

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Pyrrolo[2,1-c][1,4]benzodiazepine-5,11dithione

Sarah Ourahou,^a Hafid Zouihri,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 31 May 2010; accepted 4 June 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.107; data-to-parameter ratio = 15.6.

The seven-membered fused-ring in the title compound, $C_{12}H_{12}N_2S_2$, adopts a boat conformation (with the two phenylene C atoms representing the stern and the methine C atom the prow). This methine C atom and the tertiary N atom also belong to a five-membered ring, which has an envelope conformation. In the crystal structure, molecules are linked about a center of inversion by pairs of N-H···S hydrogen bonds.

Related literature

For background to pyrrolo[2,1-c][1,4]benzodiazepine-5,11dione, see: Antonow et al. (2007); Kamal et al. (2007). For a related structure, Neidle et al. (1991).

14013 measured reflections

 $R_{\rm int} = 0.055$

3017 independent reflections

2117 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{12}H_{12}N_2S_2$	V = 1148.68 (7) Å ³
$M_r = 248.36$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.9831 (5) Å	$\mu = 0.44 \text{ mm}^{-1}$
b = 10.0134 (3) Å	$T = 200 { m K}$
c = 8.2670 (3) Å	$0.12 \times 0.10 \times 0.07 \text{ mm}$
$\beta = 97.089 \ (1)^{\circ}$	

Data collection

Bruker X8 APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.950, T_{\max} = 0.970$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	12 restraints
$wR(F^2) = 0.107$	All H-atom parameters refined
S = 1.01	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
3017 reflections	$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$
193 parameters	

Table 1

Hydrogen-bond	geometry	(Å,	°).	
---------------	----------	-----	-----	--

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $N1 - H1 \cdot \cdot \cdot S1^{i}$ 2.58(1) 3.411 (2) 0.86(1)166 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2774).

References

Antonow, D., Jenkins, T. C., Howard, P. W. & Thurston, D. E. (2007). Bioorg. Med. Chem. 15, 3041-3053.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kamal, A., Reddy, K. L., Devaiah, V., Shankaraiah, N., Reddy, G. S. K. & Raghavan, S. (2007). J. Comb. Chem. 9, 29-42.

Neidle, S., Webster, G. D., Jones, G. B. & Thurston, D. E. (1991). Acta Cryst. C47, 2678-2680.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supporting information

Acta Cryst. (2010). E66, o1653 [doi:10.1107/S1600536810021410]

Pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dithione

Sarah Ourahou, Hafid Zouihri, El Mokhtar Essassi and Seik Weng Ng

S1. Comment

Pyrrolo[2,1-*c*][1,4]benzodiazepine-5,11-dione is the homolog of a class of compounds that are active against mycobacterium tuberculosis (Kamal *et al.*, 2007). Other C-2 aryl substituted derivatives are cytotoxic (Antonow *et al.*, 2007). The crystal structure of the parent compound has not been reported although that the (11aS)-1,2,3,10,11,11*a*-hexahydro has bee published (Neidle *et al.*, 1997). The structure of the parent compound is probably similar to that of the isoelectronic dithione (Scheme I, Fig. 1). The seven-membered fused-ring in C₁₂H₁₂N₂S₂ adopts a boat conformation (with the two phenylene carbons representing the stern and the methine carbon atom the prow). This methine C atom and the tertiary N atom also belong to a five-membered ring, which has an envelope shape. Two C₁₂H₁₂N₂O₂ molecules are linked about a center-of-inversion by *N*–*H*…O_{carbonyl} hydrogen bonds.

S2. Experimental

Pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dithione (1 g, 4.62 mmol) and phosphorus pentasulfide (2.05 g, 9.24 mmol) are heated in pyridine (60 ml) for 4 h. The pyridine was evaporated under reduced pressure and the residue heated in water (100 ml). The suspension was set aside for a day. The insoluble product was recrystallized from ethanol to furnish colorless crystals (90% yield).

