2)	0.043(3)	0.023(2)	0.003(2)	0.0041(17)	-0.007(2) -0.012(2)
C23	0.020(2)	0.007(3)	0.031(2)	-0.006(2)	0.0110(19)	-0.002(2)
C24 C25	0.014(2)	0.075(4)	0.032(2)	-0.000(2)	0.0043(18)	-0.005(2)
C25	0.023(2)	0.043(3)	0.027(2)	-0.008(2)	0.0033(17)	-0.000(2)
C20	0.021(2)	0.032(2)	0.0240(19)	0.0001(18)	0.0034(10)	-0.0010(18)
C31	0.0137(19)	0.022(2)	0.0140(10)	0.0010(13)	0.0030(14)	0.0027(13)
C32	0.022(2)	0.025(2)	0.025(2)	-0.0020(17)	0.0014(10)	-0.0002(17)
C33	0.021 (2)	0.033 (3)	0.031 (2)	-0.0063(18)	-0.0033(17)	-0.0020 (19)
C34	0.015 (2)	0.043 (3)	0.028 (2)	0.0058 (19)	0.0021 (16)	0.012 (2)
C35	0.026 (2)	0.024 (2)	0.030 (2)	0.0072 (18)	0.0090 (18)	0.0088 (18)
C36	0.0182 (19)	0.022 (2)	0.0228 (18)	-0.0008 (16)	0.0057 (15)	0.0041 (16)
C41	0.0126 (18)	0.019 (2)	0.0191 (17)	-0.0039 (15)	0.0055 (14)	-0.0040 (15)
C42	0.020 (2)	0.017 (2)	0.0212 (19)	-0.0006 (15)	0.0015 (15)	0.0007 (15)
C43	0.027 (2)	0.014 (2)	0.032 (2)	-0.0042 (17)	0.0066 (17)	-0.0036 (17)
C44	0.020 (2)	0.020 (2)	0.029 (2)	-0.0085 (17)	0.0050 (16)	-0.0074 (17)
C45	0.018 (2)	0.024 (2)	0.029 (2)	-0.0011 (17)	0.0001 (16)	-0.0006 (17)
C46	0.022 (2)	0.0108 (19)	0.030 (2)	-0.0027 (15)	0.0049 (16)	-0.0007 (16)
C51	0.026 (2)	0.021 (2)	0.0166 (17)	0.0013 (17)	0.0044 (15)	0.0007 (16)
C52	0.026 (2)	0.019 (2)	0.025 (2)	0.0007 (16)	-0.0006 (17)	-0.0030 (16)
C53	0.023 (2)	0.027 (2)	0.033 (2)	0.0009 (18)	0.0058 (18)	0.0056 (19)
C54	0.030 (2)	0.037 (3)	0.0166 (18)	0.0130 (19)	0.0052 (16)	0.0044 (18)
C55	0.037 (3)	0.027 (2)	0.0186 (19)	0.0100 (19)	-0.0034 (17)	-0.0061 (17)
C56	0.025 (2)	0.029 (2)	0.0233 (19)	-0.0026 (18)	0.0027 (16)	0.0008 (17)
C61	0.023 (2)	0.014 (2)	0.0264 (19)	-0.0051 (16)	0.0013 (16)	-0.0039 (16)
C62	0.033 (3)	0.024 (2)	0.032 (2)	-0.0009 (19)	-0.0030 (18)	-0.0005 (18)
C63	0.032 (3)	0.027 (3)	0.037 (2)	-0.005 (2)	-0.010 (2)	0.001 (2)
C64	0.023 (2)	0.018 (2)	0.057 (3)	-0.0004 (18)	-0.007 (2)	-0.003 (2)
C65	0.030 (2)	0.019 (2)	0.053 (3)	-0.0052 (18)	0.010 (2)	-0.005 (2)
C66	0.020 (2)	0.022 (2)	0.031 (2)	-0.0027 (17)	0.0019 (17)	-0.0037 (17)
C71	0.028 (2)	0.020 (2)	0.0167 (18)	0.0017 (17)	0.0022 (15)	-0.0021 (16)