S3. Refinement

The nitrogen- and carbon-bound H-atoms were refined with restraints (C–H 0.95±0.01 Å for the aromatic atoms and 0.99±0.01 Å for the aliphatic atoms; N–H 0.86±0.01 Å). Their temperature factors were freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the molecule of $C_{12}H_{12}N_2S_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dithione

Crystal data

C₁₂H₁₂N₂S₂ $M_r = 248.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.9831 (5) Å b = 10.0134 (3) Å c = 8.2670 (3) Å $\beta = 97.089$ (1)° V = 1148.68 (7) Å³ Z = 4

Data collection

Bruker X8 APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.950, T_{\max} = 0.970$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.107$ S = 1.013017 reflections F(000) = 520 $D_x = 1.436 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2753 reflections $\theta = 2.5-26.5^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$ T = 200 KPrism, colorless $0.12 \times 0.10 \times 0.07 \text{ mm}$

14013 measured reflections 3017 independent reflections 2117 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 28.9^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -18 \rightarrow 18$ $k = -12 \rightarrow 13$ $l = -11 \rightarrow 11$

193 parameters12 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.047P)^2 + 0.5062P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} = 0.001 \\ &\Delta\rho_{\text{max}} = 0.39 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{\text{min}} = -0.28 \text{ e } \text{\AA}^{-3} \end{split}$$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.60817 (4)	0.35830 (6)	0.60020 (8)	0.02972 (16)
S2	0.92223 (4)	0.75918 (6)	0.51650 (7)	0.02991 (16)
N1	0.62240 (12)	0.61932 (18)	0.5884 (2)	0.0221 (4)
N2	0.82707 (11)	0.57256 (17)	0.6540 (2)	0.0196 (4)
C1	0.65476 (14)	0.7511 (2)	0.6273 (2)	0.0205 (4)
C2	0.58339 (16)	0.8462 (2)	0.6410 (3)	0.0277 (5)
C3	0.60718 (17)	0.9769 (2)	0.6798 (3)	0.0318 (5)
C4	0.70347 (18)	1.0143 (2)	0.7079 (3)	0.0307 (5)
C5	0.77396 (16)	0.9220 (2)	0.6894 (3)	0.0251 (5)
C6	0.75250 (14)	0.7891 (2)	0.6467 (2)	0.0191 (4)
C7	0.83258 (14)	0.7001 (2)	0.6109 (2)	0.0194 (4)
C8	0.90083 (16)	0.4717 (2)	0.6291 (3)	0.0274 (5)
C9	0.86119 (16)	0.3432 (2)	0.6929 (3)	0.0284 (5)
C10	0.80322 (16)	0.3926 (2)	0.8260 (3)	0.0251 (5)
C11	0.75591 (14)	0.5204 (2)	0.7555 (2)	0.0190 (4)
C12	0.66077 (14)	0.5040 (2)	0.6465 (2)	0.0205 (4)
H1	0.5667 (10)	0.611 (2)	0.534 (2)	0.027 (6)*
H2	0.5176 (8)	0.822 (2)	0.628 (3)	0.034 (7)*
Н3	0.5592 (13)	1.0406 (19)	0.694 (3)	0.030 (6)*
H4	0.7233 (16)	1.1027 (13)	0.736 (3)	0.032 (7)*
Н5	0.8403 (8)	0.948 (2)	0.708 (3)	0.021 (6)*
H81	0.9608 (11)	0.498 (2)	0.697 (2)	0.030 (6)*
H82	0.9116 (16)	0.471 (2)	0.5138 (14)	0.034 (7)*
H91	0.8196 (14)	0.296 (2)	0.606 (2)	0.029 (6)*
H92	0.9130 (13)	0.281 (2)	0.736 (3)	0.037 (7)*
H11	0.7457 (14)	0.5865 (16)	0.8397 (19)	0.017 (5)*
H101	0.8467 (13)	0.421 (2)	0.9245 (19)	0.029 (6)*
H102	0.7565 (13)	0.3271 (18)	0.859 (2)	0.025 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0233 (3)	0.0180 (3)	0.0459 (3)	-0.0022 (2)	-0.0034 (2)	0.0011 (3)
S2	0.0248 (3)	0.0352 (4)	0.0300 (3)	-0.0034 (2)	0.0043 (2)	0.0035 (2)
N1	0.0172 (9)	0.0175 (10)	0.0299 (9)	-0.0008 (7)	-0.0039 (7)	-0.0007 (7)
N2	0.0172 (8)	0.0202 (10)	0.0211 (8)	0.0010 (7)	0.0012 (7)	-0.0007 (7)
C1	0.0238 (10)	0.0169 (11)	0.0202 (9)	0.0007 (8)	0.0004 (8)	-0.0004 (8)
C2	0.0244 (11)	0.0242 (12)	0.0344 (12)	0.0036 (9)	0.0037 (9)	-0.0019 (10)
C3	0.0360 (13)	0.0219 (13)	0.0382 (13)	0.0085 (10)	0.0074 (10)	-0.0027 (10)
C4	0.0455 (14)	0.0177 (12)	0.0289 (11)	-0.0002 (10)	0.0041 (10)	-0.0019 (9)