C72	0.033 (2)	0.024 (2)	0.022 (2)	0.0001 (18)	-0.0002 (17)	-0.0012 (17)

C73	0.025 (2)	0.037 (3)	0.032 (2)	0.0027 (19)	-0.0020 (19)	0.001 (2)
C74	0.041 (3)	0.028 (3)	0.029 (2)	0.015 (2)	0.002 (2)	-0.0039 (19)
C75	0.046 (3)	0.017 (2)	0.027 (2)	-0.001 (2)	-0.0010 (19)	-0.0027 (18)
C76	0.030 (2)	0.028 (2)	0.026 (2)	-0.0009 (19)	0.0043 (18)	-0.0005 (18)
C81	0.017 (2)	0.016 (2)	0.0268 (19)	-0.0059 (15)	0.0041 (15)	-0.0020 (16)
C82	0.025 (2)	0.028 (2)	0.025 (2)	-0.0074 (18)	0.0082 (17)	-0.0073 (17)
C83	0.029 (2)	0.028 (2)	0.028 (2)	-0.0022 (19)	-0.0019 (18)	-0.0092 (18)
C84	0.019 (2)	0.025 (2)	0.033 (2)	0.0022 (17)	-0.0048 (17)	-0.0047 (18)
C85	0.026 (2)	0.020 (2)	0.036 (2)	0.0004 (17)	0.0123 (18)	-0.0032 (18)
C86	0.028 (2)	0.023 (2)	0.0186 (18)	-0.0041 (17)	0.0012 (16)	-0.0050 (16)
01	0.0136 (13)	0.0162 (14)	0.0177 (13)	0.0015 (10)	0.0029 (10)	-0.0022 (10)
O3	0.0143 (13)	0.0129 (13)	0.0153 (12)	0.0005 (10)	0.0002 (10)	-0.0022 (10)
O4	0.0126 (13)	0.0136 (13)	0.0191 (12)	0.0007 (10)	0.0014 (10)	-0.0004 (10)
05	0.0192 (14)	0.0181 (15)	0.0147 (12)	-0.0031 (10)	-0.0004 (11)	-0.0013 (10)
O6	0.0188 (14)	0.0159 (14)	0.0183 (12)	0.0020 (11)	0.0003 (10)	-0.0039 (11)
O7	0.0167 (13)	0.0135 (13)	0.0180 (12)	-0.0011 (10)	0.0014 (10)	-0.0041 (10)
08	0.0192 (14)	0.0171 (14)	0.0169 (12)	-0.0052 (11)	0.0038 (10)	-0.0058 (10)
O2	0.0147 (13)	0.0177 (14)	0.0196 (13)	-0.0003 (11)	0.0036 (10)	-0.0051 (11)
Hf1	0.01395 (10)	0.01391 (11)	0.01428 (10)	-0.00034 (6)	0.00073 (6)	-0.00185 (6)

Geometric parameters (Å, °)

C1-01	1.277 (4)	C41—C42	1.393 (5)
C1—C1A	1.402 (5)	C42—C43	1.383 (5)
C1—C11	1.503 (5)	C42—H42	0.95
C1A—C2	1.396 (5)	C43—C44	1.378 (6)
C1A—H1A	0.95	C43—H43	0.95
C2—O2	1.281 (5)	C44—C45	1.386 (6)
C2—C21	1.482 (6)	C44—H44	0.95
C2A—C3	1.393 (5)	C45—C46	1.391 (5)
C2A—C4	1.397 (5)	C45—H45	0.95
C2A—H2A	0.95	C46—H46	0.95
С3—О3	1.282 (4)	C51—C52	1.393 (6)
C3—C31	1.501 (5)	C51—C56	1.397 (5)
C3A—C5	1.397 (6)	C52—C53	1.382 (6)
C3A—C6	1.399 (6)	С52—Н52	0.95
СЗА—НЗА	0.95	C53—C54	1.378 (6)
C4—O4	1.264 (4)	С53—Н53	0.95
C4—C41	1.495 (5)	C54—C55	1.375 (6)
C4A—C7	1.398 (5)	C54—H54	0.95
C4A—C8	1.399 (5)	C55—C56	1.389 (6)
C4A—H4A	0.95	С55—Н55	0.95
C5—O5	1.273 (5)	C56—H56	0.95
C5—C51	1.496 (5)	C61—C62	1.376 (5)
С6—Об	1.274 (4)	C61—C66	1.379 (5)
C6—C61	1.503 (5)	C62—C63	1.393 (6)
С7—О7	1.284 (4)	C62—H62	0.95
C7—C71	1.500 (6)	C63—C64	1.375 (6)

C8—O8	1.291 (4)	С63—Н63	0.95
C8—C81	1.496 (5)	C64—C65	1.408 (6)
C11—C12	1.392 (5)	С64—Н64	0.95
C11—C16	1.402 (5)	C65—C66	1.398 (6)
C12—C13	1.385 (5)	С65—Н65	0.95
С12—Н12	0.95	С66—Н66	0.95
C13—C14	1.394 (6)	C71—C72	1.378 (6)
С13—Н13	0.95	C71—C76	1.401 (6)
C14—C15	1.377 (6)	C72—C73	1.375 (6)
C14—H14	0.95	С72—Н72	0.95
C15—C16	1.389 (5)	C73—C74	1.382 (6)
C15—H15	0.95	C73—H73	0.95
C16—H16	0.95	C74—C75	1 370 (6)
$C_{21} - C_{26}$	1 389 (5)	C74—H74	0.95
$C_{21} - C_{22}$	1 397 (6)	C75-C76	1 382 (6)
C^{22} C^{23}	1 386 (6)	C75—H75	0.95
C22_H22	0.95	C76—H76	0.95
C_{23} C_{24}	1 380 (7)	C81-C86	1 395 (5)
C23_H23	0.95	$C_{81} = C_{82}$	1.395(5)
$C_{23} = 1123$	1 380 (6)	C^{82}	1.375 (6)
C24—C25	0.95	C82 - C83	0.95
$C_{24} = 1124$ $C_{25} = C_{26}$	1 385 (6)	C83_C84	1 365 (6)
C25—C20	0.95	C83_H83	0.95
C25 H26	0.95	C84 C85	1 381 (6)
$C_{20} = 1120$	0.95	C_{84} H_{84}	0.95
C_{31} C_{32}	1.391 (3)	C_{85} C_{86}	0.95
$C_{31} = C_{32}$	1.400 (5)	$C_{85} = C_{80}$	1.384 (0)
$C_{32} = C_{33}$	1.380 (0)	C86 H86	0.95
C_{22} C_{24}	0.95	C_{00} H_{00}	0.93
C_{22} U_{22}	1.579 (0)		2.197(3)
C35—R55	0.95		2.133(2)
C_{24} U_{24}	1.595 (0)		2.200(2)
C34—H34	0.95	O5—HII	2.180(3)
$C_{25} = U_{25}$	1.394 (3)		2.134(2)
C35—H35	0.95	O/—HII	2.189(2)
C30—H30	0.95		2.154 (2)
C41—C46	1.384 (5)	O2—HfI	2.143 (3)
O1—C1—C1A	123.1 (3)	C52—C51—C56	119.5 (4)
O1—C1—C11	115.5 (3)	C52—C51—C5	119.3 (4)
C1A—C1—C11	121.5 (3)	C56—C51—C5	121.1 (4)
C2—C1A—C1	121.8 (4)	C53—C52—C51	120.1 (4)
C2—C1A—H1A	119.1	С53—С52—Н52	119.9
C1—C1A—H1A	119.1	C51—C52—H52	119.9
O2—C2—C1A	123.3 (4)	C54—C53—C52	120.0 (4)
O2—C2—C21	114.6 (4)	С54—С53—Н53	120
C1A—C2—C21	122.0 (4)	С52—С53—Н53	120
C3—C2A—C4	121.0 (3)	C55—C54—C53	120.6 (4)
С3—С2А—Н2А	119.5	С55—С54—Н54	119.7

C4—C2A—H2A	119.5	С53—С54—Н54	119.7
O3—C3—C2A	123.7 (3)	C54—C55—C56	120.2 (4)
O3—C3—C31	114.7 (3)	С54—С55—Н55	119.9