supporting information

C5	0.0300 (12)	0.0222 (12)	0.0220 (10)	-0.0046 (9)	-0.0008 (9)	0.0023 (9)
C6	0.0232 (10)	0.0180 (11)	0.0157 (9)	0.0001 (8)	0.0013 (8)	0.0009 (8)
C7	0.0191 (10)	0.0229 (11)	0.0150 (9)	-0.0025 (8)	-0.0027 (7)	-0.0005 (8)
C8	0.0224 (11)	0.0276 (13)	0.0317 (12)	0.0081 (10)	0.0015 (9)	-0.0012 (10)
C9	0.0259 (11)	0.0223 (12)	0.0351 (12)	0.0073 (9)	-0.0042 (10)	-0.0028 (10)
C10	0.0296 (12)	0.0187 (11)	0.0254 (10)	0.0021 (9)	-0.0035 (9)	0.0012 (9)
C11	0.0221 (10)	0.0162 (10)	0.0184 (9)	0.0004 (8)	0.0016 (8)	0.0000 (8)
C12	0.0203 (10)	0.0197 (11)	0.0224 (10)	0.0019 (8)	0.0065 (8)	-0.0010 (8)

Geometric parameters (Å, °)

S1—C12	1.657 (2)	C4—H4	0.947 (10)
S2—C7	1.665 (2)	C5—C6	1.400 (3)
N1-C12	1.337 (3)	С5—Н5	0.956 (9)
N1—C1	1.419 (3)	C6—C7	1.489 (3)
N1—H1	0.855 (10)	C8—C9	1.520 (3)
N2—C7	1.330 (3)	C8—H81	0.984 (10)
N2	1.474 (2)	C8—H82	0.984 (9)
N2—C8	1.476 (3)	C9—C10	1.527 (3)
C1—C2	1.394 (3)	С9—Н91	0.986 (10)
C1—C6	1.409 (3)	С9—Н92	0.986 (10)
C2—C3	1.379 (3)	C10—C11	1.523 (3)
С2—Н2	0.944 (10)	C10—H101	0.996 (10)
C3—C4	1.389 (3)	C10—H102	0.986 (9)
С3—Н3	0.942 (10)	C11—C12	1.521 (3)
C4—C5	1.374 (3)	C11—H11	0.984 (9)
C12—N1—C1	128.23 (17)	N2—C8—C9	103.87 (17)
C12—N1—H1	113.8 (16)	N2—C8—H81	107.5 (14)
C1—N1—H1	117.1 (16)	С9—С8—Н81	110.5 (14)
C7—N2—C11	123.94 (16)	N2—C8—H82	109.3 (14)
C7—N2—C8	123.70 (17)	С9—С8—Н82	116.0 (15)
C11—N2—C8	111.65 (16)	H81—C8—H82	109.2 (19)
C2—C1—C6	120.0 (2)	C8—C9—C10	102.99 (18)
C2-C1-N1	116.23 (18)	C8—C9—H91	110.8 (14)
C6-C1-N1	123.69 (18)	С10—С9—Н91	111.3 (13)
C3—C2—C1	120.8 (2)	С8—С9—Н92	112.0 (14)
C3—C2—H2	118.2 (16)	С10—С9—Н92	112.0 (14)
C1—C2—H2	120.9 (16)	Н91—С9—Н92	108 (2)
C2—C3—C4	119.7 (2)	C11—C10—C9	103.89 (17)
С2—С3—Н3	121.1 (15)	C11—C10—H101	105.2 (14)
С4—С3—Н3	119.1 (15)	C9—C10—H101	111.0 (13)
C5—C4—C3	119.6 (2)	C11—C10—H102	113.1 (13)
C5—C4—H4	117.6 (15)	C9—C10—H102	114.2 (13)
C3—C4—H4	122.8 (15)	H101—C10—H102	109.0 (18)
C4—C5—C6	122.2 (2)	N2-C11-C12	107.68 (15)
C4—C5—H5	119.9 (14)	N2-C11-C10	102.94 (16)
С6—С5—Н5	117.9 (14)	C12—C11—C10	116.32 (17)