C2A-C3-C31	121.6 (3)	С56—С55—Н55	119.9
C5—C3A—C6	121.2 (4)	C55—C56—C51	119.5 (4)
С5—С3А—НЗА	119.4	С55—С56—Н56	120.2
С6—С3А—НЗА	119.4	С51—С56—Н56	120.2
O4—C4—C2A	124.3 (3)	C62—C61—C66	120.3 (4)
O4—C4—C41	115.6 (3)	C62—C61—C6	122.3 (4)
C2A-C4-C41	120.1 (3)	C66—C61—C6	117.4 (3)
C7—C4A—C8	121.3 (4)	C61—C62—C63	119.2 (4)
C7—C4A—H4A	119.3	С61—С62—Н62	120.4
C8—C4A—H4A	119.3	С63—С62—Н62	120.4
05—C5—C3A	123.9 (4)	C64—C63—C62	121.8 (4)
05	116.1 (4)	С64—С63—Н63	119.1
C3A - C5 - C51	119.9 (4)	С62—С63—Н63	119.1
06—C6—C3A	123.4 (4)	C63 - C64 - C65	118.6 (4)
06-C6-C61	1145(3)	C63 - C64 - H64	120.7
$C_3A - C_6 - C_61$	1220(3)	C65 - C64 - H64	120.7
07-C7-C4A	122.0(3) 123.4(4)	C65 - C65 - C64	120.7 1104(4)
07 - C7 - C71	125.4(4) 115.4(3)	C66 - C65 - H65	119.4 (4)
C/A $C7$ $C71$	113.4(3) 121.3(4)	C64 C65 H65	120.5
$C_{A} = C_{A} = C_{A}$	121.3(4) 123.3(4)	C61 C66 C65	120.5 120.6(4)
$O_{0} = C_{0} = C_{1}$	125.5(4)	$C_{01} = C_{00} = C_{03}$	120.0 (4)
C_{4}	113.3(3)	C65 C66 H66	119.7
$C_{4A} = C_{8} = C_{81}$	121.2(3)	$C_{00} = C_{00} = H_{00}$	119./
C12 - C11 - C10	110.0(3)	$C_{12} = C_{11} = C_{10}$	110.0 (4)
	119.5 (3)	C/2 - C/1 - C/	118.9 (4)
	121.7 (3)	C/6-C/1-C/	122.1 (4)
C13—C12—C11	121.1 (4)	C/3—C/2—C/1	120.8 (4)
C13—C12—H12	119.5	C/3—C/2—H/2	119.6
C11—C12—H12	119.5	С/1—С/2—Н/2	119.6
C12—C13—C14	119.3 (4)	C/2_C/3_C/4	120.2 (5)
С12—С13—Н13	120.3	С/2—С/3—Н/3	119.9
С14—С13—Н13	120.3	С74—С73—Н73	119.9
C15—C14—C13	120.4 (4)	C75—C74—C73	119.9 (4)
C15—C14—H14	119.8	С75—С74—Н74	120
C13—C14—H14	119.8	С73—С74—Н74	120
C14—C15—C16	120.3 (4)	C74—C75—C76	120.3 (4)
C14—C15—H15	119.9	С74—С75—Н75	119.8
C16—C15—H15	119.9	С76—С75—Н75	119.8
C15—C16—C11	120.1 (4)	C75—C76—C71	120.0 (4)
C15—C16—H16	120	С75—С76—Н76	120
C11—C16—H16	120	С71—С76—Н76	120
C26—C21—C22	118.9 (4)	C86—C81—C82	118.9 (4)
C26—C21—C2	119.0 (4)	C86—C81—C8	119.5 (3)
C22—C21—C2	122.1 (4)	C82—C81—C8	121.5 (4)
C23—C22—C21	120.2 (4)	C83—C82—C81	120.3 (4)
C23—C22—H22	119.9	С83—С82—Н82	119.9

C21—C22—H22	119.9	C81—C82—H82	119.9
C24—C23—C22	120.6 (4)	C84—C83—C82	120.3 (4)
С24—С23—Н23	119.7	С84—С83—Н83	119.9
С22—С23—Н23	119.7	С82—С83—Н83	119.9
C23—C24—C25	119.2 (4)	C83—C84—C85	120.7 (4)
C23—C24—H24	120.4	C83—C84—H84	119.7
C25—C24—H24	120.4	С85—С84—Н84	119.7
C24—C25—C26	120.9 (4)	C84—C85—C86	119.8 (4)
С24—С25—Н25	119.5	С84—С85—Н85	120.1
С26—С25—Н25	119.5	С86—С85—Н85	120.1
C25—C26—C21	120.1 (4)	C85—C86—C81	120.0 (4)
C25—C26—H26	119.9	С85—С86—Н86	120
C21—C26—H26	119.9	C81—C86—H86	120
C36—C31—C32	118.9 (4)	C1—O1—Hf1	133.2 (2)
C36—C31—C3	123.0 (3)	C3—O3—Hfl	135.3 (2)
C32—C31—C3	118.1 (3)	C4—O4—Hfl	134.4 (2)
C33—C32—C31	120.6 (4)	C5—O5—Hfl	132.5 (3)
С33—С32—Н32	119.7	C6—O6—Hf1	134.0 (2)
С31—С32—Н32	119.7	C7—O7—Hf1	133.4 (2)
C34—C33—C32	120.0 (4)	C8—O8—Hf1	130.2 (2)
С34—С33—Н33	120	C2—O2—Hf1	135.0 (2)
С32—С33—Н33	120	O3—Hf1—O2	112.32 (10)
C33—C34—C35	120.5 (4)	O3—Hf1—O8	79.05 (10)
С33—С34—Н34	119.8	O2—Hf1—O8	142.98 (9)
С35—С34—Н34	119.8	O3—Hf1—O6	143.90 (9)
C34—C35—C36	119.5 (4)	O2—Hf1—O6	77.42 (10)
С34—С35—Н35	120.3	O8—Hf1—O6	114.87 (10)
С36—С35—Н35	120.3	O3—Hf1—O5	78.83 (9)
C31—C36—C35	120.6 (4)	O2—Hf1—O5	142.78 (10)
С31—С36—Н36	119.7	O8—Hf1—O5	72.53 (9)
С35—С36—Н36	119.7	O6—Hf1—O5	74.71 (10)
C46—C41—C42	119.3 (4)	O3—Hf1—O7	144.09 (9)
C46—C41—C4	120.5 (3)	O2—Hf1—O7	77.35 (10)
C42—C41—C4	120.1 (3)	O8—Hf1—O7	74.79 (9)
C43—C42—C41	120.3 (4)	O6—Hf1—O7	70.89 (9)
C43—C42—H42	119.9	O5—Hf1—O7	115.18 (9)
C41—C42—H42	119.9	O3—Hf1—O1	72.31 (9)
C44—C43—C42	120.3 (4)	O2—Hf1—O1	74.45 (10)
C44—C43—H43	119.9	O8—Hf1—O1	76.23 (9)
C42—C43—H43	119.9	O6—Hf1—O1	141.63 (9)
C43—C44—C45	119.8 (4)	O5—Hf1—O1	140.72 (10)
C43—C44—H44	120.1	O7—Hf1—O1	77.85 (9)
C45—C44—H44	120.1	O3—Hf1—O4	75.02 (9)
C44—C45—C46	120.2 (4)	O2—Hf1—O4	71.63 (9)
C44—C45—H45	119.9	O8—Hf1—O4	143.76 (9)
C46—C45—H45	119.9	O6—Hf1—O4	75.76 (9)
C41—C46—C45	120.0 (4)	O5—Hf1—O4	77.92 (9)
C41—C46—H46	120	O7—Hf1—O4	138.39 (9)

C45—C46—H46	120	O1—Hf1—O4	118.10 (9)
01—C1—C1A—C2	-2.1 (6)	C76—C71—C72—C73	1.5 (6)
C11—C1—C1A—C2	176.4 (4)	C7—C71—C72—C73	177.0 (4)
C1—C1A—C2—O2	3.5 (6)	C71—C72—C73—C74	-1.4 (6)
C1—C1A—C2—C21	-174.1 (4)	C72—C73—C74—C75	0.1 (7)
C4—C2A—C3—O3	4.6 (6)	C73—C74—C75—C76	1.1 (7)
C4—C2A—C3—C31	-174.8 (3)	C74—C75—C76—C71	-1.0(6)
C3—C2A—C4—O4	-10.5 (6)	C72—C71—C76—C75	-0.3 (6)