C5—C6—C1	117.39 (19)	N2—C11—H11	109.3 (12)
C5—C6—C7	118.44 (18)	C12—C11—H11	107.4 (12)
C1—C6—C7	123.96 (19)	C10-C11-H11	112.9 (12)
N2—C7—C6	116.84 (17)	N1-C12-C11	113.76 (17)
N2—C7—S2	122.59 (16)	N1-C12-S1	122.01 (15)
C6—C7—S2	120.55 (16)	C11—C12—S1	124.22 (15)
C12—N1—C1—C2	-140.9 (2)	C5—C6—C7—S2	-36.1 (2)
C12—N1—C1—C6	41.2 (3)	C1—C6—C7—S2	138.49 (17)
C6—C1—C2—C3	-2.6 (3)	C7—N2—C8—C9	-178.51 (18)
N1—C1—C2—C3	179.4 (2)	C11—N2—C8—C9	10.8 (2)
C1—C2—C3—C4	-0.9 (3)	N2-C8-C9-C10	-30.2 (2)
C2—C3—C4—C5	3.0 (3)	C8—C9—C10—C11	38.8 (2)
C3—C4—C5—C6	-1.6 (3)	C7—N2—C11—C12	79.1 (2)
C4—C5—C6—C1	-1.8 (3)	C8—N2—C11—C12	-110.28 (18)
C4—C5—C6—C7	173.16 (19)	C7—N2—C11—C10	-157.51 (18)
C2-C1-C6-C5	3.8 (3)	C8—N2—C11—C10	13.1 (2)
N1—C1—C6—C5	-178.33 (18)	C9-C10-C11-N2	-31.7 (2)
C2-C1-C6-C7	-170.78 (19)	C9-C10-C11-C12	85.7 (2)
N1—C1—C6—C7	7.0 (3)	C1—N1—C12—C11	-6.1 (3)
C11—N2—C7—C6	-9.7 (3)	C1—N1—C12—S1	174.50 (16)
C8—N2—C7—C6	-179.26 (17)	N2-C11-C12-N1	-65.3 (2)
C11—N2—C7—S2	171.99 (14)	C10-C11-C12-N1	179.85 (18)
C8—N2—C7—S2	2.5 (3)	N2-C11-C12-S1	114.07 (17)
C5—C6—C7—N2	145.61 (19)	C10-C11-C12-S1	-0.8 (3)
C1—C6—C7—N2	-39.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…S1 ⁱ	0.86 (1)	2.58 (1)	3.411 (2)	166 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.