C3—C2A—C4—C41	167.1 (3)	C7—C71—C76—C75	-175.6 (4)
C6—C3A—C5—O5	-4.7 (6)	O8—C8—C81—C86	-26.4(5)
C6—C3A—C5—C51	171.9 (4)	C4A—C8—C81—C86	153.8 (4)
C5—C3A—C6—O6	6.2 (6)	O8—C8—C81—C82	150.9 (4)
C5—C3A—C6—C61	-171.2 (4)	C4A—C8—C81—C82	-28.9(6)
C8—C4A—C7—O7	-10.5 (6)	C86—C81—C82—C83	0.1 (6)
C8—C4A—C7—C71	168.5 (4)	C8—C81—C82—C83	-177.2 (4)
C7—C4A—C8—O8	-2.1 (6)	C81—C82—C83—C84	-0.5 (7)
C7—C4A—C8—C81	177.7 (4)	C82—C83—C84—C85	-0.3 (7)
O1—C1—C11—C12	18.8 (5)	C83—C84—C85—C86	1.4 (7)
C1A—C1—C11—C12	-159.8 (4)	C84—C85—C86—C81	-1.9 (6)
O1—C1—C11—C16	-160.3 (4)	C82—C81—C86—C85	1.1 (6)
C1A—C1—C11—C16	21.1 (6)	C8—C81—C86—C85	178.5 (4)
C16—C11—C12—C13	-1.9 (6)	C1A—C1—O1—Hf1	-23.4(6)
C1—C11—C12—C13	178.9 (4)	C11—C1—O1—Hf1	158.0 (2)
C11—C12—C13—C14	1.3 (7)	C2A—C3—O3—Hf1	21.8 (5)
C12—C13—C14—C15	0.3 (6)	C31—C3—O3—Hf1	-158.7 (2)
C13—C14—C15—C16	-1.2 (6)	C2A—C4—O4—Hf1	-8.3 (5)
C14—C15—C16—C11	0.5 (6)	C41—C4—O4—Hf1	174.0 (2)
C12—C11—C16—C15	1.0 (6)	C3A—C5—O5—Hf1	-23.4(6)
C1—C11—C16—C15	-179.9 (4)	C51—C5—O5—Hf1	159.9 (2)
O2—C2—C21—C26	-18.7 (5)	C3A—C6—O6—Hf1	20.9 (6)
C1A—C2—C21—C26	159.1 (4)	C61—C6—O6—Hf1	-161.4 (2)
O2—C2—C21—C22	160.7 (4)	C4A—C7—O7—Hf1	-11.6 (5)
C1A—C2—C21—C22	-21.5 (6)	C71—C7—O7—Hf1	169.4 (2)
C26—C21—C22—C23	-1.1 (7)	C4A-C8-O8-Hf1	37.5 (5)
C2—C21—C22—C23	179.5 (4)	C81—C8—O8—Hf1	-142.4 (3)
C21—C22—C23—C24	-1.1 (8)	C1A—C2—O2—Hf1	21.9 (6)
C22—C23—C24—C25	1.9 (8)	C21—C2—O2—Hf1	-160.4 (3)
C23—C24—C25—C26	-0.4 (8)	C3—O3—Hf1—O2	-89.8 (3)
C24—C25—C26—C21	-1.9 (7)	C3—O3—Hf1—O8	127.1 (3)
C22—C21—C26—C25	2.6 (6)	C3—O3—Hf1—O6	9.6 (4)
C2-C21-C26-C25	-178.0 (4)	C3—O3—Hf1—O5	53.0 (3)
O3—C3—C31—C36	-153.1 (3)	C3—O3—Hf1—O7	170.8 (3)
C2A-C3-C31-C36	26.3 (5)	C3—O3—Hf1—O1	-154.0 (3)
O3—C3—C31—C32	24.7 (5)	C3—O3—Hf1—O4	-27.3 (3)
C2A—C3—C31—C32	-155.9 (3)	C2—O2—Hf1—O3	-93.3 (3)
C36—C31—C32—C33	0.2 (6)	C2-02-Hf1-08	8.5 (4)
C3—C31—C32—C33	-177.7 (3)	C2-O2-Hf1-O6	123.3 (3)

C31—C32—C33—C34	0.9 (6)	C2—O2—Hf1—O5	165.5 (3)
C32—C33—C34—C35	-0.8 (6)	C2—O2—Hf1—O7	50.4 (3)
C33—C34—C35—C36	-0.5 (6)	C2—O2—Hf1—O1	-30.3 (3)
C32—C31—C36—C35	-1.5 (5)	C2—O2—Hf1—O4	-157.8 (4)
C3—C31—C36—C35	176.3 (3)	C8—O8—Hf1—O3	114.8 (3)
C34—C35—C36—C31	1.7 (6)	C8—O8—Hf1—O2	2.1 (4)
O4—C4—C41—C46	-33.8 (5)	C8—O8—Hf1—O6	-100.3 (3)
C2A—C4—C41—C46	148.4 (4)	C8—O8—Hf1—O5	-163.6 (3)
O4—C4—C41—C42	143.7 (4)	C8—O8—Hf1—O7	-40.3 (3)
C2A—C4—C41—C42	-34.1 (5)	C8—O8—Hf1—O1	40.6 (3)
C46—C41—C42—C43	2.2 (6)	C8—O8—Hf1—O4	159.6 (3)
C4—C41—C42—C43	-175.3 (3)	C6—O6—Hf1—O3	13.0 (4)
C41—C42—C43—C44	-3.6 (6)	C6—O6—Hf1—O2	123.7 (4)
C42—C43—C44—C45	1.3 (6)	C6—O6—Hf1—O8	-93.3 (3)
C43—C44—C45—C46	2.3 (6)	C6—O6—Hf1—O5	-31.3 (3)
C42—C41—C46—C45	1.3 (6)	C6—O6—Hf1—O7	-155.5 (4)
C4—C41—C46—C45	178.8 (3)	C6—O6—Hf1—O1	167.3 (3)
C44—C45—C46—C41	-3.6 (6)	C6—O6—Hf1—O4	49.8 (3)
O5—C5—C51—C52	41.3 (5)	C5—O5—Hf1—O3	-123.0(3)
C3A—C5—C51—C52	-135.5 (4)	C5—O5—Hf1—O2	-10.6 (4)
O5—C5—C51—C56	-139.7 (4)	C5—O5—Hf1—O8	155.1 (3)
C3A-C5-C51-C56	43.4 (6)	C5—O5—Hf1—O6	32.2 (3)
C56—C51—C52—C53	-2.8 (6)	C5—O5—Hf1—O7	92.0 (3)
C5-C51-C52-C53	176.2 (4)	C5—O5—Hf1—O1	-166.0(3)
C51—C52—C53—C54	2.0 (6)	C5—O5—Hf1—O4	-46.1 (3)
C52—C53—C54—C55	0.0 (6)	C7—O7—Hf1—O3	-16.6 (4)
C53—C54—C55—C56	-1.1 (6)	C7—O7—Hf1—O2	-127.3 (3)
C54—C55—C56—C51	0.3 (6)	C7—O7—Hf1—O8	28.0 (3)
C52—C51—C56—C55	1.7 (6)	C7—O7—Hf1—O6	151.8 (3)
C5-C51-C56-C55	-177.3 (4)	C7—O7—Hf1—O5	89.9 (3)
O6—C6—C61—C62	-157.6 (4)	C7—O7—Hf1—O1	-50.8 (3)
C3A-C6-C61-C62	20.1 (6)	C7—O7—Hf1—O4	-169.7 (3)
O6—C6—C61—C66	20.7 (5)	C1-01-Hf1-03	151.1 (3)
C3A—C6—C61—C66	-161.7 (4)	C1—O1—Hf1—O2	30.9 (3)
C66—C61—C62—C63	0.1 (6)	C1—O1—Hf1—O8	-126.2(3)
C6—C61—C62—C63	178.3 (4)	C1	-13.4 (4)
C61—C62—C63—C64	0.5 (7)	C1-01-Hf1-05	-164.2 (3)
C62—C63—C64—C65	-0.9 (7)	C1—O1—Hf1—O7	-49.2 (3)
C63—C64—C65—C66	0.8 (6)	C1—O1—Hf1—O4	89.6 (3)
C62—C61—C66—C65	-0.2 (6)	C4—O4—Hf1—O3	20.3 (3)
C6—C61—C66—C65	-178.5 (4)	C4—O4—Hf1—O2	140.5 (3)
C64—C65—C66—C61	-0.2 (6)	C4—O4—Hf1—O8	-25.4 (4)
O7—C7—C71—C72	-18.1 (5)	C4—O4—Hf1—O6	-138.2 (3)
C4A—C7—C71—C72	162.8 (4)	C4—O4—Hf1—O5	-61.2 (3)
O7—C7—C71—C76	157.2 (4)	C4—O4—Hf1—O7	-175.6 (3)
C4A—C7—C71—C76	-21.9 (6)	C4—O4—Hf1—O1	80.4 (3)
			. /

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H… <i>A</i>
C43—H43…O6 ⁱ	0.95	2.6	3.538 (5)	170

Symmetry code: (i) x, y+1, z.